Proof of Theorem opsbc2ie
Step | Hyp | Ref
| Expression |
1 | | opsbc2ie.a |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) |
2 | 1 | sbcth 3731 |
. . . . . . . 8
⊢ (𝑥 ∈ V → [𝑥 / 𝑎](𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒))) |
3 | | sbcim1 3772 |
. . . . . . . 8
⊢
([𝑥 / 𝑎](𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) → ([𝑥 / 𝑎]𝑝 = 〈𝑎, 𝑏〉 → [𝑥 / 𝑎](𝜑 ↔ 𝜒))) |
4 | 2, 3 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ V → ([𝑥 / 𝑎]𝑝 = 〈𝑎, 𝑏〉 → [𝑥 / 𝑎](𝜑 ↔ 𝜒))) |
5 | | sbceq2g 4350 |
. . . . . . . 8
⊢ (𝑥 ∈ V → ([𝑥 / 𝑎]𝑝 = 〈𝑎, 𝑏〉 ↔ 𝑝 = ⦋𝑥 / 𝑎⦌〈𝑎, 𝑏〉)) |
6 | | csbopg 4822 |
. . . . . . . . . 10
⊢ (𝑥 ∈ V →
⦋𝑥 / 𝑎⦌〈𝑎, 𝑏〉 = 〈⦋𝑥 / 𝑎⦌𝑎, ⦋𝑥 / 𝑎⦌𝑏〉) |
7 | | csbvarg 4365 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ V →
⦋𝑥 / 𝑎⦌𝑎 = 𝑥) |
8 | | csbconstg 3851 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ V →
⦋𝑥 / 𝑎⦌𝑏 = 𝑏) |
9 | 7, 8 | opeq12d 4812 |
. . . . . . . . . 10
⊢ (𝑥 ∈ V →
〈⦋𝑥 /
𝑎⦌𝑎, ⦋𝑥 / 𝑎⦌𝑏〉 = 〈𝑥, 𝑏〉) |
10 | 6, 9 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝑥 ∈ V →
⦋𝑥 / 𝑎⦌〈𝑎, 𝑏〉 = 〈𝑥, 𝑏〉) |
11 | 10 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑥 ∈ V → (𝑝 = ⦋𝑥 / 𝑎⦌〈𝑎, 𝑏〉 ↔ 𝑝 = 〈𝑥, 𝑏〉)) |
12 | 5, 11 | bitrd 278 |
. . . . . . 7
⊢ (𝑥 ∈ V → ([𝑥 / 𝑎]𝑝 = 〈𝑎, 𝑏〉 ↔ 𝑝 = 〈𝑥, 𝑏〉)) |
13 | | sbcbig 3770 |
. . . . . . . 8
⊢ (𝑥 ∈ V → ([𝑥 / 𝑎](𝜑 ↔ 𝜒) ↔ ([𝑥 / 𝑎]𝜑 ↔ [𝑥 / 𝑎]𝜒))) |
14 | | sbcg 3795 |
. . . . . . . . 9
⊢ (𝑥 ∈ V → ([𝑥 / 𝑎]𝜑 ↔ 𝜑)) |
15 | 14 | bibi1d 344 |
. . . . . . . 8
⊢ (𝑥 ∈ V → (([𝑥 / 𝑎]𝜑 ↔ [𝑥 / 𝑎]𝜒) ↔ (𝜑 ↔ [𝑥 / 𝑎]𝜒))) |
16 | 13, 15 | bitrd 278 |
. . . . . . 7
⊢ (𝑥 ∈ V → ([𝑥 / 𝑎](𝜑 ↔ 𝜒) ↔ (𝜑 ↔ [𝑥 / 𝑎]𝜒))) |
17 | 4, 12, 16 | 3imtr3d 293 |
. . . . . 6
⊢ (𝑥 ∈ V → (𝑝 = 〈𝑥, 𝑏〉 → (𝜑 ↔ [𝑥 / 𝑎]𝜒))) |
