![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrel3 | Structured version Visualization version GIF version |
Description: Subclass relation in another form when the subclass is a relation. (Contributed by Peter Mazsa, 16-Feb-2019.) |
Ref | Expression |
---|---|
ssrel3 | ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrel 5779 | . 2 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) | |
2 | df-br 5145 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
3 | df-br 5145 | . . . 4 ⊢ (𝑥𝐵𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
4 | 2, 3 | imbi12i 349 | . . 3 ⊢ ((𝑥𝐴𝑦 → 𝑥𝐵𝑦) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
5 | 4 | 2albii 1815 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦) ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) |
6 | 1, 5 | bitr4di 288 | 1 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1532 ∈ wcel 2099 ⊆ wss 3947 〈cop 4630 class class class wbr 5144 Rel wrel 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3465 df-ss 3964 df-br 5145 df-opab 5207 df-xp 5679 df-rel 5680 |
This theorem is referenced by: cotrg 6110 cotrgOLD 6111 cnvsym 6115 cnvsymOLD 6116 eqrel2 38008 inxpss 38020 inxpss2 38024 cnvref5 38060 cocossss 38145 |
Copyright terms: Public domain | W3C validator |