![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rncnv | Structured version Visualization version GIF version |
Description: Range of converse is the domain. (Contributed by Peter Mazsa, 12-Feb-2018.) |
Ref | Expression |
---|---|
rncnv | ⊢ ran ◡𝐴 = dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 5611 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
2 | 1 | eqcomi 2782 | 1 ⊢ ran ◡𝐴 = dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1508 ◡ccnv 5403 dom cdm 5404 ran crn 5405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pr 5183 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-rab 3092 df-v 3412 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-sn 4437 df-pr 4439 df-op 4443 df-br 4927 df-opab 4989 df-cnv 5412 df-dm 5414 df-rn 5415 |
This theorem is referenced by: dmcoss3 35171 symrelim 35273 symrefref2 35277 |
Copyright terms: Public domain | W3C validator |