| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqelssd | Structured version Visualization version GIF version | ||
| Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
| Ref | Expression |
|---|---|
| eqelssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| eqelssd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| eqelssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqelssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | eqelssd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) |
| 4 | 3 | ssrdv 3952 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 5 | 1, 4 | eqssd 3964 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 |
| This theorem is referenced by: ordtypelem9 9479 ordtypelem10 9480 oismo 9493 prlem934 10986 phimullem 16749 prmreclem5 16891 psssdm2 18540 sylow3lem3 19559 ablfacrp 19998 isdrng2 20652 fidomndrng 20682 imadrhmcl 20706 pjfo 21624 obs2ss 21638 frlmsslsp 21705 mplbas2 21949 restfpw 23066 2ndcsep 23346 ptclsg 23502 trfg 23778 restutopopn 24126 unirnblps 24307 unirnbl 24308 clsocv 25150 rrxbasefi 25310 pjth 25339 opnmbllem 25502 dvidlem 25816 dvaddf 25845 dvmulf 25846 dvcof 25852 dvcj 25854 dvrec 25859 dvcnv 25881 dvcnvre 25924 ftc1cn 25950 ulmdv 26312 pserdv 26339 ppisval2 27015 noseqrdgfn 28200 nbupgruvtxres 29334 ply1degltdimlem 33618 dimkerim 33623 fedgmul 33627 assafld 33633 reff 33829 dya2iocuni 34274 cvmsss2 35261 opnmbllem0 37650 ftc1cnnc 37686 lkrlsp 39095 cdleme50rnlem 40538 hdmaprnN 41858 hgmaprnN 41895 qsalrel 42228 kercvrlsm 43072 pwssplit4 43078 hbtlem5 43117 restuni3 45112 disjf1o 45185 unirnmapsn 45208 iunmapsn 45211 icoiccdif 45522 iccdificc 45537 lptioo2 45629 lptioo1 45630 qndenserrn 46297 intsaluni 46327 iundjiun 46458 meadjiunlem 46463 meaiininclem 46484 iunhoiioo 46674 |
| Copyright terms: Public domain | W3C validator |