Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqri | Structured version Visualization version GIF version |
Description: Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017.) |
Ref | Expression |
---|---|
eqri.1 | ⊢ Ⅎ𝑥𝐴 |
eqri.2 | ⊢ Ⅎ𝑥𝐵 |
eqri.3 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
eqri | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1811 | . . 3 ⊢ Ⅎ𝑥⊤ | |
2 | eqri.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | eqri.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
4 | eqri.3 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
6 | 1, 2, 3, 5 | eqrd 3894 | . 2 ⊢ (⊤ → 𝐴 = 𝐵) |
7 | 6 | mptru 1549 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1542 ⊤wtru 1543 ∈ wcel 2113 Ⅎwnfc 2879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-11 2161 ax-12 2178 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-nf 1791 df-cleq 2730 df-clel 2811 df-nfc 2881 |
This theorem is referenced by: rnep 5764 difrab2 30411 esum2dlem 31622 eulerpartlemn 31910 |
Copyright terms: Public domain | W3C validator |