Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvepres | Structured version Visualization version GIF version |
Description: Restricted converse epsilon relation as a class of ordered pairs. (Contributed by Peter Mazsa, 10-Feb-2018.) |
Ref | Expression |
---|---|
cnvepres | ⊢ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfres2 5949 | . 2 ⊢ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥◡ E 𝑦)} | |
2 | brcnvep 36404 | . . . . 5 ⊢ (𝑥 ∈ V → (𝑥◡ E 𝑦 ↔ 𝑦 ∈ 𝑥)) | |
3 | 2 | elv 3438 | . . . 4 ⊢ (𝑥◡ E 𝑦 ↔ 𝑦 ∈ 𝑥) |
4 | 3 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥◡ E 𝑦) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
5 | 4 | opabbii 5141 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥◡ E 𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
6 | 1, 5 | eqtri 2766 | 1 ⊢ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 {copab 5136 E cep 5494 ◡ccnv 5588 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 df-xp 5595 df-rel 5596 df-cnv 5597 df-res 5601 |
This theorem is referenced by: rncnvepres 36439 n0el2 36468 cnvepresex 36469 |
Copyright terms: Public domain | W3C validator |