Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqri | Structured version Visualization version GIF version |
Description: Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017.) |
Ref | Expression |
---|---|
eqri.1 | ⊢ Ⅎ𝑥𝐴 |
eqri.2 | ⊢ Ⅎ𝑥𝐵 |
eqri.3 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
eqri | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1808 | . . 3 ⊢ Ⅎ𝑥⊤ | |
2 | eqri.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | eqri.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
4 | eqri.3 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
6 | 1, 2, 3, 5 | eqrd 3936 | . 2 ⊢ (⊤ → 𝐴 = 𝐵) |
7 | 6 | mptru 1546 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-cleq 2730 df-clel 2817 df-nfc 2888 |
This theorem is referenced by: rnep 5825 difrab2 30746 esum2dlem 31960 eulerpartlemn 32248 |
Copyright terms: Public domain | W3C validator |