![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqrel2 | Structured version Visualization version GIF version |
Description: Equality of relations. (Contributed by Peter Mazsa, 8-Mar-2019.) |
Ref | Expression |
---|---|
eqrel2 | ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrel3 5810 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦))) | |
2 | ssrel3 5810 | . . 3 ⊢ (Rel 𝐵 → (𝐵 ⊆ 𝐴 ↔ ∀𝑥∀𝑦(𝑥𝐵𝑦 → 𝑥𝐴𝑦))) | |
3 | 1, 2 | bi2anan9 637 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦) ∧ ∀𝑥∀𝑦(𝑥𝐵𝑦 → 𝑥𝐴𝑦)))) |
4 | eqss 4024 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | 2albiim 1889 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦) ↔ (∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦) ∧ ∀𝑥∀𝑦(𝑥𝐵𝑦 → 𝑥𝐴𝑦))) | |
6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ⊆ wss 3976 class class class wbr 5166 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |