Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqelssd | Structured version Visualization version GIF version |
Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
eqelssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
eqelssd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
eqelssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqelssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | eqelssd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) | |
3 | 2 | ex 413 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) |
4 | 3 | ssrdv 3928 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
5 | 1, 4 | eqssd 3939 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ⊆ wss 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-in 3895 df-ss 3905 |
This theorem is referenced by: wfrlem10OLD 8158 ordtypelem9 9294 ordtypelem10 9295 oismo 9308 prlem934 10798 phimullem 16489 prmreclem5 16630 psssdm2 18308 sylow3lem3 19243 ablfacrp 19678 isdrng2 20010 fidomndrng 20588 pjfo 20931 obs2ss 20945 frlmsslsp 21012 mplbas2 21252 restfpw 22339 2ndcsep 22619 ptclsg 22775 trfg 23051 restutopopn 23399 unirnblps 23581 unirnbl 23582 clsocv 24423 rrxbasefi 24583 pjth 24612 opnmbllem 24774 dvidlem 25088 dvaddf 25115 dvmulf 25116 dvcof 25121 dvcj 25123 dvrec 25128 dvcnv 25150 dvcnvre 25192 ftc1cn 25216 ulmdv 25571 pserdv 25597 ppisval2 26263 nbupgruvtxres 27783 dimkerim 31717 fedgmul 31721 reff 31798 dya2iocuni 32259 cvmsss2 33245 opnmbllem0 35822 ftc1cnnc 35858 lkrlsp 37123 cdleme50rnlem 38565 hdmaprnN 39885 hgmaprnN 39922 qsalrel 40222 kercvrlsm 40915 pwssplit4 40921 hbtlem5 40960 restuni3 42674 disjf1o 42736 unirnmapsn 42761 iunmapsn 42764 icoiccdif 43069 iccdificc 43084 lptioo2 43179 lptioo1 43180 qndenserrn 43847 intsaluni 43875 iundjiun 44005 meadjiunlem 44010 meaiininclem 44031 iunhoiioo 44221 |
Copyright terms: Public domain | W3C validator |