MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqri Structured version   Visualization version   GIF version

Theorem eqri 3950
Description: Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017.)
Hypotheses
Ref Expression
eqri.1 𝑥𝐴
eqri.2 𝑥𝐵
eqri.3 (𝑥𝐴𝑥𝐵)
Assertion
Ref Expression
eqri 𝐴 = 𝐵

Proof of Theorem eqri
StepHypRef Expression
1 nftru 1805 . . 3 𝑥
2 eqri.1 . . 3 𝑥𝐴
3 eqri.2 . . 3 𝑥𝐵
4 eqri.3 . . . 4 (𝑥𝐴𝑥𝐵)
54a1i 11 . . 3 (⊤ → (𝑥𝐴𝑥𝐵))
61, 2, 3, 5eqrd 3949 . 2 (⊤ → 𝐴 = 𝐵)
76mptru 1548 1 𝐴 = 𝐵
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wtru 1542  wcel 2111  wnfc 2879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-cleq 2723  df-clel 2806  df-nfc 2881
This theorem is referenced by:  rnep  5862  difrab2  32469  esum2dlem  34097  eulerpartlemn  34386
  Copyright terms: Public domain W3C validator