Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rncnv Structured version   Visualization version   GIF version

Theorem rncnv 38256
Description: Range of converse is the domain. (Contributed by Peter Mazsa, 12-Feb-2018.)
Assertion
Ref Expression
rncnv ran 𝐴 = dom 𝐴

Proof of Theorem rncnv
StepHypRef Expression
1 dfdm4 5920 . 2 dom 𝐴 = ran 𝐴
21eqcomi 2749 1 ran 𝐴 = dom 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  ccnv 5699  dom cdm 5700  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  dmcoss3  38409  symrelim  38515  symrefref2  38519
  Copyright terms: Public domain W3C validator