| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqelssd | Structured version Visualization version GIF version | ||
| Description: Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.) |
| Ref | Expression |
|---|---|
| eqelssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| eqelssd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| eqelssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqelssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | eqelssd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) |
| 4 | 3 | ssrdv 3949 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 5 | 1, 4 | eqssd 3961 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 |
| This theorem is referenced by: ordtypelem9 9455 ordtypelem10 9456 oismo 9469 prlem934 10962 phimullem 16725 prmreclem5 16867 psssdm2 18522 sylow3lem3 19543 ablfacrp 19982 isdrng2 20663 fidomndrng 20693 imadrhmcl 20717 pjfo 21657 obs2ss 21671 frlmsslsp 21738 mplbas2 21982 restfpw 23099 2ndcsep 23379 ptclsg 23535 trfg 23811 restutopopn 24159 unirnblps 24340 unirnbl 24341 clsocv 25183 rrxbasefi 25343 pjth 25372 opnmbllem 25535 dvidlem 25849 dvaddf 25878 dvmulf 25879 dvcof 25885 dvcj 25887 dvrec 25892 dvcnv 25914 dvcnvre 25957 ftc1cn 25983 ulmdv 26345 pserdv 26372 ppisval2 27048 noseqrdgfn 28240 nbupgruvtxres 29387 ply1degltdimlem 33611 dimkerim 33616 fedgmul 33620 assafld 33626 reff 33822 dya2iocuni 34267 cvmsss2 35254 opnmbllem0 37643 ftc1cnnc 37679 lkrlsp 39088 cdleme50rnlem 40531 hdmaprnN 41851 hgmaprnN 41888 qsalrel 42221 kercvrlsm 43065 pwssplit4 43071 hbtlem5 43110 restuni3 45105 disjf1o 45178 unirnmapsn 45201 iunmapsn 45204 icoiccdif 45515 iccdificc 45530 lptioo2 45622 lptioo1 45623 qndenserrn 46290 intsaluni 46320 iundjiun 46451 meadjiunlem 46456 meaiininclem 46477 iunhoiioo 46667 |
| Copyright terms: Public domain | W3C validator |