Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqrel2 Structured version   Visualization version   GIF version

Theorem eqrel2 38281
Description: Equality of relations. (Contributed by Peter Mazsa, 8-Mar-2019.)
Assertion
Ref Expression
eqrel2 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem eqrel2
StepHypRef Expression
1 ssrel3 5799 . . 3 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑦)))
2 ssrel3 5799 . . 3 (Rel 𝐵 → (𝐵𝐴 ↔ ∀𝑥𝑦(𝑥𝐵𝑦𝑥𝐴𝑦)))
31, 2bi2anan9 638 . 2 ((Rel 𝐴 ∧ Rel 𝐵) → ((𝐴𝐵𝐵𝐴) ↔ (∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑦) ∧ ∀𝑥𝑦(𝑥𝐵𝑦𝑥𝐴𝑦))))
4 eqss 4011 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 2albiim 1888 . 2 (∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑦) ↔ (∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑦) ∧ ∀𝑥𝑦(𝑥𝐵𝑦𝑥𝐴𝑦)))
63, 4, 53bitr4g 314 1 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wss 3963   class class class wbr 5148  Rel wrel 5694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-ss 3980  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator