Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑜 = 𝑞 ∧ 𝑘 ∈ ℕ) → 𝑜 = 𝑞) |
2 | 1 | fveq1d 6758 |
. . . . . . . . . . . 12
⊢ ((𝑜 = 𝑞 ∧ 𝑘 ∈ ℕ) → (𝑜‘𝑘) = (𝑞‘𝑘)) |
3 | 2 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ ((𝑜 = 𝑞 ∧ 𝑘 ∈ ℕ) → ((𝑜‘𝑘) · 𝑘) = ((𝑞‘𝑘) · 𝑘)) |
4 | 3 | sumeq2dv 15343 |
. . . . . . . . . 10
⊢ (𝑜 = 𝑞 → Σ𝑘 ∈ ℕ ((𝑜‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘)) |
5 | 4 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑜 = 𝑞 → (Σ𝑘 ∈ ℕ ((𝑜‘𝑘) · 𝑘) = 𝑁 ↔ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁)) |
6 | 5 | cbvrabv 3416 |
. . . . . . . 8
⊢ {𝑜 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑜‘𝑘) · 𝑘) = 𝑁} = {𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁} |
7 | 6 | a1i 11 |
. . . . . . 7
⊢ (𝑜 = 𝑞 → {𝑜 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑜‘𝑘) · 𝑘) = 𝑁} = {𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁}) |
8 | 7 | reseq2d 5880 |
. . . . . 6
⊢ (𝑜 = 𝑞 → (𝐺 ↾ {𝑜 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑜‘𝑘) · 𝑘) = 𝑁}) = (𝐺 ↾ {𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁})) |
9 | | eqidd 2739 |
. . . . . 6
⊢ (𝑜 = 𝑞 → {𝑑 ∈ (({0, 1} ↑m ℕ)
∩ 𝑅) ∣
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁} = {𝑑 ∈ (({0, 1} ↑m ℕ)
∩ 𝑅) ∣
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁}) |
10 | 8, 7, 9 | f1oeq123d 6694 |
. . . . 5
⊢ (𝑜 = 𝑞 → ((𝐺 ↾ {𝑜 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑜‘𝑘) · 𝑘) = 𝑁}):{𝑜 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑜‘𝑘) · 𝑘) = 𝑁}–1-1-onto→{𝑑 ∈ (({0, 1} ↑m ℕ)
∩ 𝑅) ∣
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁} ↔ (𝐺 ↾ {𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁}):{𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁}–1-1-onto→{𝑑 ∈ (({0, 1} ↑m ℕ)
∩ 𝑅) ∣
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁})) |
11 | 10 | imbi2d 340 |
. . . 4
⊢ (𝑜 = 𝑞 → ((⊤ → (𝐺 ↾ {𝑜 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑜‘𝑘) · 𝑘) = 𝑁}):{𝑜 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑜‘𝑘) · 𝑘) = 𝑁}–1-1-onto→{𝑑 ∈ (({0, 1} ↑m ℕ)
∩ 𝑅) ∣
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁}) ↔ (⊤ → (𝐺 ↾ {𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁}):{𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁}–1-1-onto→{𝑑 ∈ (({0, 1} ↑m ℕ)
∩ 𝑅) ∣
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁}))) |
12 | | eulerpart.g |
. . . . 5
⊢ 𝐺 = (𝑜 ∈ (𝑇 ∩ 𝑅) ↦
((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
13 | | eulerpart.p |
. . . . . . 7
⊢ 𝑃 = {𝑓 ∈ (ℕ0
↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑓‘𝑘) · 𝑘) = 𝑁)} |
14 | | eulerpart.o |
. . . . . . 7
⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
15 | | eulerpart.d |
. . . . . . 7
⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
16 | | eulerpart.j |
. . . . . . 7
⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
17 | | eulerpart.f |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) |