18 | 17 | elv 3438 |
. . . . 5
⊢ (𝑝 = 〈𝑥, 𝑏〉 → (𝜑 ↔ [𝑥 / 𝑎]𝜒)) |
19 | 18 | sbcth 3731 |
. . . 4
⊢ (𝑦 ∈ V → [𝑦 / 𝑏](𝑝 = 〈𝑥, 𝑏〉 → (𝜑 ↔ [𝑥 / 𝑎]𝜒))) |
20 | | sbcim1 3772 |
. . . 4
⊢
([𝑦 / 𝑏](𝑝 = 〈𝑥, 𝑏〉 → (𝜑 ↔ [𝑥 / 𝑎]𝜒)) → ([𝑦 / 𝑏]𝑝 = 〈𝑥, 𝑏〉 → [𝑦 / 𝑏](𝜑 ↔ [𝑥 / 𝑎]𝜒))) |
21 | 19, 20 | syl 17 |
. . 3
⊢ (𝑦 ∈ V → ([𝑦 / 𝑏]𝑝 = 〈𝑥, 𝑏〉 → [𝑦 / 𝑏](𝜑 ↔ [𝑥 / 𝑎]𝜒))) |
22 | | sbceq2g 4350 |
. . . 4
⊢ (𝑦 ∈ V → ([𝑦 / 𝑏]𝑝 = 〈𝑥, 𝑏〉 ↔ 𝑝 = ⦋𝑦 / 𝑏⦌〈𝑥, 𝑏〉)) |
23 | | csbopg 4822 |
. . . . . 6
⊢ (𝑦 ∈ V →
⦋𝑦 / 𝑏⦌〈𝑥, 𝑏〉 = 〈⦋𝑦 / 𝑏⦌𝑥, ⦋𝑦 / 𝑏⦌𝑏〉) |
24 | | csbconstg 3851 |
. . . . . . 7
⊢ (𝑦 ∈ V →
⦋𝑦 / 𝑏⦌𝑥 = 𝑥) |
25 | | csbvarg 4365 |
. . . . . . 7
⊢ (𝑦 ∈ V →
⦋𝑦 / 𝑏⦌𝑏 = 𝑦) |
26 | 24, 25 | opeq12d 4812 |
. . . . . 6
⊢ (𝑦 ∈ V →
〈⦋𝑦 /
𝑏⦌𝑥, ⦋𝑦 / 𝑏⦌𝑏〉 = 〈𝑥, 𝑦〉) |
27 | 23, 26 | eqtrd 2778 |
. . . . 5
⊢ (𝑦 ∈ V →
⦋𝑦 / 𝑏⦌〈𝑥, 𝑏〉 = 〈𝑥, 𝑦〉) |
28 | 27 | eqeq2d 2749 |
. . . 4
⊢ (𝑦 ∈ V → (𝑝 = ⦋𝑦 / 𝑏⦌〈𝑥, 𝑏〉 ↔ 𝑝 = 〈𝑥, 𝑦〉)) |
29 | 22, 28 | bitrd 278 |
. . 3
⊢ (𝑦 ∈ V → ([𝑦 / 𝑏]𝑝 = 〈𝑥, 𝑏〉 ↔ 𝑝 = 〈𝑥, 𝑦〉)) |
30 | | sbcbig 3770 |
. . . 4
⊢ (𝑦 ∈ V → ([𝑦 / 𝑏](𝜑 ↔ [𝑥 / 𝑎]𝜒) ↔ ([𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒))) |
31 | | sbcg 3795 |
. . . . 5
⊢ (𝑦 ∈ V → ([𝑦 / 𝑏]𝜑 ↔ 𝜑)) |
32 | 31 | bibi1d 344 |
. . . 4
⊢ (𝑦 ∈ V → (([𝑦 / 𝑏]𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒) ↔ (𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒))) |
33 | 30, 32 | bitrd 278 |
. . 3
⊢ (𝑦 ∈ V → ([𝑦 / 𝑏](𝜑 ↔ [𝑥 / 𝑎]𝜒) ↔ (𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒))) |
34 | 21, 29, 33 | 3imtr3d 293 |
. 2
⊢ (𝑦 ∈ V → (𝑝 = 〈𝑥, 𝑦〉 → (𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒))) |
35 | 34 | elv 3438 |
1
⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒)) |