Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqrel2 | Structured version Visualization version GIF version |
Description: Equality of relations. (Contributed by Peter Mazsa, 8-Mar-2019.) |
Ref | Expression |
---|---|
eqrel2 | ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrel3 36361 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦))) | |
2 | ssrel3 36361 | . . 3 ⊢ (Rel 𝐵 → (𝐵 ⊆ 𝐴 ↔ ∀𝑥∀𝑦(𝑥𝐵𝑦 → 𝑥𝐴𝑦))) | |
3 | 1, 2 | bi2anan9 635 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦) ∧ ∀𝑥∀𝑦(𝑥𝐵𝑦 → 𝑥𝐴𝑦)))) |
4 | eqss 3932 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | 2albiim 1894 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦) ↔ (∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦) ∧ ∀𝑥∀𝑦(𝑥𝐵𝑦 → 𝑥𝐴𝑦))) | |
6 | 3, 4, 5 | 3bitr4g 313 | 1 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ⊆ wss 3883 class class class wbr 5070 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |