| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqri | Structured version Visualization version GIF version | ||
| Description: Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017.) |
| Ref | Expression |
|---|---|
| eqri.1 | ⊢ Ⅎ𝑥𝐴 |
| eqri.2 | ⊢ Ⅎ𝑥𝐵 |
| eqri.3 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| eqri | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1803 | . . 3 ⊢ Ⅎ𝑥⊤ | |
| 2 | eqri.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | eqri.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 4 | eqri.3 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 6 | 1, 2, 3, 5 | eqrd 3983 | . 2 ⊢ (⊤ → 𝐴 = 𝐵) |
| 7 | 6 | mptru 1546 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 Ⅎwnfc 2882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-cleq 2726 df-clel 2808 df-nfc 2884 |
| This theorem is referenced by: rnep 5917 difrab2 32444 esum2dlem 34027 eulerpartlemn 34317 |
| Copyright terms: Public domain | W3C validator |