![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvepres | Structured version Visualization version GIF version |
Description: Restricted converse epsilon relation as a class of ordered pairs. (Contributed by Peter Mazsa, 10-Feb-2018.) |
Ref | Expression |
---|---|
cnvepres | ⊢ (◡ E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfres2 6035 | . 2 ⊢ (◡ E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑥◡ E 𝑦)} | |
2 | brcnvep 37646 | . . . . 5 ⊢ (𝑥 ∈ V → (𝑥◡ E 𝑦 ↔ 𝑦 ∈ 𝑥)) | |
3 | 2 | elv 3474 | . . . 4 ⊢ (𝑥◡ E 𝑦 ↔ 𝑦 ∈ 𝑥) |
4 | 3 | anbi2i 622 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥◡ E 𝑦) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
5 | 4 | opabbii 5208 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑥◡ E 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
6 | 1, 5 | eqtri 2754 | 1 ⊢ (◡ E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 class class class wbr 5141 {copab 5203 E cep 5572 ◡ccnv 5668 ↾ cres 5671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-eprel 5573 df-xp 5675 df-rel 5676 df-cnv 5677 df-res 5681 |
This theorem is referenced by: rncnvepres 37685 n0el2 37715 cnvepresex 37716 |
Copyright terms: Public domain | W3C validator |