Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rncnv Structured version   Visualization version   GIF version

Theorem rncnv 38313
Description: Range of converse is the domain. (Contributed by Peter Mazsa, 12-Feb-2018.)
Assertion
Ref Expression
rncnv ran 𝐴 = dom 𝐴

Proof of Theorem rncnv
StepHypRef Expression
1 dfdm4 5833 . 2 dom 𝐴 = ran 𝐴
21eqcomi 2739 1 ran 𝐴 = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  ccnv 5613  dom cdm 5614  ran crn 5615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-cnv 5622  df-dm 5624  df-rn 5625
This theorem is referenced by:  dmcoss3  38469  symrelim  38575  symrefref2  38579
  Copyright terms: Public domain W3C validator