![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1moneq | Structured version Visualization version GIF version |
Description: Two monomials are equal iff their powers are equal. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
Ref | Expression |
---|---|
ply1moneq.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1moneq.x | ⊢ 𝑋 = (var1‘𝑅) |
ply1moneq.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
ply1moneq.r | ⊢ (𝜑 → 𝑅 ∈ NzRing) |
ply1moneq.m | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
ply1moneq.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
ply1moneq | ⊢ (𝜑 → ((𝑀 ↑ 𝑋) = (𝑁 ↑ 𝑋) ↔ 𝑀 = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1moneq.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | ply1moneq.x | . . . . . . 7 ⊢ 𝑋 = (var1‘𝑅) | |
3 | ply1moneq.e | . . . . . . 7 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
4 | ply1moneq.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ NzRing) | |
5 | nzrring 20544 | . . . . . . . 8 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) |
7 | ply1moneq.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
8 | eqid 2740 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
9 | eqid 2740 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
10 | 1, 2, 3, 6, 7, 8, 9 | coe1mon 33577 | . . . . . 6 ⊢ (𝜑 → (coe1‘(𝑀 ↑ 𝑋)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝑀, (1r‘𝑅), (0g‘𝑅)))) |
11 | fvexd 6937 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1r‘𝑅) ∈ V) | |
12 | fvexd 6937 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (0g‘𝑅) ∈ V) | |
13 | 11, 12 | ifcld 4594 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 𝑀, (1r‘𝑅), (0g‘𝑅)) ∈ V) |
14 | 10, 13 | fvmpt2d 7044 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑀 ↑ 𝑋))‘𝑘) = if(𝑘 = 𝑀, (1r‘𝑅), (0g‘𝑅))) |
15 | ply1moneq.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
16 | 1, 2, 3, 6, 15, 8, 9 | coe1mon 33577 | . . . . . 6 ⊢ (𝜑 → (coe1‘(𝑁 ↑ 𝑋)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝑁, (1r‘𝑅), (0g‘𝑅)))) |
17 | 11, 12 | ifcld 4594 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 𝑁, (1r‘𝑅), (0g‘𝑅)) ∈ V) |
18 | 16, 17 | fvmpt2d 7044 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑁 ↑ 𝑋))‘𝑘) = if(𝑘 = 𝑁, (1r‘𝑅), (0g‘𝑅))) |
19 | 14, 18 | eqeq12d 2756 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((coe1‘(𝑀 ↑ 𝑋))‘𝑘) = ((coe1‘(𝑁 ↑ 𝑋))‘𝑘) ↔ if(𝑘 = 𝑀, (1r‘𝑅), (0g‘𝑅)) = if(𝑘 = 𝑁, (1r‘𝑅), (0g‘𝑅)))) |
20 | 9, 8 | nzrnz 20543 | . . . . . . 7 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ (0g‘𝑅)) |
21 | 4, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → (1r‘𝑅) ≠ (0g‘𝑅)) |
22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1r‘𝑅) ≠ (0g‘𝑅)) |
23 | ifnebib 32574 | . . . . 5 ⊢ ((1r‘𝑅) ≠ (0g‘𝑅) → (if(𝑘 = 𝑀, (1r‘𝑅), (0g‘𝑅)) = if(𝑘 = 𝑁, (1r‘𝑅), (0g‘𝑅)) ↔ (𝑘 = 𝑀 ↔ 𝑘 = 𝑁))) | |
24 | 22, 23 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 𝑀, (1r‘𝑅), (0g‘𝑅)) = if(𝑘 = 𝑁, (1r‘𝑅), (0g‘𝑅)) ↔ (𝑘 = 𝑀 ↔ 𝑘 = 𝑁))) |
