| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rncnv | Structured version Visualization version GIF version | ||
| Description: Range of converse is the domain. (Contributed by Peter Mazsa, 12-Feb-2018.) |
| Ref | Expression |
|---|---|
| rncnv | ⊢ ran ◡𝐴 = dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 5842 | . 2 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 2 | 1 | eqcomi 2742 | 1 ⊢ ran ◡𝐴 = dom 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ◡ccnv 5620 dom cdm 5621 ran crn 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-cnv 5629 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: dmcoss3 38565 symrelim 38665 symrefref2 38669 |
| Copyright terms: Public domain | W3C validator |