Proof of Theorem opsbc2ie
| Step | Hyp | Ref
| Expression |
| 1 | | opsbc2ie.a |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) |
| 2 | 1 | sbcth 3803 |
. . . . . . . 8
⊢ (𝑥 ∈ V → [𝑥 / 𝑎](𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒))) |
| 3 | | sbcim1 3842 |
. . . . . . . 8
⊢
([𝑥 / 𝑎](𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) → ([𝑥 / 𝑎]𝑝 = 〈𝑎, 𝑏〉 → [𝑥 / 𝑎](𝜑 ↔ 𝜒))) |
| 4 | 2, 3 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ V → ([𝑥 / 𝑎]𝑝 = 〈𝑎, 𝑏〉 → [𝑥 / 𝑎](𝜑 ↔ 𝜒))) |
| 5 | | sbceq2g 4419 |
. . . . . . . 8
⊢ (𝑥 ∈ V → ([𝑥 / 𝑎]𝑝 = 〈𝑎, 𝑏〉 ↔ 𝑝 = ⦋𝑥 / 𝑎⦌〈𝑎, 𝑏〉)) |
| 6 | | csbopg 4891 |
. . . . . . . . . 10
⊢ (𝑥 ∈ V →
⦋𝑥 / 𝑎⦌〈𝑎, 𝑏〉 = 〈⦋𝑥 / 𝑎⦌𝑎, ⦋𝑥 / 𝑎⦌𝑏〉) |
| 7 | | csbvarg 4434 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ V →
⦋𝑥 / 𝑎⦌𝑎 = 𝑥) |
| 8 | | csbconstg 3918 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ V →
⦋𝑥 / 𝑎⦌𝑏 = 𝑏) |
| 9 | 7, 8 | opeq12d 4881 |
. . . . . . . . . 10
⊢ (𝑥 ∈ V →
〈⦋𝑥 /
𝑎⦌𝑎, ⦋𝑥 / 𝑎⦌𝑏〉 = 〈𝑥, 𝑏〉) |
| 10 | 6, 9 | eqtrd 2777 |
. . . . . . . . 9
⊢ (𝑥 ∈ V →
⦋𝑥 / 𝑎⦌〈𝑎, 𝑏〉 = 〈𝑥, 𝑏〉) |
| 11 | 10 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑥 ∈ V → (𝑝 = ⦋𝑥 / 𝑎⦌〈𝑎, 𝑏〉 ↔ 𝑝 = 〈𝑥, 𝑏〉)) |
| 12 | 5, 11 | bitrd 279 |
. . . . . . 7
⊢ (𝑥 ∈ V → ([𝑥 / 𝑎]𝑝 = 〈𝑎, 𝑏〉 ↔ 𝑝 = 〈𝑥, 𝑏〉)) |
| 13 | | sbcbig 3840 |
. . . . . . . 8
⊢ (𝑥 ∈ V → ([𝑥 / 𝑎](𝜑 ↔ 𝜒) ↔ ([𝑥 / 𝑎]𝜑 ↔ [𝑥 / 𝑎]𝜒))) |
| 14 | | sbcg 3863 |
. . . . . . . . 9
⊢ (𝑥 ∈ V → ([𝑥 / 𝑎]𝜑 ↔ 𝜑)) |
| 15 | 14 | bibi1d 343 |
. . . . . . . 8
⊢ (𝑥 ∈ V → (([𝑥 / 𝑎]𝜑 ↔ [𝑥 / 𝑎]𝜒) ↔ (𝜑 ↔ [𝑥 / 𝑎]𝜒))) |
| 16 | 13, 15 | bitrd 279 |
. . . . . . 7
⊢ (𝑥 ∈ V → ([𝑥 / 𝑎](𝜑 ↔ 𝜒) ↔ (𝜑 ↔ [𝑥 / 𝑎]𝜒))) |
| 17 | 4, 12, 16 | 3imtr3d 293 |
. . . . . 6
⊢ (𝑥 ∈ V → (𝑝 = 〈𝑥, 𝑏〉 → (𝜑 ↔ [𝑥 / 𝑎]𝜒))) |
