![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrel3 | Structured version Visualization version GIF version |
Description: Subclass relation in another form when the subclass is a relation. (Contributed by Peter Mazsa, 16-Feb-2019.) |
Ref | Expression |
---|---|
ssrel3 | ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrel 5743 | . 2 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))) | |
2 | df-br 5111 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴) | |
3 | df-br 5111 | . . . 4 ⊢ (𝑥𝐵𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵) | |
4 | 2, 3 | imbi12i 351 | . . 3 ⊢ ((𝑥𝐴𝑦 → 𝑥𝐵𝑦) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
5 | 4 | 2albii 1823 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦) ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
6 | 1, 5 | bitr4di 289 | 1 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 ∈ wcel 2107 ⊆ wss 3915 ⟨cop 4597 class class class wbr 5110 Rel wrel 5643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3450 df-in 3922 df-ss 3932 df-br 5111 df-opab 5173 df-xp 5644 df-rel 5645 |
This theorem is referenced by: cotrg 6066 cotrgOLD 6067 cnvsym 6071 cnvsymOLD 6072 eqrel2 36789 inxpss 36801 inxpss2 36805 cnvref5 36841 cocossss 36927 |
Copyright terms: Public domain | W3C validator |