Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssrel3 | Structured version Visualization version GIF version |
Description: Subclass relation in another form when the subclass is a relation. (Contributed by Peter Mazsa, 16-Feb-2019.) |
Ref | Expression |
---|---|
ssrel3 | ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrel 5725 | . 2 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
2 | df-br 5094 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
3 | df-br 5094 | . . . 4 ⊢ (𝑥𝐵𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
4 | 2, 3 | imbi12i 350 | . . 3 ⊢ ((𝑥𝐴𝑦 → 𝑥𝐵𝑦) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
5 | 4 | 2albii 1821 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦) ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
6 | 1, 5 | bitr4di 288 | 1 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 ∈ wcel 2105 ⊆ wss 3898 〈cop 4580 class class class wbr 5093 Rel wrel 5626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-in 3905 df-ss 3915 df-br 5094 df-opab 5156 df-xp 5627 df-rel 5628 |
This theorem is referenced by: cotrg 6048 cotrgOLD 6049 cnvsym 6053 cnvsymOLD 6054 eqrel2 36616 inxpss 36628 inxpss2 36632 cnvref5 36668 cocossss 36754 |
Copyright terms: Public domain | W3C validator |