![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1moneq | Structured version Visualization version GIF version |
Description: Two monomials are equal iff their powers are equal. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
Ref | Expression |
---|---|
ply1moneq.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1moneq.x | ⊢ 𝑋 = (var1‘𝑅) |
ply1moneq.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
ply1moneq.r | ⊢ (𝜑 → 𝑅 ∈ NzRing) |
ply1moneq.m | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
ply1moneq.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
ply1moneq | ⊢ (𝜑 → ((𝑀 ↑ 𝑋) = (𝑁 ↑ 𝑋) ↔ 𝑀 = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1moneq.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | ply1moneq.x | . . . . . . 7 ⊢ 𝑋 = (var1‘𝑅) | |
3 | ply1moneq.e | . . . . . . 7 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
4 | ply1moneq.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ NzRing) | |
5 | nzrring 20457 | . . . . . . . 8 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) |
7 | ply1moneq.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
8 | eqid 2725 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
9 | eqid 2725 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
10 | 1, 2, 3, 6, 7, 8, 9 | coe1mon 33292 | . . . . . 6 ⊢ (𝜑 → (coe1‘(𝑀 ↑ 𝑋)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝑀, (1r‘𝑅), (0g‘𝑅)))) |
11 | fvexd 6905 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1r‘𝑅) ∈ V) | |
12 | fvexd 6905 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (0g‘𝑅) ∈ V) | |
13 | 11, 12 | ifcld 4568 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 𝑀, (1r‘𝑅), (0g‘𝑅)) ∈ V) |
14 | 10, 13 | fvmpt2d 7011 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑀 ↑ 𝑋))‘𝑘) = if(𝑘 = 𝑀, (1r‘𝑅), (0g‘𝑅))) |
15 | ply1moneq.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
16 | 1, 2, 3, 6, 15, 8, 9 | coe1mon 33292 | . . . . . 6 ⊢ (𝜑 → (coe1‘(𝑁 ↑ 𝑋)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝑁, (1r‘𝑅), (0g‘𝑅)))) |
17 | 11, 12 | ifcld 4568 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 𝑁, (1r‘𝑅), (0g‘𝑅)) ∈ V) |
18 | 16, 17 | fvmpt2d 7011 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑁 ↑ 𝑋))‘𝑘) = if(𝑘 = 𝑁, (1r‘𝑅), (0g‘𝑅))) |
19 | 14, 18 | eqeq12d 2741 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((coe1‘(𝑀 ↑ 𝑋))‘𝑘) = ((coe1‘(𝑁 ↑ 𝑋))‘𝑘) ↔ if(𝑘 = 𝑀, (1r‘𝑅), (0g‘𝑅)) = if(𝑘 = 𝑁, (1r‘𝑅), (0g‘𝑅)))) |
20 | 9, 8 | nzrnz 20456 | . . . . . . 7 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ (0g‘𝑅)) |
21 | 4, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → (1r‘𝑅) ≠ (0g‘𝑅)) |
22 | 21 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1r‘𝑅) ≠ (0g‘𝑅)) |
23 | ifnebib 32357 | . . . . 5 ⊢ ((1r‘𝑅) ≠ (0g‘𝑅) → (if(𝑘 = 𝑀, (1r‘𝑅), (0g‘𝑅)) = if(𝑘 = 𝑁, (1r‘𝑅), (0g‘𝑅)) ↔ (𝑘 = 𝑀 ↔ 𝑘 = 𝑁))) | |
24 | 22, 23 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 𝑀, (1r‘𝑅), (0g‘𝑅)) = if(𝑘 = 𝑁, (1r‘𝑅), (0g‘𝑅)) ↔ (𝑘 = 𝑀 ↔ 𝑘 = 𝑁))) |
