Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvepres Structured version   Visualization version   GIF version

Theorem cnvepres 38280
Description: Restricted converse epsilon relation as a class of ordered pairs. (Contributed by Peter Mazsa, 10-Feb-2018.)
Assertion
Ref Expression
cnvepres ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnvepres
StepHypRef Expression
1 dfres2 6061 . 2 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥 E 𝑦)}
2 brcnvep 38247 . . . . 5 (𝑥 ∈ V → (𝑥 E 𝑦𝑦𝑥))
32elv 3483 . . . 4 (𝑥 E 𝑦𝑦𝑥)
43anbi2i 623 . . 3 ((𝑥𝐴𝑥 E 𝑦) ↔ (𝑥𝐴𝑦𝑥))
54opabbii 5215 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥 E 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
61, 5eqtri 2763 1 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478   class class class wbr 5148  {copab 5210   E cep 5588  ccnv 5688  cres 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-eprel 5589  df-xp 5695  df-rel 5696  df-cnv 5697  df-res 5701
This theorem is referenced by:  rncnvepres  38285  n0el2  38315  cnvepresex  38316
  Copyright terms: Public domain W3C validator