| 18 | 17 | elv 3485 |
. . . . 5
⊢ (𝑝 = 〈𝑥, 𝑏〉 → (𝜑 ↔ [𝑥 / 𝑎]𝜒)) |
| 19 | 18 | sbcth 3803 |
. . . 4
⊢ (𝑦 ∈ V → [𝑦 / 𝑏](𝑝 = 〈𝑥, 𝑏〉 → (𝜑 ↔ [𝑥 / 𝑎]𝜒))) |
| 20 | | sbcim1 3842 |
. . . 4
⊢
([𝑦 / 𝑏](𝑝 = 〈𝑥, 𝑏〉 → (𝜑 ↔ [𝑥 / 𝑎]𝜒)) → ([𝑦 / 𝑏]𝑝 = 〈𝑥, 𝑏〉 → [𝑦 / 𝑏](𝜑 ↔ [𝑥 / 𝑎]𝜒))) |
| 21 | 19, 20 | syl 17 |
. . 3
⊢ (𝑦 ∈ V → ([𝑦 / 𝑏]𝑝 = 〈𝑥, 𝑏〉 → [𝑦 / 𝑏](𝜑 ↔ [𝑥 / 𝑎]𝜒))) |
| 22 | | sbceq2g 4419 |
. . . 4
⊢ (𝑦 ∈ V → ([𝑦 / 𝑏]𝑝 = 〈𝑥, 𝑏〉 ↔ 𝑝 = ⦋𝑦 / 𝑏⦌〈𝑥, 𝑏〉)) |
| 23 | | csbopg 4891 |
. . . . . 6
⊢ (𝑦 ∈ V →
⦋𝑦 / 𝑏⦌〈𝑥, 𝑏〉 = 〈⦋𝑦 / 𝑏⦌𝑥, ⦋𝑦 / 𝑏⦌𝑏〉) |
| 24 | | csbconstg 3918 |
. . . . . . 7
⊢ (𝑦 ∈ V →
⦋𝑦 / 𝑏⦌𝑥 = 𝑥) |
| 25 | | csbvarg 4434 |
. . . . . . 7
⊢ (𝑦 ∈ V →
⦋𝑦 / 𝑏⦌𝑏 = 𝑦) |
| 26 | 24, 25 | opeq12d 4881 |
. . . . . 6
⊢ (𝑦 ∈ V →
〈⦋𝑦 /
𝑏⦌𝑥, ⦋𝑦 / 𝑏⦌𝑏〉 = 〈𝑥, 𝑦〉) |
| 27 | 23, 26 | eqtrd 2777 |
. . . . 5
⊢ (𝑦 ∈ V →
⦋𝑦 / 𝑏⦌〈𝑥, 𝑏〉 = 〈𝑥, 𝑦〉) |
| 28 | 27 | eqeq2d 2748 |
. . . 4
⊢ (𝑦 ∈ V → (𝑝 = ⦋𝑦 / 𝑏⦌〈𝑥, 𝑏〉 ↔ 𝑝 = 〈𝑥, 𝑦〉)) |
| 29 | 22, 28 | bitrd 279 |
. . 3
⊢ (𝑦 ∈ V → ([𝑦 / 𝑏]𝑝 = 〈𝑥, 𝑏〉 ↔ 𝑝 = 〈𝑥, 𝑦〉)) |
| 30 | | sbcbig 3840 |
. . . 4
⊢ (𝑦 ∈ V → ([𝑦 / 𝑏](𝜑 ↔ [𝑥 / 𝑎]𝜒) ↔ ([𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒))) |
| 31 | | sbcg 3863 |
. . . . 5
⊢ (𝑦 ∈ V → ([𝑦 / 𝑏]𝜑 ↔ 𝜑)) |
| 32 | 31 | bibi1d 343 |
. . . 4
⊢ (𝑦 ∈ V → (([𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒) ↔ (𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒))) |
| 33 | 30, 32 | bitrd 279 |
. . 3
⊢ (𝑦 ∈ V → ([𝑦 / 𝑏](𝜑 ↔ [𝑥 / 𝑎]𝜒) ↔ (𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒))) |
| 34 | 21, 29, 33 | 3imtr3d 293 |
. 2
⊢ (𝑦 ∈ V → (𝑝 = 〈𝑥, 𝑦〉 → (𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒))) |
| 35 | 34 | elv 3485 |
1
⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒)) |