Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqrel2 Structured version   Visualization version   GIF version

Theorem eqrel2 35675
 Description: Equality of relations. (Contributed by Peter Mazsa, 8-Mar-2019.)
Assertion
Ref Expression
eqrel2 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem eqrel2
StepHypRef Expression
1 ssrel3 35674 . . 3 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑦)))
2 ssrel3 35674 . . 3 (Rel 𝐵 → (𝐵𝐴 ↔ ∀𝑥𝑦(𝑥𝐵𝑦𝑥𝐴𝑦)))
31, 2bi2anan9 638 . 2 ((Rel 𝐴 ∧ Rel 𝐵) → ((𝐴𝐵𝐵𝐴) ↔ (∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑦) ∧ ∀𝑥𝑦(𝑥𝐵𝑦𝑥𝐴𝑦))))
4 eqss 3957 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 2albiim 1891 . 2 (∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑦) ↔ (∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑦) ∧ ∀𝑥𝑦(𝑥𝐵𝑦𝑥𝐴𝑦)))
63, 4, 53bitr4g 317 1 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑦)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536   = wceq 1538   ⊆ wss 3908   class class class wbr 5042  Rel wrel 5537 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-12 2178  ax-ext 2794 This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2801  df-cleq 2815  df-clel 2894  df-v 3471  df-in 3915  df-ss 3925  df-br 5043  df-opab 5105  df-xp 5538  df-rel 5539 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator