Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvepres Structured version   Visualization version   GIF version

Theorem cnvepres 38342
Description: Restricted converse epsilon relation as a class of ordered pairs. (Contributed by Peter Mazsa, 10-Feb-2018.)
Assertion
Ref Expression
cnvepres ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem cnvepres
StepHypRef Expression
1 dfres2 5995 . 2 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥 E 𝑦)}
2 brcnvep 38308 . . . . 5 (𝑥 ∈ V → (𝑥 E 𝑦𝑦𝑥))
32elv 3441 . . . 4 (𝑥 E 𝑦𝑦𝑥)
43anbi2i 623 . . 3 ((𝑥𝐴𝑥 E 𝑦) ↔ (𝑥𝐴𝑦𝑥))
54opabbii 5160 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥 E 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
61, 5eqtri 2754 1 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436   class class class wbr 5093  {copab 5155   E cep 5518  ccnv 5618  cres 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-res 5631
This theorem is referenced by:  rncnvepres  38347  n0el2  38373  cnvepresex  38374
  Copyright terms: Public domain W3C validator