Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqri | Structured version Visualization version GIF version |
Description: Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017.) |
Ref | Expression |
---|---|
eqri.1 | ⊢ Ⅎ𝑥𝐴 |
eqri.2 | ⊢ Ⅎ𝑥𝐵 |
eqri.3 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
eqri | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1807 | . . 3 ⊢ Ⅎ𝑥⊤ | |
2 | eqri.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | eqri.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
4 | eqri.3 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
6 | 1, 2, 3, 5 | eqrd 3940 | . 2 ⊢ (⊤ → 𝐴 = 𝐵) |
7 | 6 | mptru 1546 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-cleq 2730 df-clel 2816 df-nfc 2889 |
This theorem is referenced by: rnep 5836 difrab2 30845 esum2dlem 32060 eulerpartlemn 32348 |
Copyright terms: Public domain | W3C validator |