Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqelssd | Structured version Visualization version GIF version |
Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
eqelssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
eqelssd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
eqelssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqelssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | eqelssd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) | |
3 | 2 | ex 416 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) |
4 | 3 | ssrdv 3898 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
5 | 1, 4 | eqssd 3909 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ⊆ wss 3858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3865 df-ss 3875 |
This theorem is referenced by: wfrlem10 7974 ordtypelem9 9023 ordtypelem10 9024 oismo 9037 prlem934 10493 phimullem 16171 prmreclem5 16311 psssdm2 17891 sylow3lem3 18821 ablfacrp 19256 isdrng2 19580 fidomndrng 20148 pjfo 20480 obs2ss 20494 frlmsslsp 20561 mplbas2 20802 restfpw 21879 2ndcsep 22159 ptclsg 22315 trfg 22591 restutopopn 22939 unirnblps 23121 unirnbl 23122 clsocv 23950 rrxbasefi 24110 pjth 24139 opnmbllem 24301 dvidlem 24614 dvaddf 24641 dvmulf 24642 dvcof 24647 dvcj 24649 dvrec 24654 dvcnv 24676 dvcnvre 24718 ftc1cn 24742 ulmdv 25097 pserdv 25123 ppisval2 25789 nbupgruvtxres 27296 dimkerim 31229 fedgmul 31233 reff 31310 dya2iocuni 31769 cvmsss2 32752 opnmbllem0 35373 ftc1cnnc 35409 lkrlsp 36678 cdleme50rnlem 38120 hdmaprnN 39440 hgmaprnN 39477 qsalrel 39721 kercvrlsm 40400 pwssplit4 40406 hbtlem5 40445 restuni3 42126 disjf1o 42188 unirnmapsn 42213 iunmapsn 42216 icoiccdif 42527 iccdificc 42542 lptioo2 42639 lptioo1 42640 qndenserrn 43307 intsaluni 43335 iundjiun 43465 meadjiunlem 43470 meaiininclem 43491 iunhoiioo 43681 |
Copyright terms: Public domain | W3C validator |