Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esum2dlem Structured version   Visualization version   GIF version

Theorem esum2dlem 31960
Description: Lemma for esum2d 31961 (finite case). (Contributed by Thierry Arnoux, 17-May-2020.) (Proof shortened by AV, 17-Sep-2021.)
Hypotheses
Ref Expression
esum2d.0 𝑘𝐹
esum2d.1 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐹 = 𝐶)
esum2d.2 (𝜑𝐴𝑉)
esum2d.3 ((𝜑𝑗𝐴) → 𝐵𝑊)
esum2d.4 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ (0[,]+∞))
esum2dlem.e (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
esum2dlem (𝜑 → Σ*𝑗𝐴Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐹)
Distinct variable groups:   𝑗,𝑘,𝐴,𝑧   𝑧,𝐶   𝐵,𝑘,𝑧   𝑗,𝐹   𝑗,𝑊,𝑘   𝜑,𝑗,𝑘,𝑧
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑗,𝑘)   𝐹(𝑧,𝑘)   𝑉(𝑧,𝑗,𝑘)   𝑊(𝑧)

Proof of Theorem esum2dlem
Dummy variables 𝑖 𝑙 𝑡 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumeq1 31902 . . 3 (𝑎 = ∅ → Σ*𝑗𝑎Σ*𝑘𝐵𝐶 = Σ*𝑗 ∈ ∅Σ*𝑘𝐵𝐶)
2 nfv 1918 . . . 4 𝑧 𝑎 = ∅
3 iuneq1 4937 . . . 4 (𝑎 = ∅ → 𝑗𝑎 ({𝑗} × 𝐵) = 𝑗 ∈ ∅ ({𝑗} × 𝐵))
42, 3esumeq1d 31903 . . 3 (𝑎 = ∅ → Σ*𝑧 𝑗𝑎 ({𝑗} × 𝐵)𝐹 = Σ*𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐹)
51, 4eqeq12d 2754 . 2 (𝑎 = ∅ → (Σ*𝑗𝑎Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑎 ({𝑗} × 𝐵)𝐹 ↔ Σ*𝑗 ∈ ∅Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐹))
6 esumeq1 31902 . . 3 (𝑎 = 𝑏 → Σ*𝑗𝑎Σ*𝑘𝐵𝐶 = Σ*𝑗𝑏Σ*𝑘𝐵𝐶)
7 nfv 1918 . . . 4 𝑧 𝑎 = 𝑏
8 iuneq1 4937 . . . 4 (𝑎 = 𝑏 𝑗𝑎 ({𝑗} × 𝐵) = 𝑗𝑏 ({𝑗} × 𝐵))
97, 8esumeq1d 31903 . . 3 (𝑎 = 𝑏 → Σ*𝑧 𝑗𝑎 ({𝑗} × 𝐵)𝐹 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹)
106, 9eqeq12d 2754 . 2 (𝑎 = 𝑏 → (Σ*𝑗𝑎Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑎 ({𝑗} × 𝐵)𝐹 ↔ Σ*𝑗𝑏Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹))
11 esumeq1 31902 . . 3 (𝑎 = (𝑏 ∪ {𝑙}) → Σ*𝑗𝑎Σ*𝑘𝐵𝐶 = Σ*𝑗 ∈ (𝑏 ∪ {𝑙})Σ*𝑘𝐵𝐶)
12 nfv 1918 . . . 4 𝑧 𝑎 = (𝑏 ∪ {𝑙})
13 iuneq1 4937 . . . 4 (𝑎 = (𝑏 ∪ {𝑙}) → 𝑗𝑎 ({𝑗} × 𝐵) = 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵))
1412, 13esumeq1d 31903 . . 3 (𝑎 = (𝑏 ∪ {𝑙}) → Σ*𝑧 𝑗𝑎 ({𝑗} × 𝐵)𝐹 = Σ*𝑧 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵)𝐹)
1511, 14eqeq12d 2754 . 2 (𝑎 = (𝑏 ∪ {𝑙}) → (Σ*𝑗𝑎Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑎 ({𝑗} × 𝐵)𝐹 ↔ Σ*𝑗 ∈ (𝑏 ∪ {𝑙})Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵)𝐹))
