| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqelssd | Structured version Visualization version GIF version | ||
| Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
| Ref | Expression |
|---|---|
| eqelssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| eqelssd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| eqelssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqelssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | eqelssd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) |
| 4 | 3 | ssrdv 3941 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 5 | 1, 4 | eqssd 3953 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3920 |
| This theorem is referenced by: ordtypelem9 9418 ordtypelem10 9419 oismo 9432 prlem934 10927 phimullem 16690 prmreclem5 16832 psssdm2 18487 sylow3lem3 19508 ablfacrp 19947 isdrng2 20628 fidomndrng 20658 imadrhmcl 20682 pjfo 21622 obs2ss 21636 frlmsslsp 21703 mplbas2 21947 restfpw 23064 2ndcsep 23344 ptclsg 23500 trfg 23776 restutopopn 24124 unirnblps 24305 unirnbl 24306 clsocv 25148 rrxbasefi 25308 pjth 25337 opnmbllem 25500 dvidlem 25814 dvaddf 25843 dvmulf 25844 dvcof 25850 dvcj 25852 dvrec 25857 dvcnv 25879 dvcnvre 25922 ftc1cn 25948 ulmdv 26310 pserdv 26337 ppisval2 27013 noseqrdgfn 28205 nbupgruvtxres 29352 ply1degltdimlem 33595 dimkerim 33600 fedgmul 33604 assafld 33610 extdgfialg 33667 reff 33812 dya2iocuni 34257 cvmsss2 35257 opnmbllem0 37646 ftc1cnnc 37682 lkrlsp 39091 cdleme50rnlem 40533 hdmaprnN 41853 hgmaprnN 41890 qsalrel 42223 kercvrlsm 43066 pwssplit4 43072 hbtlem5 43111 restuni3 45106 disjf1o 45179 unirnmapsn 45202 iunmapsn 45205 icoiccdif 45515 iccdificc 45530 lptioo2 45622 lptioo1 45623 qndenserrn 46290 intsaluni 46320 iundjiun 46451 meadjiunlem 46456 meaiininclem 46477 iunhoiioo 46667 |
| Copyright terms: Public domain | W3C validator |