Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvepres Structured version   Visualization version   GIF version

Theorem cnvepres 38321
Description: Restricted converse epsilon relation as a class of ordered pairs. (Contributed by Peter Mazsa, 10-Feb-2018.)
Assertion
Ref Expression
cnvepres ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnvepres
StepHypRef Expression
1 dfres2 6033 . 2 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥 E 𝑦)}
2 brcnvep 38288 . . . . 5 (𝑥 ∈ V → (𝑥 E 𝑦𝑦𝑥))
32elv 3469 . . . 4 (𝑥 E 𝑦𝑦𝑥)
43anbi2i 623 . . 3 ((𝑥𝐴𝑥 E 𝑦) ↔ (𝑥𝐴𝑦𝑥))
54opabbii 5191 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥 E 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
61, 5eqtri 2759 1 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3464   class class class wbr 5124  {copab 5186   E cep 5557  ccnv 5658  cres 5661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-eprel 5558  df-xp 5665  df-rel 5666  df-cnv 5667  df-res 5671
This theorem is referenced by:  rncnvepres  38326  n0el2  38356  cnvepresex  38357
  Copyright terms: Public domain W3C validator