| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqrel2 | Structured version Visualization version GIF version | ||
| Description: Equality of relations. (Contributed by Peter Mazsa, 8-Mar-2019.) |
| Ref | Expression |
|---|---|
| eqrel2 | ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrel3 5752 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦))) | |
| 2 | ssrel3 5752 | . . 3 ⊢ (Rel 𝐵 → (𝐵 ⊆ 𝐴 ↔ ∀𝑥∀𝑦(𝑥𝐵𝑦 → 𝑥𝐴𝑦))) | |
| 3 | 1, 2 | bi2anan9 638 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦) ∧ ∀𝑥∀𝑦(𝑥𝐵𝑦 → 𝑥𝐴𝑦)))) |
| 4 | eqss 3965 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | 2albiim 1890 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦) ↔ (∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦) ∧ ∀𝑥∀𝑦(𝑥𝐵𝑦 → 𝑥𝐴𝑦))) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ⊆ wss 3917 class class class wbr 5110 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |