Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssrel3 | Structured version Visualization version GIF version |
Description: Subclass relation in another form when the subclass is a relation. (Contributed by Peter Mazsa, 16-Feb-2019.) |
Ref | Expression |
---|---|
ssrel3 | ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrel 5683 | . 2 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
2 | df-br 5071 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
3 | df-br 5071 | . . . 4 ⊢ (𝑥𝐵𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
4 | 2, 3 | imbi12i 350 | . . 3 ⊢ ((𝑥𝐴𝑦 → 𝑥𝐵𝑦) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
5 | 4 | 2albii 1824 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦) ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
6 | 1, 5 | bitr4di 288 | 1 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∈ wcel 2108 ⊆ wss 3883 〈cop 4564 class class class wbr 5070 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: eqrel2 36362 inxpss 36374 inxpss2 36377 cocossss 36486 |
Copyright terms: Public domain | W3C validator |