18 | | eulerpart.h |
. . . . . . 7
⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m 𝐽)
∣ (𝑟 supp ∅)
∈ Fin} |
19 | | eulerpart.m |
. . . . . . 7
⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
20 | | eulerpart.r |
. . . . . . 7
⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈
Fin} |
21 | | eulerpart.t |
. . . . . . 7
⊢ 𝑇 = {𝑓 ∈ (ℕ0
↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} |
22 | 13, 14, 15, 16, 17, 18, 19, 20, 21, 12 | eulerpartgbij 32239 |
. . . . . 6
⊢ 𝐺:(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑m ℕ) ∩ 𝑅) |
23 | 22 | a1i 11 |
. . . . 5
⊢ (⊤
→ 𝐺:(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑m ℕ) ∩ 𝑅)) |
24 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑞 = 𝑜 → (𝐺‘𝑞) = (𝐺‘𝑜)) |
25 | | reseq1 5874 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑞 = 𝑜 → (𝑞 ↾ 𝐽) = (𝑜 ↾ 𝐽)) |
26 | 25 | coeq2d 5760 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑞 = 𝑜 → (bits ∘ (𝑞 ↾ 𝐽)) = (bits ∘ (𝑜 ↾ 𝐽))) |
27 | 26 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 = 𝑜 → (𝑀‘(bits ∘ (𝑞 ↾ 𝐽))) = (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))) |
28 | 27 | imaeq2d 5958 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 = 𝑜 → (𝐹 “ (𝑀‘(bits ∘ (𝑞 ↾ 𝐽)))) = (𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))) |
29 | 28 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑞 = 𝑜 →
((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑞 ↾ 𝐽))))) =
((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
30 | 24, 29 | eqeq12d 2754 |
. . . . . . . . . . . . 13
⊢ (𝑞 = 𝑜 → ((𝐺‘𝑞) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑞 ↾ 𝐽))))) ↔ (𝐺‘𝑜) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽))))))) |
31 | 13, 14, 15, 16, 17, 18, 19, 20, 21, 12 | eulerpartlemgv 32240 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ (𝑇 ∩ 𝑅) → (𝐺‘𝑞) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑞 ↾ 𝐽)))))) |
32 | 30, 31 | vtoclga 3503 |
. . . . . . . . . . . 12
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) → (𝐺‘𝑜) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
33 | 32 | 3ad2ant2 1132 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅) ∧ 𝑑 = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) → (𝐺‘𝑜) = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
34 | | simp3 1136 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅) ∧ 𝑑 = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) → 𝑑 = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) |
35 | 33, 34 | eqtr4d 2781 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅) ∧ 𝑑 = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) → (𝐺‘𝑜) = 𝑑) |
36 | 35 | fveq1d 6758 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅) ∧ 𝑑 = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) → ((𝐺‘𝑜)‘𝑘) = (𝑑‘𝑘)) |
37 | 36 | oveq1d 7270 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅) ∧ 𝑑 = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) → (((𝐺‘𝑜)‘𝑘) · 𝑘) = ((𝑑‘𝑘) · 𝑘)) |
38 | 37 | sumeq2sdv 15344 |
. . . . . . 7
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅) ∧ 𝑑 = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) → Σ𝑘 ∈ ℕ (((𝐺‘𝑜)‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑑‘𝑘) · 𝑘)) |
39 | 24 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑜 → (𝑆‘(𝐺‘𝑞)) = (𝑆‘(𝐺‘𝑜))) |
40 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑜 → (𝑆‘𝑞) = (𝑆‘𝑜)) |
41 | 39, 40 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑞 = 𝑜 → ((𝑆‘(𝐺‘𝑞)) = (𝑆‘𝑞) ↔ (𝑆‘(𝐺‘𝑜)) = (𝑆‘𝑜))) |
42 | | eulerpart.s |
. . . . . . . . . . 11
⊢ 𝑆 = (𝑓 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
43 | 13, 14, 15, 16, 17, 18, 19, 20, 21, 12, 42 | eulerpartlemgs2 32247 |
. . . . . . . . . 10
⊢ (𝑞 ∈ (𝑇 ∩ 𝑅) → (𝑆‘(𝐺‘𝑞)) = (𝑆‘𝑞)) |
44 | 41, 43 | vtoclga 3503 |
. . . . . . . . 9
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) → (𝑆‘(𝐺‘𝑜)) = (𝑆‘𝑜)) |
45 | | nn0ex 12169 |
. . . . . . . . . . . . 13
⊢
ℕ0 ∈ V |
46 | | 0nn0 12178 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℕ0 |
47 | | 1nn0 12179 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℕ0 |
48 | | prssi 4751 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1}
⊆ ℕ0) |
49 | 46, 47, 48 | mp2an 688 |
. . . . . . . . . . . . 13
⊢ {0, 1}
⊆ ℕ0 |
50 | | mapss 8635 |
. . . . . . . . . . . . 13
⊢
((ℕ0 ∈ V ∧ {0, 1} ⊆ ℕ0)
→ ({0, 1} ↑m ℕ) ⊆ (ℕ0
↑m ℕ)) |
51 | 45, 49, 50 | mp2an 688 |
. . . . . . . . . . . 12
⊢ ({0, 1}
↑m ℕ) ⊆ (ℕ0 ↑m
ℕ) |
52 | | ssrin 4164 |
. . . . . . . . . . . 12
⊢ (({0, 1}
↑m ℕ) ⊆ (ℕ0 ↑m
ℕ) → (({0, 1} ↑m ℕ) ∩ 𝑅) ⊆ ((ℕ0
↑m ℕ) ∩ 𝑅)) |
53 | 51, 52 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (({0, 1}
↑m ℕ) ∩ 𝑅) ⊆ ((ℕ0
↑m ℕ) ∩ 𝑅) |
54 | | f1of 6700 |
. . . . . . . . . . . . 13
⊢ (𝐺:(𝑇 ∩ 𝑅)–1-1-onto→(({0,
1} ↑m ℕ) ∩ 𝑅) → 𝐺:(𝑇 ∩ 𝑅)⟶(({0, 1} ↑m
ℕ) ∩ 𝑅)) |
55 | 22, 54 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ 𝐺:(𝑇 ∩ 𝑅)⟶(({0, 1} ↑m
ℕ) ∩ 𝑅) |
56 | 55 | ffvelrni 6942 |
. . . . . . . . . . 11
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) → (𝐺‘𝑜) ∈ (({0, 1} ↑m ℕ)
∩ 𝑅)) |
57 | 53, 56 | sselid 3915 |
. . . . . . . . . 10
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) → (𝐺‘𝑜) ∈ ((ℕ0
↑m ℕ) ∩ 𝑅)) |
58 | 20, 42 | eulerpartlemsv1 32223 |
. . . . . . . . . 10
⊢ ((𝐺‘𝑜) ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (𝑆‘(𝐺‘𝑜)) = Σ𝑘 ∈ ℕ (((𝐺‘𝑜)‘𝑘) · 𝑘)) |
59 | 57, 58 | syl 17 |
. . . . . . . . 9
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) → (𝑆‘(𝐺‘𝑜)) = Σ𝑘 ∈ ℕ (((𝐺‘𝑜)‘𝑘) · 𝑘)) |
60 | 13, 14, 15, 16, 17, 18, 19, 20, 21 | eulerpartlemt0 32236 |
. . . . . . . . . . . 12
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) ↔ (𝑜 ∈ (ℕ0
↑m ℕ) ∧ (◡𝑜 “ ℕ) ∈ Fin ∧ (◡𝑜 “ ℕ) ⊆ 𝐽)) |
61 | 60 | simp1bi 1143 |
. . . . . . . . . . 11
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) → 𝑜 ∈ (ℕ0
↑m ℕ)) |
62 | | inss2 4160 |
