| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqrel2 | Structured version Visualization version GIF version | ||
| Description: Equality of relations. (Contributed by Peter Mazsa, 8-Mar-2019.) |
| Ref | Expression |
|---|---|
| eqrel2 | ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrel3 5732 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦))) | |
| 2 | ssrel3 5732 | . . 3 ⊢ (Rel 𝐵 → (𝐵 ⊆ 𝐴 ↔ ∀𝑥∀𝑦(𝑥𝐵𝑦 → 𝑥𝐴𝑦))) | |
| 3 | 1, 2 | bi2anan9 638 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦) ∧ ∀𝑥∀𝑦(𝑥𝐵𝑦 → 𝑥𝐴𝑦)))) |
| 4 | eqss 3946 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | 2albiim 1891 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦) ↔ (∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦) ∧ ∀𝑥∀𝑦(𝑥𝐵𝑦 → 𝑥𝐴𝑦))) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ⊆ wss 3898 class class class wbr 5095 Rel wrel 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |