| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqelssd | Structured version Visualization version GIF version | ||
| Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
| Ref | Expression |
|---|---|
| eqelssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| eqelssd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| eqelssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqelssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | eqelssd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) |
| 4 | 3 | ssrdv 3955 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 5 | 1, 4 | eqssd 3967 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 |
| This theorem is referenced by: ordtypelem9 9486 ordtypelem10 9487 oismo 9500 prlem934 10993 phimullem 16756 prmreclem5 16898 psssdm2 18547 sylow3lem3 19566 ablfacrp 20005 isdrng2 20659 fidomndrng 20689 imadrhmcl 20713 pjfo 21631 obs2ss 21645 frlmsslsp 21712 mplbas2 21956 restfpw 23073 2ndcsep 23353 ptclsg 23509 trfg 23785 restutopopn 24133 unirnblps 24314 unirnbl 24315 clsocv 25157 rrxbasefi 25317 pjth 25346 opnmbllem 25509 dvidlem 25823 dvaddf 25852 dvmulf 25853 dvcof 25859 dvcj 25861 dvrec 25866 dvcnv 25888 dvcnvre 25931 ftc1cn 25957 ulmdv 26319 pserdv 26346 ppisval2 27022 noseqrdgfn 28207 nbupgruvtxres 29341 ply1degltdimlem 33625 dimkerim 33630 fedgmul 33634 assafld 33640 reff 33836 dya2iocuni 34281 cvmsss2 35268 opnmbllem0 37657 ftc1cnnc 37693 lkrlsp 39102 cdleme50rnlem 40545 hdmaprnN 41865 hgmaprnN 41902 qsalrel 42235 kercvrlsm 43079 pwssplit4 43085 hbtlem5 43124 restuni3 45119 disjf1o 45192 unirnmapsn 45215 iunmapsn 45218 icoiccdif 45529 iccdificc 45544 lptioo2 45636 lptioo1 45637 qndenserrn 46304 intsaluni 46334 iundjiun 46465 meadjiunlem 46470 meaiininclem 46491 iunhoiioo 46681 |
| Copyright terms: Public domain | W3C validator |