| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqelssd | Structured version Visualization version GIF version | ||
| Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
| Ref | Expression |
|---|---|
| eqelssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| eqelssd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| eqelssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqelssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | eqelssd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) |
| 4 | 3 | ssrdv 3964 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 5 | 1, 4 | eqssd 3976 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 |
| This theorem is referenced by: wfrlem10OLD 8332 ordtypelem9 9540 ordtypelem10 9541 oismo 9554 prlem934 11047 phimullem 16798 prmreclem5 16940 psssdm2 18591 sylow3lem3 19610 ablfacrp 20049 isdrng2 20703 fidomndrng 20733 imadrhmcl 20757 pjfo 21675 obs2ss 21689 frlmsslsp 21756 mplbas2 22000 restfpw 23117 2ndcsep 23397 ptclsg 23553 trfg 23829 restutopopn 24177 unirnblps 24358 unirnbl 24359 clsocv 25202 rrxbasefi 25362 pjth 25391 opnmbllem 25554 dvidlem 25868 dvaddf 25897 dvmulf 25898 dvcof 25904 dvcj 25906 dvrec 25911 dvcnv 25933 dvcnvre 25976 ftc1cn 26002 ulmdv 26364 pserdv 26391 ppisval2 27067 noseqrdgfn 28252 nbupgruvtxres 29386 ply1degltdimlem 33662 dimkerim 33667 fedgmul 33671 assafld 33677 reff 33870 dya2iocuni 34315 cvmsss2 35296 opnmbllem0 37680 ftc1cnnc 37716 lkrlsp 39120 cdleme50rnlem 40563 hdmaprnN 41883 hgmaprnN 41920 qsalrel 42291 kercvrlsm 43107 pwssplit4 43113 hbtlem5 43152 restuni3 45142 disjf1o 45215 unirnmapsn 45238 iunmapsn 45241 icoiccdif 45553 iccdificc 45568 lptioo2 45660 lptioo1 45661 qndenserrn 46328 intsaluni 46358 iundjiun 46489 meadjiunlem 46494 meaiininclem 46515 iunhoiioo 46705 |
| Copyright terms: Public domain | W3C validator |