. . . . . . . . . . . 12
⊢ (𝑇 ∩ 𝑅) ⊆ 𝑅 |
63 | 62 | sseli 3913 |
. . . . . . . . . . 11
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) → 𝑜 ∈ 𝑅) |
64 | 61, 63 | elind 4124 |
. . . . . . . . . 10
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) → 𝑜 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅)) |
65 | 20, 42 | eulerpartlemsv1 32223 |
. . . . . . . . . 10
⊢ (𝑜 ∈ ((ℕ0
↑m ℕ) ∩ 𝑅) → (𝑆‘𝑜) = Σ𝑘 ∈ ℕ ((𝑜‘𝑘) · 𝑘)) |
66 | 64, 65 | syl 17 |
. . . . . . . . 9
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) → (𝑆‘𝑜) = Σ𝑘 ∈ ℕ ((𝑜‘𝑘) · 𝑘)) |
67 | 44, 59, 66 | 3eqtr3d 2786 |
. . . . . . . 8
⊢ (𝑜 ∈ (𝑇 ∩ 𝑅) → Σ𝑘 ∈ ℕ (((𝐺‘𝑜)‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑜‘𝑘) · 𝑘)) |
68 | 67 | 3ad2ant2 1132 |
. . . . . . 7
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅) ∧ 𝑑 = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) → Σ𝑘 ∈ ℕ (((𝐺‘𝑜)‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑜‘𝑘) · 𝑘)) |
69 | 38, 68 | eqtr3d 2780 |
. . . . . 6
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅) ∧ 𝑑 = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) → Σ𝑘 ∈ ℕ ((𝑑‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑜‘𝑘) · 𝑘)) |
70 | 69 | eqeq1d 2740 |
. . . . 5
⊢
((⊤ ∧ 𝑜
∈ (𝑇 ∩ 𝑅) ∧ 𝑑 = ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜 ↾ 𝐽)))))) → (Σ𝑘 ∈ ℕ ((𝑑‘𝑘) · 𝑘) = 𝑁 ↔ Σ𝑘 ∈ ℕ ((𝑜‘𝑘) · 𝑘) = 𝑁)) |
71 | 12, 23, 70 | f1oresrab 6981 |
. . . 4
⊢ (⊤
→ (𝐺 ↾ {𝑜 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑜‘𝑘) · 𝑘) = 𝑁}):{𝑜 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑜‘𝑘) · 𝑘) = 𝑁}–1-1-onto→{𝑑 ∈ (({0, 1} ↑m ℕ)
∩ 𝑅) ∣
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁}) |
72 | 11, 71 | chvarvv 2003 |
. . 3
⊢ (⊤
→ (𝐺 ↾ {𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁}):{𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁}–1-1-onto→{𝑑 ∈ (({0, 1} ↑m ℕ)
∩ 𝑅) ∣
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁}) |
73 | | cnveq 5771 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑞 → ◡𝑔 = ◡𝑞) |
74 | 73 | imaeq1d 5957 |
. . . . . . . . 9
⊢ (𝑔 = 𝑞 → (◡𝑔 “ ℕ) = (◡𝑞 “ ℕ)) |
75 | 74 | raleqdv 3339 |
. . . . . . . 8
⊢ (𝑔 = 𝑞 → (∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛 ↔ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛)) |
76 | 75 | cbvrabv 3416 |
. . . . . . 7
⊢ {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} = {𝑞 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛} |
77 | | nfrab1 3310 |
. . . . . . . 8
⊢
Ⅎ𝑞{𝑞 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛} |
78 | | nfrab1 3310 |
. . . . . . . 8
⊢
Ⅎ𝑞{𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁} |
79 | | df-3an 1087 |
. . . . . . . . . . . 12
⊢ ((𝑞:ℕ⟶ℕ0 ∧
(◡𝑞 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑞‘𝑘) · 𝑘) = 𝑁) ↔ ((𝑞:ℕ⟶ℕ0 ∧
(◡𝑞 “ ℕ) ∈ Fin) ∧
Σ𝑘 ∈ ℕ
((𝑞‘𝑘) · 𝑘) = 𝑁)) |
80 | 79 | anbi1i 623 |
. . . . . . . . . . 11
⊢ (((𝑞:ℕ⟶ℕ0 ∧