25 | 19, 24 | bitrd 278 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((coe1‘(𝑀 ↑ 𝑋))‘𝑘) = ((coe1‘(𝑁 ↑ 𝑋))‘𝑘) ↔ (𝑘 = 𝑀 ↔ 𝑘 = 𝑁))) |
26 | 25 | ralbidva 3166 | . 2 ⊢ (𝜑 → (∀𝑘 ∈ ℕ0 ((coe1‘(𝑀 ↑ 𝑋))‘𝑘) = ((coe1‘(𝑁 ↑ 𝑋))‘𝑘) ↔ ∀𝑘 ∈ ℕ0 (𝑘 = 𝑀 ↔ 𝑘 = 𝑁))) |
27 | eqid 2725 | . . . . 5 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
28 | eqid 2725 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
29 | 1, 2, 27, 3, 28 | ply1moncl 22197 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℕ0) → (𝑀 ↑ 𝑋) ∈ (Base‘𝑃)) |
30 | 6, 7, 29 | syl2anc 582 | . . 3 ⊢ (𝜑 → (𝑀 ↑ 𝑋) ∈ (Base‘𝑃)) |
31 | 1, 2, 27, 3, 28 | ply1moncl 22197 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℕ0) → (𝑁 ↑ 𝑋) ∈ (Base‘𝑃)) |
32 | 6, 15, 31 | syl2anc 582 | . . 3 ⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (Base‘𝑃)) |
33 | eqid 2725 | . . . 4 ⊢ (coe1‘(𝑀 ↑ 𝑋)) = (coe1‘(𝑀 ↑ 𝑋)) | |
34 | eqid 2725 | . . . 4 ⊢ (coe1‘(𝑁 ↑ 𝑋)) = (coe1‘(𝑁 ↑ 𝑋)) | |
35 | 1, 28, 33, 34 | ply1coe1eq 22226 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝑁 ↑ 𝑋) ∈ (Base‘𝑃)) → (∀𝑘 ∈ ℕ0 ((coe1‘(𝑀 ↑ 𝑋))‘𝑘) = ((coe1‘(𝑁 ↑ 𝑋))‘𝑘) ↔ (𝑀 ↑ 𝑋) = (𝑁 ↑ 𝑋))) |
36 | 6, 30, 32, 35 | syl3anc 1368 | . 2 ⊢ (𝜑 → (∀𝑘 ∈ ℕ0 ((coe1‘(𝑀 ↑ 𝑋))‘𝑘) = ((coe1‘(𝑁 ↑ 𝑋))‘𝑘) ↔ (𝑀 ↑ 𝑋) = (𝑁 ↑ 𝑋))) |
37 | 7, 15 | eqelbid 32290 | . 2 ⊢ (𝜑 → (∀𝑘 ∈ ℕ0 (𝑘 = 𝑀 ↔ 𝑘 = 𝑁) ↔ 𝑀 = 𝑁)) |
38 | 26, 36, 37 | 3bitr3d 308 | 1 ⊢ (𝜑 → ((𝑀 ↑ 𝑋) = (𝑁 ↑ 𝑋) ↔ 𝑀 = 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ∀wral 3051 Vcvv 3463 ifcif 4522 ‘cfv 6541 (class class class)co 7414 ℕ0cn0 12500 Basecbs 17177 0gc0g 17418 .gcmg 19025 mulGrpcmgp 20076 1rcur 20123 Ringcrg 20175 NzRingcnzr 20453 var1cv1 22101 Poly1cpl1 22102 coe1cco1 22103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-iin 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-ofr 7681 df-om 7867 df-1st 7989 df-2nd 7990 df-supp 8162 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-pm 8844 df-ixp 8913 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fsupp 9384 df-sup 9463 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-fz 13515 df-fzo 13658 df-seq 13997 df-hash 14320 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-ip 17248 df-tset 17249 df-ple 17250 df-ds 17252 df-hom 17254 df-cco 17255 df-0g 17420 df-gsum 17421 df-prds 17426 df-pws 17428 df-mre 17563 df-mrc 17564 df-acs 17566 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-mhm 18737 df-submnd 18738 df-grp 18895 df-minusg 18896 df-sbg 18897 df-mulg 19026 df-subg 19080 df-ghm 19170 df-cntz 19270 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-srg 20129 df-ring 20177 df-nzr 20454 df-subrng 20485 df-subrg 20510 df-lmod 20747 df-lss 20818 df-psr 21844 df-mvr 21845 df-mpl 21846 df-opsr 21848 df-psr1 22105 df-vr1 22106 df-ply1 22107 df-coe1 22108 |
This theorem is referenced by: ply1degltdimlem 33349 ply1degltdim 33350 |
Copyright terms: Public domain | W3C validator |