| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqri | Structured version Visualization version GIF version | ||
| Description: Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017.) |
| Ref | Expression |
|---|---|
| eqri.1 | ⊢ Ⅎ𝑥𝐴 |
| eqri.2 | ⊢ Ⅎ𝑥𝐵 |
| eqri.3 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| eqri | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑥⊤ | |
| 2 | eqri.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | eqri.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 4 | eqri.3 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 6 | 1, 2, 3, 5 | eqrd 3974 | . 2 ⊢ (⊤ → 𝐴 = 𝐵) |
| 7 | 6 | mptru 1547 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Ⅎwnfc 2878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2722 df-clel 2804 df-nfc 2880 |
| This theorem is referenced by: rnep 5898 difrab2 32434 esum2dlem 34090 eulerpartlemn 34380 |
| Copyright terms: Public domain | W3C validator |