(◡𝑞 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑞‘𝑘) · 𝑘) = 𝑁) ∧ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛) ↔ (((𝑞:ℕ⟶ℕ0 ∧
(◡𝑞 “ ℕ) ∈ Fin) ∧
Σ𝑘 ∈ ℕ
((𝑞‘𝑘) · 𝑘) = 𝑁) ∧ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛)) |
81 | 13 | eulerpartleme 32230 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ 𝑃 ↔ (𝑞:ℕ⟶ℕ0 ∧
(◡𝑞 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑞‘𝑘) · 𝑘) = 𝑁)) |
82 | 81 | anbi1i 623 |
. . . . . . . . . . 11
⊢ ((𝑞 ∈ 𝑃 ∧ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛) ↔ ((𝑞:ℕ⟶ℕ0 ∧
(◡𝑞 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑞‘𝑘) · 𝑘) = 𝑁) ∧ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛)) |
83 | | an32 642 |
. . . . . . . . . . 11
⊢ ((((𝑞:ℕ⟶ℕ0 ∧
(◡𝑞 “ ℕ) ∈ Fin) ∧
∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛) ∧ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁) ↔ (((𝑞:ℕ⟶ℕ0 ∧
(◡𝑞 “ ℕ) ∈ Fin) ∧
Σ𝑘 ∈ ℕ
((𝑞‘𝑘) · 𝑘) = 𝑁) ∧ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛)) |
84 | 80, 82, 83 | 3bitr4i 302 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ 𝑃 ∧ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛) ↔ (((𝑞:ℕ⟶ℕ0 ∧
(◡𝑞 “ ℕ) ∈ Fin) ∧
∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛) ∧ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁)) |
85 | 13, 14, 15, 16, 17, 18, 19, 20, 21 | eulerpartlemt0 32236 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ (𝑇 ∩ 𝑅) ↔ (𝑞 ∈ (ℕ0
↑m ℕ) ∧ (◡𝑞 “ ℕ) ∈ Fin ∧ (◡𝑞 “ ℕ) ⊆ 𝐽)) |
86 | | nnex 11909 |
. . . . . . . . . . . . . . 15
⊢ ℕ
∈ V |
87 | 45, 86 | elmap 8617 |
. . . . . . . . . . . . . 14
⊢ (𝑞 ∈ (ℕ0
↑m ℕ) ↔ 𝑞:ℕ⟶ℕ0) |
88 | 87 | 3anbi1i 1155 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ (ℕ0
↑m ℕ) ∧ (◡𝑞 “ ℕ) ∈ Fin ∧ (◡𝑞 “ ℕ) ⊆ 𝐽) ↔ (𝑞:ℕ⟶ℕ0 ∧
(◡𝑞 “ ℕ) ∈ Fin ∧ (◡𝑞 “ ℕ) ⊆ 𝐽)) |
89 | 85, 88 | bitri 274 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ (𝑇 ∩ 𝑅) ↔ (𝑞:ℕ⟶ℕ0 ∧
(◡𝑞 “ ℕ) ∈ Fin ∧ (◡𝑞 “ ℕ) ⊆ 𝐽)) |
90 | | df-3an 1087 |
. . . . . . . . . . . 12
⊢ ((𝑞:ℕ⟶ℕ0 ∧
(◡𝑞 “ ℕ) ∈ Fin ∧ (◡𝑞 “ ℕ) ⊆ 𝐽) ↔ ((𝑞:ℕ⟶ℕ0 ∧
(◡𝑞 “ ℕ) ∈ Fin) ∧ (◡𝑞 “ ℕ) ⊆ 𝐽)) |
91 | | dfss3 3905 |
. . . . . . . . . . . . . . . 16
⊢ ((◡𝑞 “ ℕ) ⊆ 𝐽 ↔ ∀𝑛 ∈ (◡𝑞 “ ℕ)𝑛 ∈ 𝐽) |
92 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑛 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑛)) |
93 | 92 | notbid 317 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑛 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑛)) |
94 | 93, 16 | elrab2 3620 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ 𝐽 ↔ (𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛)) |
95 | 94 | ralbii 3090 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑛 ∈
(◡𝑞 “ ℕ)𝑛 ∈ 𝐽 ↔ ∀𝑛 ∈ (◡𝑞 “ ℕ)(𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛)) |
96 | | r19.26 3094 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑛 ∈
(◡𝑞 “ ℕ)(𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) ↔ (∀𝑛 ∈ (◡𝑞 “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛)) |
