![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrel3 | Structured version Visualization version GIF version |
Description: Subclass relation in another form when the subclass is a relation. (Contributed by Peter Mazsa, 16-Feb-2019.) |
Ref | Expression |
---|---|
ssrel3 | ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrel 5806 | . 2 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
2 | df-br 5167 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
3 | df-br 5167 | . . . 4 ⊢ (𝑥𝐵𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
4 | 2, 3 | imbi12i 350 | . . 3 ⊢ ((𝑥𝐴𝑦 → 𝑥𝐵𝑦) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
5 | 4 | 2albii 1818 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦) ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
6 | 1, 5 | bitr4di 289 | 1 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∈ wcel 2108 ⊆ wss 3976 〈cop 4654 class class class wbr 5166 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: cotrg 6139 cotrgOLD 6140 cnvsym 6144 cnvsymOLD 6145 eqrel2 38255 inxpss 38267 inxpss2 38271 cnvref5 38307 cocossss 38392 |
Copyright terms: Public domain | W3C validator |