16 esumeq1 31902 . . 3 (𝑎 = 𝐴 → Σ*𝑗𝑎Σ*𝑘𝐵𝐶 = Σ*𝑗𝐴Σ*𝑘𝐵𝐶)
17 nfv 1918 . . . 4 𝑧 𝑎 = 𝐴
18 iuneq1 4937 . . . 4 (𝑎 = 𝐴 𝑗𝑎 ({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
1917, 18esumeq1d 31903 . . 3 (𝑎 = 𝐴 → Σ*𝑧 𝑗𝑎 ({𝑗} × 𝐵)𝐹 = Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐹)
2016, 19eqeq12d 2754 . 2 (𝑎 = 𝐴 → (Σ*𝑗𝑎Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑎 ({𝑗} × 𝐵)𝐹 ↔ Σ*𝑗𝐴Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐹))
21 esumnul 31916 . . . 4 Σ*𝑧 ∈ ∅𝐹 = 0
22 0iun 4988 . . . . 5 𝑗 ∈ ∅ ({𝑗} × 𝐵) = ∅
23 esumeq1 31902 . . . . 5 ( 𝑗 ∈ ∅ ({𝑗} × 𝐵) = ∅ → Σ*𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐹 = Σ*𝑧 ∈ ∅𝐹)
2422, 23ax-mp 5 . . . 4 Σ*𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐹 = Σ*𝑧 ∈ ∅𝐹
25 esumnul 31916 . . . 4 Σ*𝑗 ∈ ∅Σ*𝑘𝐵𝐶 = 0
2621, 24, 253eqtr4ri 2777 . . 3 Σ*𝑗 ∈ ∅Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐹
2726a1i 11 . 2 (𝜑 → Σ*𝑗 ∈ ∅Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐹)
28 simpr 484 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ Σ*𝑗𝑏Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹) → Σ*𝑗𝑏Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹)
29 nfcsb1v 3853 . . . . . . . . 9 𝑗𝑙 / 𝑗𝐵
30 nfcsb1v 3853 . . . . . . . . 9 𝑗𝑙 / 𝑗𝐶
3129, 30nfesum2 31909 . . . . . . . 8 𝑗Σ*𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶
32 csbeq1a 3842 . . . . . . . . . 10 (𝑗 = 𝑙𝐵 = 𝑙 / 𝑗𝐵)
33 csbeq1a 3842 . . . . . . . . . 10 (𝑗 = 𝑙𝐶 = 𝑙 / 𝑗𝐶)
3432, 33esumeq12d 31901 . . . . . . . . 9 (𝑗 = 𝑙 → Σ*𝑘𝐵𝐶 = Σ*𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶)
3534adantl 481 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗 = 𝑙) → Σ*𝑘𝐵𝐶 = Σ*𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶)
36 simprr 769 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → 𝑙 ∈ (𝐴𝑏))
3736eldifad 3895 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → 𝑙𝐴)
38 esum2d.3 . . . . . . . . . . . 12 ((𝜑𝑗𝐴) → 𝐵𝑊)
3938adantlr 711 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝐴) → 𝐵𝑊)
4039ralrimiva 3107 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → ∀𝑗𝐴 𝐵𝑊)
41 rspcsbela 4366 . . . . . . . . . 10 ((𝑙𝐴 ∧ ∀𝑗𝐴 𝐵𝑊) → 𝑙 / 𝑗𝐵𝑊)
4237, 40, 41syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → 𝑙 / 𝑗𝐵𝑊)