97 | 91, 95, 96 | 3bitri 296 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑞 “ ℕ) ⊆ 𝐽 ↔ (∀𝑛 ∈ (◡𝑞 “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛)) |
98 | | cnvimass 5978 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑞 “ ℕ) ⊆ dom 𝑞 |
99 | | fdm 6593 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑞:ℕ⟶ℕ0 →
dom 𝑞 =
ℕ) |
100 | 98, 99 | sseqtrid 3969 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑞:ℕ⟶ℕ0 →
(◡𝑞 “ ℕ) ⊆
ℕ) |
101 | | dfss3 3905 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝑞 “ ℕ) ⊆ ℕ ↔
∀𝑛 ∈ (◡𝑞 “ ℕ)𝑛 ∈ ℕ) |
102 | 100, 101 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞:ℕ⟶ℕ0 →
∀𝑛 ∈ (◡𝑞 “ ℕ)𝑛 ∈ ℕ) |
103 | 102 | biantrurd 532 |
. . . . . . . . . . . . . . 15
⊢ (𝑞:ℕ⟶ℕ0 →
(∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛 ↔ (∀𝑛 ∈ (◡𝑞 “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛))) |
104 | 97, 103 | bitr4id 289 |
. . . . . . . . . . . . . 14
⊢ (𝑞:ℕ⟶ℕ0 →
((◡𝑞 “ ℕ) ⊆ 𝐽 ↔ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛)) |
105 | 104 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑞:ℕ⟶ℕ0 ∧
(◡𝑞 “ ℕ) ∈ Fin) → ((◡𝑞 “ ℕ) ⊆ 𝐽 ↔ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛)) |
106 | 105 | pm5.32i 574 |
. . . . . . . . . . . 12
⊢ (((𝑞:ℕ⟶ℕ0 ∧
(◡𝑞 “ ℕ) ∈ Fin) ∧ (◡𝑞 “ ℕ) ⊆ 𝐽) ↔ ((𝑞:ℕ⟶ℕ0 ∧
(◡𝑞 “ ℕ) ∈ Fin) ∧
∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛)) |
107 | 89, 90, 106 | 3bitri 296 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ (𝑇 ∩ 𝑅) ↔ ((𝑞:ℕ⟶ℕ0 ∧
(◡𝑞 “ ℕ) ∈ Fin) ∧
∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛)) |
108 | 107 | anbi1i 623 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ (𝑇 ∩ 𝑅) ∧ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁) ↔ (((𝑞:ℕ⟶ℕ0 ∧
(◡𝑞 “ ℕ) ∈ Fin) ∧
∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛) ∧ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁)) |
109 | 84, 108 | bitr4i 277 |
. . . . . . . . 9
⊢ ((𝑞 ∈ 𝑃 ∧ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛) ↔ (𝑞 ∈ (𝑇 ∩ 𝑅) ∧ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁)) |
110 | | rabid 3304 |
. . . . . . . . 9
⊢ (𝑞 ∈ {𝑞 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛} ↔ (𝑞 ∈ 𝑃 ∧ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛)) |
111 | | rabid 3304 |
. . . . . . . . 9
⊢ (𝑞 ∈ {𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁} ↔ (𝑞 ∈ (𝑇 ∩ 𝑅) ∧ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁)) |
112 | 109, 110,
111 | 3bitr4i 302 |
. . . . . . . 8
⊢ (𝑞 ∈ {𝑞 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛} ↔ 𝑞 ∈ {𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁}) |
113 | 77, 78, 112 | eqri 3937 |
. . . . . . 7
⊢ {𝑞 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑞 “ ℕ) ¬ 2 ∥ 𝑛} = {𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁} |
114 | 14, 76, 113 | 3eqtri 2770 |
. . . . . 6
⊢ 𝑂 = {𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁} |
115 | 114 | reseq2i 5877 |
. . . . 5
