Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssrel3 Structured version   Visualization version   GIF version

Theorem ssrel3 35709
 Description: Subclass relation in another form when the subclass is a relation. (Contributed by Peter Mazsa, 16-Feb-2019.)
Assertion
Ref Expression
ssrel3 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ssrel3
StepHypRef Expression
1 ssrel 5625 . 2 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
2 df-br 5034 . . . 4 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
3 df-br 5034 . . . 4 (𝑥𝐵𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
42, 3imbi12i 354 . . 3 ((𝑥𝐴𝑦𝑥𝐵𝑦) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
542albii 1822 . 2 (∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑦) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
61, 5syl6bbr 292 1 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑦)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209  ∀wal 1536   ∈ wcel 2112   ⊆ wss 3884  ⟨cop 4534   class class class wbr 5033  Rel wrel 5528 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-12 2176  ax-ext 2773 This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-v 3446  df-in 3891  df-ss 3901  df-br 5034  df-opab 5096  df-xp 5529  df-rel 5530 This theorem is referenced by:  eqrel2  35710  inxpss  35722  inxpss2  35725  cocossss  35834
 Copyright terms: Public domain W3C validator