![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqelssd | Structured version Visualization version GIF version |
Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
eqelssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
eqelssd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
eqelssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqelssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | eqelssd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) | |
3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) |
4 | 3 | ssrdv 4014 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
5 | 1, 4 | eqssd 4026 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 |
This theorem is referenced by: wfrlem10OLD 8374 ordtypelem9 9595 ordtypelem10 9596 oismo 9609 prlem934 11102 phimullem 16826 prmreclem5 16967 psssdm2 18651 sylow3lem3 19671 ablfacrp 20110 isdrng2 20765 fidomndrng 20796 imadrhmcl 20820 pjfo 21758 obs2ss 21772 frlmsslsp 21839 mplbas2 22083 restfpw 23208 2ndcsep 23488 ptclsg 23644 trfg 23920 restutopopn 24268 unirnblps 24450 unirnbl 24451 clsocv 25303 rrxbasefi 25463 pjth 25492 opnmbllem 25655 dvidlem 25970 dvaddf 25999 dvmulf 26000 dvcof 26006 dvcj 26008 dvrec 26013 dvcnv 26035 dvcnvre 26078 ftc1cn 26104 ulmdv 26464 pserdv 26491 ppisval2 27166 noseqrdgfn 28330 nbupgruvtxres 29442 ply1degltdimlem 33635 dimkerim 33640 fedgmul 33644 assafld 33650 reff 33785 dya2iocuni 34248 cvmsss2 35242 opnmbllem0 37616 ftc1cnnc 37652 lkrlsp 39058 cdleme50rnlem 40501 hdmaprnN 41821 hgmaprnN 41858 qsalrel 42235 kercvrlsm 43040 pwssplit4 43046 hbtlem5 43085 restuni3 45020 disjf1o 45098 unirnmapsn 45121 iunmapsn 45124 icoiccdif 45442 iccdificc 45457 lptioo2 45552 lptioo1 45553 qndenserrn 46220 intsaluni 46250 iundjiun 46381 meadjiunlem 46386 meaiininclem 46407 iunhoiioo 46597 |
Copyright terms: Public domain | W3C validator |