⊢ (𝐺 ↾ 𝑂) = (𝐺 ↾ {𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁}) |
116 | 115 | a1i 11 |
. . . 4
⊢ (⊤
→ (𝐺 ↾ 𝑂) = (𝐺 ↾ {𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁})) |
117 | 114 | a1i 11 |
. . . 4
⊢ (⊤
→ 𝑂 = {𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁}) |
118 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑑𝐷 |
119 | | nfrab1 3310 |
. . . . . 6
⊢
Ⅎ𝑑{𝑑 ∈ (({0, 1} ↑m ℕ)
∩ 𝑅) ∣
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁} |
120 | | fnima 6547 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 Fn ℕ → (𝑑 “ ℕ) = ran 𝑑) |
121 | 120 | sseq1d 3948 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 Fn ℕ → ((𝑑 “ ℕ) ⊆ {0, 1}
↔ ran 𝑑 ⊆ {0,
1})) |
122 | 121 | anbi2d 628 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 Fn ℕ → ((ran 𝑑 ⊆ ℕ0
∧ (𝑑 “ ℕ)
⊆ {0, 1}) ↔ (ran 𝑑 ⊆ ℕ0 ∧ ran 𝑑 ⊆ {0,
1}))) |
123 | | sstr 3925 |
. . . . . . . . . . . . . . . . 17
⊢ ((ran
𝑑 ⊆ {0, 1} ∧ {0,
1} ⊆ ℕ0) → ran 𝑑 ⊆
ℕ0) |
124 | 49, 123 | mpan2 687 |
. . . . . . . . . . . . . . . 16
⊢ (ran
𝑑 ⊆ {0, 1} → ran
𝑑 ⊆
ℕ0) |
125 | 124 | pm4.71ri 560 |
. . . . . . . . . . . . . . 15
⊢ (ran
𝑑 ⊆ {0, 1} ↔
(ran 𝑑 ⊆
ℕ0 ∧ ran 𝑑 ⊆ {0, 1})) |
126 | 122, 125 | bitr4di 288 |
. . . . . . . . . . . . . 14
⊢ (𝑑 Fn ℕ → ((ran 𝑑 ⊆ ℕ0
∧ (𝑑 “ ℕ)
⊆ {0, 1}) ↔ ran 𝑑 ⊆ {0, 1})) |
127 | 126 | pm5.32i 574 |
. . . . . . . . . . . . 13
⊢ ((𝑑 Fn ℕ ∧ (ran 𝑑 ⊆ ℕ0
∧ (𝑑 “ ℕ)
⊆ {0, 1})) ↔ (𝑑
Fn ℕ ∧ ran 𝑑
⊆ {0, 1})) |
128 | | anass 468 |
. . . . . . . . . . . . 13
⊢ (((𝑑 Fn ℕ ∧ ran 𝑑 ⊆ ℕ0)
∧ (𝑑 “ ℕ)
⊆ {0, 1}) ↔ (𝑑
Fn ℕ ∧ (ran 𝑑
⊆ ℕ0 ∧ (𝑑 “ ℕ) ⊆ {0,
1}))) |
129 | | df-f 6422 |
. . . . . . . . . . . . 13
⊢ (𝑑:ℕ⟶{0, 1} ↔
(𝑑 Fn ℕ ∧ ran
𝑑 ⊆ {0,
1})) |
130 | 127, 128,
129 | 3bitr4ri 303 |
. . . . . . . . . . . 12
⊢ (𝑑:ℕ⟶{0, 1} ↔
((𝑑 Fn ℕ ∧ ran
𝑑 ⊆
ℕ0) ∧ (𝑑 “ ℕ) ⊆ {0,
1})) |
131 | | prex 5350 |
. . . . . . . . . . . . 13
⊢ {0, 1}
∈ V |
132 | 131, 86 | elmap 8617 |
. . . . . . . . . . . 12
⊢ (𝑑 ∈ ({0, 1}
↑m ℕ) ↔ 𝑑:ℕ⟶{0, 1}) |
133 | | df-f 6422 |
. . . . . . . . . . . . 13
⊢ (𝑑:ℕ⟶ℕ0 ↔
(𝑑 Fn ℕ ∧ ran
𝑑 ⊆
ℕ0)) |
134 | 133 | anbi1i 623 |
. . . . . . . . . . . 12
⊢ ((𝑑:ℕ⟶ℕ0 ∧
(𝑑 “ ℕ) ⊆
{0, 1}) ↔ ((𝑑 Fn
ℕ ∧ ran 𝑑 ⊆
ℕ0) ∧ (𝑑 “ ℕ) ⊆ {0,
1})) |
135 | 130, 132,
134 | 3bitr4i 302 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ ({0, 1}
↑m ℕ) ↔ (𝑑:ℕ⟶ℕ0 ∧
(𝑑 “ ℕ) ⊆
{0, 1})) |
136 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑑 ∈ V |
137 | | cnveq 5771 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑑 → ◡𝑓 = ◡𝑑) |
138 | 137 | imaeq1d 5957 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑑 → (◡𝑓 “ ℕ) = (◡𝑑 “ ℕ)) |
139 | 138 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑑 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝑑 “ ℕ) ∈
Fin)) |
140 | 136, 139,
20 | elab2 3606 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ 𝑅 ↔ (◡𝑑 “ ℕ) ∈
Fin) |
141 | 135, 140 | anbi12i 626 |
. . . . . . . . . 10
⊢ ((𝑑 ∈ ({0, 1}
↑m ℕ) ∧ 𝑑 ∈ 𝑅) ↔ ((𝑑:ℕ⟶ℕ0 ∧
(𝑑 “ ℕ) ⊆
{0, 1}) ∧ (◡𝑑 “ ℕ) ∈
