Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvepres Structured version   Visualization version   GIF version

Theorem cnvepres 36360
Description: Restricted converse epsilon relation as a class of ordered pairs. (Contributed by Peter Mazsa, 10-Feb-2018.)
Assertion
Ref Expression
cnvepres ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnvepres
StepHypRef Expression
1 dfres2 5938 . 2 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥 E 𝑦)}
2 brcnvep 36331 . . . . 5 (𝑥 ∈ V → (𝑥 E 𝑦𝑦𝑥))
32elv 3428 . . . 4 (𝑥 E 𝑦𝑦𝑥)
43anbi2i 622 . . 3 ((𝑥𝐴𝑥 E 𝑦) ↔ (𝑥𝐴𝑦𝑥))
54opabbii 5137 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥 E 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
61, 5eqtri 2766 1 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422   class class class wbr 5070  {copab 5132   E cep 5485  ccnv 5579  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-eprel 5486  df-xp 5586  df-rel 5587  df-cnv 5588  df-res 5592
This theorem is referenced by:  rncnvepres  36366  n0el2  36395  cnvepresex  36396
  Copyright terms: Public domain W3C validator