Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rncnv | Structured version Visualization version GIF version |
Description: Range of converse is the domain. (Contributed by Peter Mazsa, 12-Feb-2018.) |
Ref | Expression |
---|---|
rncnv | ⊢ ran ◡𝐴 = dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 5792 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
2 | 1 | eqcomi 2748 | 1 ⊢ ran ◡𝐴 = dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ◡ccnv 5578 dom cdm 5579 ran crn 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5587 df-dm 5589 df-rn 5590 |
This theorem is referenced by: dmcoss3 36477 symrelim 36579 symrefref2 36583 |
Copyright terms: Public domain | W3C validator |