Fin)) |
142 | | elin 3899 |
. . . . . . . . . 10
⊢ (𝑑 ∈ (({0, 1}
↑m ℕ) ∩ 𝑅) ↔ (𝑑 ∈ ({0, 1} ↑m ℕ)
∧ 𝑑 ∈ 𝑅)) |
143 | | an32 642 |
. . . . . . . . . 10
⊢ (((𝑑:ℕ⟶ℕ0 ∧
(◡𝑑 “ ℕ) ∈ Fin) ∧ (𝑑 “ ℕ) ⊆ {0,
1}) ↔ ((𝑑:ℕ⟶ℕ0 ∧
(𝑑 “ ℕ) ⊆
{0, 1}) ∧ (◡𝑑 “ ℕ) ∈
Fin)) |
144 | 141, 142,
143 | 3bitr4i 302 |
. . . . . . . . 9
⊢ (𝑑 ∈ (({0, 1}
↑m ℕ) ∩ 𝑅) ↔ ((𝑑:ℕ⟶ℕ0 ∧
(◡𝑑 “ ℕ) ∈ Fin) ∧ (𝑑 “ ℕ) ⊆ {0,
1})) |
145 | 144 | anbi1i 623 |
. . . . . . . 8
⊢ ((𝑑 ∈ (({0, 1}
↑m ℕ) ∩ 𝑅) ∧ Σ𝑘 ∈ ℕ ((𝑑‘𝑘) · 𝑘) = 𝑁) ↔ (((𝑑:ℕ⟶ℕ0 ∧
(◡𝑑 “ ℕ) ∈ Fin) ∧ (𝑑 “ ℕ) ⊆ {0,
1}) ∧ Σ𝑘 ∈
ℕ ((𝑑‘𝑘) · 𝑘) = 𝑁)) |
146 | 13 | eulerpartleme 32230 |
. . . . . . . . . 10
⊢ (𝑑 ∈ 𝑃 ↔ (𝑑:ℕ⟶ℕ0 ∧
(◡𝑑 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁)) |
147 | 146 | anbi1i 623 |
. . . . . . . . 9
⊢ ((𝑑 ∈ 𝑃 ∧ (𝑑 “ ℕ) ⊆ {0, 1}) ↔
((𝑑:ℕ⟶ℕ0 ∧
(◡𝑑 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁) ∧ (𝑑 “ ℕ) ⊆ {0,
1})) |
148 | | df-3an 1087 |
. . . . . . . . . 10
⊢ ((𝑑:ℕ⟶ℕ0 ∧
(◡𝑑 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁) ↔ ((𝑑:ℕ⟶ℕ0 ∧
(◡𝑑 “ ℕ) ∈ Fin) ∧
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁)) |
149 | 148 | anbi1i 623 |
. . . . . . . . 9
⊢ (((𝑑:ℕ⟶ℕ0 ∧
(◡𝑑 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁) ∧ (𝑑 “ ℕ) ⊆ {0, 1}) ↔
(((𝑑:ℕ⟶ℕ0 ∧
(◡𝑑 “ ℕ) ∈ Fin) ∧
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁) ∧ (𝑑 “ ℕ) ⊆ {0,
1})) |
150 | | an32 642 |
. . . . . . . . 9
⊢ ((((𝑑:ℕ⟶ℕ0 ∧
(◡𝑑 “ ℕ) ∈ Fin) ∧
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁) ∧ (𝑑 “ ℕ) ⊆ {0, 1}) ↔
(((𝑑:ℕ⟶ℕ0 ∧
(◡𝑑 “ ℕ) ∈ Fin) ∧ (𝑑 “ ℕ) ⊆ {0,
1}) ∧ Σ𝑘 ∈
ℕ ((𝑑‘𝑘) · 𝑘) = 𝑁)) |
151 | 147, 149,
150 | 3bitri 296 |
. . . . . . . 8
⊢ ((𝑑 ∈ 𝑃 ∧ (𝑑 “ ℕ) ⊆ {0, 1}) ↔
(((𝑑:ℕ⟶ℕ0 ∧
(◡𝑑 “ ℕ) ∈ Fin) ∧ (𝑑 “ ℕ) ⊆ {0,
1}) ∧ Σ𝑘 ∈
ℕ ((𝑑‘𝑘) · 𝑘) = 𝑁)) |
152 | 145, 151 | bitr4i 277 |
. . . . . . 7
⊢ ((𝑑 ∈ (({0, 1}
↑m ℕ) ∩ 𝑅) ∧ Σ𝑘 ∈ ℕ ((𝑑‘𝑘) · 𝑘) = 𝑁) ↔ (𝑑 ∈ 𝑃 ∧ (𝑑 “ ℕ) ⊆ {0,
1})) |
153 | | rabid 3304 |
. . . . . . 7
⊢ (𝑑 ∈ {𝑑 ∈ (({0, 1} ↑m ℕ)
∩ 𝑅) ∣
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁} ↔ (𝑑 ∈ (({0, 1} ↑m ℕ)
∩ 𝑅) ∧ Σ𝑘 ∈ ℕ ((𝑑‘𝑘) · 𝑘) = 𝑁)) |
154 | 13, 14, 15 | eulerpartlemd 32233 |
. . . . . . 7
⊢ (𝑑 ∈ 𝐷 ↔ (𝑑 ∈ 𝑃 ∧ (𝑑 “ ℕ) ⊆ {0,
1})) |
155 | 152, 153,
154 | 3bitr4ri 303 |
. . . . . 6
⊢ (𝑑 ∈ 𝐷 ↔ 𝑑 ∈ {𝑑 ∈ (({0, 1} ↑m ℕ)
∩ 𝑅) ∣
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁}) |
156 | 118, 119,
155 | eqri 3937 |
. . . . 5
⊢ 𝐷 = {𝑑 ∈ (({0, 1} ↑m ℕ)
∩ 𝑅) ∣
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁} |
157 | 156 | a1i 11 |
. . . 4
⊢ (⊤
→ 𝐷 = {𝑑 ∈ (({0, 1}
↑m ℕ) ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑑‘𝑘) · 𝑘) = 𝑁}) |
158 | 116, 117,
157 | f1oeq123d 6694 |
. . 3
⊢ (⊤
→ ((𝐺 ↾ 𝑂):𝑂–1-1-onto→𝐷 ↔ (𝐺 ↾ {𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁}):{𝑞 ∈ (𝑇 ∩ 𝑅) ∣ Σ𝑘 ∈ ℕ ((𝑞‘𝑘) · 𝑘) = 𝑁}–1-1-onto→{𝑑 ∈ (({0, 1} ↑m ℕ)
∩ 𝑅) ∣
Σ𝑘 ∈ ℕ
((𝑑‘𝑘) · 𝑘) = 𝑁})) |
159 | 72, 158 | mpbird 256 |
. 2
⊢ (⊤
→ (𝐺 ↾ 𝑂):𝑂–1-1-onto→𝐷) |
160 | 159 | mptru 1546 |
1
⊢ (𝐺 ↾ 𝑂):𝑂–1-1-onto→𝐷 |