25 | 19, 24 | bitrd 279 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((coe1‘(𝑀 ↑ 𝑋))‘𝑘) = ((coe1‘(𝑁 ↑ 𝑋))‘𝑘) ↔ (𝑘 = 𝑀 ↔ 𝑘 = 𝑁))) |
26 | 25 | ralbidva 3182 | . 2 ⊢ (𝜑 → (∀𝑘 ∈ ℕ0 ((coe1‘(𝑀 ↑ 𝑋))‘𝑘) = ((coe1‘(𝑁 ↑ 𝑋))‘𝑘) ↔ ∀𝑘 ∈ ℕ0 (𝑘 = 𝑀 ↔ 𝑘 = 𝑁))) |
27 | eqid 2740 | . . . . 5 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
28 | eqid 2740 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
29 | 1, 2, 27, 3, 28 | ply1moncl 22297 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℕ0) → (𝑀 ↑ 𝑋) ∈ (Base‘𝑃)) |
30 | 6, 7, 29 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑀 ↑ 𝑋) ∈ (Base‘𝑃)) |
31 | 1, 2, 27, 3, 28 | ply1moncl 22297 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℕ0) → (𝑁 ↑ 𝑋) ∈ (Base‘𝑃)) |
32 | 6, 15, 31 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (Base‘𝑃)) |
33 | eqid 2740 | . . . 4 ⊢ (coe1‘(𝑀 ↑ 𝑋)) = (coe1‘(𝑀 ↑ 𝑋)) | |
34 | eqid 2740 | . . . 4 ⊢ (coe1‘(𝑁 ↑ 𝑋)) = (coe1‘(𝑁 ↑ 𝑋)) | |
35 | 1, 28, 33, 34 | ply1coe1eq 22327 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝑁 ↑ 𝑋) ∈ (Base‘𝑃)) → (∀𝑘 ∈ ℕ0 ((coe1‘(𝑀 ↑ 𝑋))‘𝑘) = ((coe1‘(𝑁 ↑ 𝑋))‘𝑘) ↔ (𝑀 ↑ 𝑋) = (𝑁 ↑ 𝑋))) |
36 | 6, 30, 32, 35 | syl3anc 1371 | . 2 ⊢ (𝜑 → (∀𝑘 ∈ ℕ0 ((coe1‘(𝑀 ↑ 𝑋))‘𝑘) = ((coe1‘(𝑁 ↑ 𝑋))‘𝑘) ↔ (𝑀 ↑ 𝑋) = (𝑁 ↑ 𝑋))) |
37 | 7, 15 | eqelbid 32505 | . 2 ⊢ (𝜑 → (∀𝑘 ∈ ℕ0 (𝑘 = 𝑀 ↔ 𝑘 = 𝑁) ↔ 𝑀 = 𝑁)) |
38 | 26, 36, 37 | 3bitr3d 309 | 1 ⊢ (𝜑 → ((𝑀 ↑ 𝑋) = (𝑁 ↑ 𝑋) ↔ 𝑀 = 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 Vcvv 3488 ifcif 4548 ‘cfv 6575 (class class class)co 7450 ℕ0cn0 12555 Basecbs 17260 0gc0g 17501 .gcmg 19109 mulGrpcmgp 20163 1rcur 20210 Ringcrg 20262 NzRingcnzr 20540 var1cv1 22200 Poly1cpl1 22201 coe1cco1 22202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-of 7716 df-ofr 7717 df-om 7906 df-1st 8032 df-2nd 8033 df-supp 8204 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-2o 8525 df-er 8765 df-map 8888 df-pm 8889 df-ixp 8958 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-fsupp 9434 df-sup 9513 df-oi 9581 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-z 12642 df-dec 12761 df-uz 12906 df-fz 13570 df-fzo 13714 df-seq 14055 df-hash 14382 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-sca 17329 df-vsca 17330 df-ip 17331 df-tset 17332 df-ple 17333 df-ds 17335 df-hom 17337 df-cco 17338 df-0g 17503 df-gsum 17504 df-prds 17509 df-pws 17511 df-mre 17646 df-mrc 17647 df-acs 17649 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-mhm 18820 df-submnd 18821 df-grp 18978 df-minusg 18979 df-sbg 18980 df-mulg 19110 df-subg 19165 df-ghm 19255 df-cntz 19359 df-cmn 19826 df-abl 19827 df-mgp 20164 df-rng 20182 df-ur 20211 df-srg 20216 df-ring 20264 df-nzr 20541 df-subrng 20574 df-subrg 20599 df-lmod 20884 df-lss 20955 df-psr 21954 df-mvr 21955 df-mpl 21956 df-opsr 21958 df-psr1 22204 df-vr1 22205 df-ply1 22206 df-coe1 22207 |
This theorem is referenced by: ply1degltdimlem 33637 ply1degltdim 33638 |
Copyright terms: Public domain | W3C validator |