MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqelssd Structured version   Visualization version   GIF version

Theorem eqelssd 3938
Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
eqelssd.1 (𝜑𝐴𝐵)
eqelssd.2 ((𝜑𝑥𝐵) → 𝑥𝐴)
Assertion
Ref Expression
eqelssd (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem eqelssd
StepHypRef Expression
1 eqelssd.1 . 2 (𝜑𝐴𝐵)
2 eqelssd.2 . . . 4 ((𝜑𝑥𝐵) → 𝑥𝐴)
32ex 412 . . 3 (𝜑 → (𝑥𝐵𝑥𝐴))
43ssrdv 3923 . 2 (𝜑𝐵𝐴)
51, 4eqssd 3934 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by:  wfrlem10OLD  8120  ordtypelem9  9215  ordtypelem10  9216  oismo  9229  prlem934  10720  phimullem  16408  prmreclem5  16549  psssdm2  18214  sylow3lem3  19149  ablfacrp  19584  isdrng2  19916  fidomndrng  20492  pjfo  20832  obs2ss  20846  frlmsslsp  20913  mplbas2  21153  restfpw  22238  2ndcsep  22518  ptclsg  22674  trfg  22950  restutopopn  23298  unirnblps  23480  unirnbl  23481  clsocv  24319  rrxbasefi  24479  pjth  24508  opnmbllem  24670  dvidlem  24984  dvaddf  25011  dvmulf  25012  dvcof  25017  dvcj  25019  dvrec  25024  dvcnv  25046  dvcnvre  25088  ftc1cn  25112  ulmdv  25467  pserdv  25493  ppisval2  26159  nbupgruvtxres  27677  dimkerim  31610  fedgmul  31614  reff  31691  dya2iocuni  32150  cvmsss2  33136  opnmbllem0  35740  ftc1cnnc  35776  lkrlsp  37043  cdleme50rnlem  38485  hdmaprnN  39805  hgmaprnN  39842  qsalrel  40141  kercvrlsm  40824  pwssplit4  40830  hbtlem5  40869  restuni3  42556  disjf1o  42618  unirnmapsn  42643  iunmapsn  42646  icoiccdif  42952  iccdificc  42967  lptioo2  43062  lptioo1  43063  qndenserrn  43730  intsaluni  43758  iundjiun  43888  meadjiunlem  43893  meaiininclem  43914  iunhoiioo  44104
  Copyright terms: Public domain W3C validator