| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvepres | Structured version Visualization version GIF version | ||
| Description: Restricted converse epsilon relation as a class of ordered pairs. (Contributed by Peter Mazsa, 10-Feb-2018.) |
| Ref | Expression |
|---|---|
| cnvepres | ⊢ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfres2 6012 | . 2 ⊢ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥◡ E 𝑦)} | |
| 2 | brcnvep 38254 | . . . . 5 ⊢ (𝑥 ∈ V → (𝑥◡ E 𝑦 ↔ 𝑦 ∈ 𝑥)) | |
| 3 | 2 | elv 3452 | . . . 4 ⊢ (𝑥◡ E 𝑦 ↔ 𝑦 ∈ 𝑥) |
| 4 | 3 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥◡ E 𝑦) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| 5 | 4 | opabbii 5174 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥◡ E 𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
| 6 | 1, 5 | eqtri 2752 | 1 ⊢ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 {copab 5169 E cep 5537 ◡ccnv 5637 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-eprel 5538 df-xp 5644 df-rel 5645 df-cnv 5646 df-res 5650 |
| This theorem is referenced by: rncnvepres 38291 n0el2 38317 cnvepresex 38318 |
| Copyright terms: Public domain | W3C validator |