| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvepres | Structured version Visualization version GIF version | ||
| Description: Restricted converse epsilon relation as a class of ordered pairs. (Contributed by Peter Mazsa, 10-Feb-2018.) |
| Ref | Expression |
|---|---|
| cnvepres | ⊢ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfres2 6033 | . 2 ⊢ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥◡ E 𝑦)} | |
| 2 | brcnvep 38288 | . . . . 5 ⊢ (𝑥 ∈ V → (𝑥◡ E 𝑦 ↔ 𝑦 ∈ 𝑥)) | |
| 3 | 2 | elv 3469 | . . . 4 ⊢ (𝑥◡ E 𝑦 ↔ 𝑦 ∈ 𝑥) |
| 4 | 3 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥◡ E 𝑦) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| 5 | 4 | opabbii 5191 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥◡ E 𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
| 6 | 1, 5 | eqtri 2759 | 1 ⊢ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 class class class wbr 5124 {copab 5186 E cep 5557 ◡ccnv 5658 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-eprel 5558 df-xp 5665 df-rel 5666 df-cnv 5667 df-res 5671 |
| This theorem is referenced by: rncnvepres 38326 n0el2 38356 cnvepresex 38357 |
| Copyright terms: Public domain | W3C validator |