Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqelssd | Structured version Visualization version GIF version |
Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
eqelssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
eqelssd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
eqelssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqelssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | eqelssd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) | |
3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) |
4 | 3 | ssrdv 3923 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
5 | 1, 4 | eqssd 3934 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: wfrlem10OLD 8120 ordtypelem9 9215 ordtypelem10 9216 oismo 9229 prlem934 10720 phimullem 16408 prmreclem5 16549 psssdm2 18214 sylow3lem3 19149 ablfacrp 19584 isdrng2 19916 fidomndrng 20492 pjfo 20832 obs2ss 20846 frlmsslsp 20913 mplbas2 21153 restfpw 22238 2ndcsep 22518 ptclsg 22674 trfg 22950 restutopopn 23298 unirnblps 23480 unirnbl 23481 clsocv 24319 rrxbasefi 24479 pjth 24508 opnmbllem 24670 dvidlem 24984 dvaddf 25011 dvmulf 25012 dvcof 25017 dvcj 25019 dvrec 25024 dvcnv 25046 dvcnvre 25088 ftc1cn 25112 ulmdv 25467 pserdv 25493 ppisval2 26159 nbupgruvtxres 27677 dimkerim 31610 fedgmul 31614 reff 31691 dya2iocuni 32150 cvmsss2 33136 opnmbllem0 35740 ftc1cnnc 35776 lkrlsp 37043 cdleme50rnlem 38485 hdmaprnN 39805 hgmaprnN 39842 qsalrel 40141 kercvrlsm 40824 pwssplit4 40830 hbtlem5 40869 restuni3 42556 disjf1o 42618 unirnmapsn 42643 iunmapsn 42646 icoiccdif 42952 iccdificc 42967 lptioo2 43062 lptioo1 43063 qndenserrn 43730 intsaluni 43758 iundjiun 43888 meadjiunlem 43893 meaiininclem 43914 iunhoiioo 44104 |
Copyright terms: Public domain | W3C validator |