| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqelssd | Structured version Visualization version GIF version | ||
| Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
| Ref | Expression |
|---|---|
| eqelssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| eqelssd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| eqelssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqelssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | eqelssd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) |
| 4 | 3 | ssrdv 3935 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 5 | 1, 4 | eqssd 3947 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 |
| This theorem is referenced by: ordtypelem9 9412 ordtypelem10 9413 oismo 9426 prlem934 10924 phimullem 16690 prmreclem5 16832 psssdm2 18487 sylow3lem3 19541 ablfacrp 19980 isdrng2 20658 fidomndrng 20688 imadrhmcl 20712 pjfo 21652 obs2ss 21666 frlmsslsp 21733 mplbas2 21977 restfpw 23094 2ndcsep 23374 ptclsg 23530 trfg 23806 restutopopn 24153 unirnblps 24334 unirnbl 24335 clsocv 25177 rrxbasefi 25337 pjth 25366 opnmbllem 25529 dvidlem 25843 dvaddf 25872 dvmulf 25873 dvcof 25879 dvcj 25881 dvrec 25886 dvcnv 25908 dvcnvre 25951 ftc1cn 25977 ulmdv 26339 pserdv 26366 ppisval2 27042 noseqrdgfn 28236 nbupgruvtxres 29385 ply1degltdimlem 33635 dimkerim 33640 fedgmul 33644 assafld 33650 extdgfialg 33707 reff 33852 dya2iocuni 34296 cvmsss2 35318 opnmbllem0 37706 ftc1cnnc 37742 lkrlsp 39211 cdleme50rnlem 40653 hdmaprnN 41973 hgmaprnN 42010 qsalrel 42343 kercvrlsm 43186 pwssplit4 43192 hbtlem5 43231 restuni3 45225 disjf1o 45298 unirnmapsn 45321 iunmapsn 45324 icoiccdif 45634 iccdificc 45649 lptioo2 45741 lptioo1 45742 qndenserrn 46407 intsaluni 46437 iundjiun 46568 meadjiunlem 46573 meaiininclem 46594 iunhoiioo 46784 |
| Copyright terms: Public domain | W3C validator |