43 simpll 763 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑘𝑙 / 𝑗𝐵) → 𝜑)
4437adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑘𝑙 / 𝑗𝐵) → 𝑙𝐴)
45 simpr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑘𝑙 / 𝑗𝐵) → 𝑘𝑙 / 𝑗𝐵)
46 esum2d.4 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ (0[,]+∞))
4746ex 412 . . . . . . . . . . . . . 14 (𝜑 → ((𝑗𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞)))
4847sbcimdv 3786 . . . . . . . . . . . . 13 (𝜑 → ([𝑙 / 𝑗](𝑗𝐴𝑘𝐵) → [𝑙 / 𝑗]𝐶 ∈ (0[,]+∞)))
49 sbcan 3763 . . . . . . . . . . . . . 14 ([𝑙 / 𝑗](𝑗𝐴𝑘𝐵) ↔ ([𝑙 / 𝑗]𝑗𝐴[𝑙 / 𝑗]𝑘𝐵))
50 sbcel1v 3783 . . . . . . . . . . . . . . 15 ([𝑙 / 𝑗]𝑗𝐴𝑙𝐴)
51 sbcel2 4346 . . . . . . . . . . . . . . 15 ([𝑙 / 𝑗]𝑘𝐵𝑘𝑙 / 𝑗𝐵)
5250, 51anbi12i 626 . . . . . . . . . . . . . 14 (([𝑙 / 𝑗]𝑗𝐴[𝑙 / 𝑗]𝑘𝐵) ↔ (𝑙𝐴𝑘𝑙 / 𝑗𝐵))
5349, 52bitri 274 . . . . . . . . . . . . 13 ([𝑙 / 𝑗](𝑗𝐴𝑘𝐵) ↔ (𝑙𝐴𝑘𝑙 / 𝑗𝐵))
54 vex 3426 . . . . . . . . . . . . . 14 𝑙 ∈ V
55 sbcel1g 4344 . . . . . . . . . . . . . 14 (𝑙 ∈ V → ([𝑙 / 𝑗]𝐶 ∈ (0[,]+∞) ↔ 𝑙 / 𝑗𝐶 ∈ (0[,]+∞)))
5654, 55ax-mp 5 . . . . . . . . . . . . 13 ([𝑙 / 𝑗]𝐶 ∈ (0[,]+∞) ↔ 𝑙 / 𝑗𝐶 ∈ (0[,]+∞))
5748, 53, 563imtr3g 294 . . . . . . . . . . . 12 (𝜑 → ((𝑙𝐴𝑘𝑙 / 𝑗𝐵) → 𝑙 / 𝑗𝐶 ∈ (0[,]+∞)))
5857imp 406 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙𝐴𝑘𝑙 / 𝑗𝐵)) → 𝑙 / 𝑗𝐶 ∈ (0[,]+∞))
5943, 44, 45, 58syl12anc 833 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑘𝑙 / 𝑗𝐵) → 𝑙 / 𝑗𝐶 ∈ (0[,]+∞))
6059ralrimiva 3107 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → ∀𝑘 𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶 ∈ (0[,]+∞))
61 nfcv 2906 . . . . . . . . . 10 𝑘𝑙 / 𝑗𝐵
6261esumcl 31898 . . . . . . . . 9 ((𝑙 / 𝑗𝐵𝑊 ∧ ∀𝑘 𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶 ∈ (0[,]+∞)) → Σ*𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶 ∈ (0[,]+∞))
6342, 60, 62syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → Σ*𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶 ∈ (0[,]+∞))
6431, 35, 36, 63esumsnf 31932 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → Σ*𝑗 ∈ {𝑙*𝑘𝐵𝐶 = Σ*𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶)
65 esum2d.0 . . . . . . . . 9 𝑘𝐹
66 nfv 1918 . . . . . . . . 9 𝑘(𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏)))
67 nfv 1918 . . . . . . . . . . 11 𝑗 𝑧 = ⟨𝑙, 𝑘
6830nfeq2 2923 . . . . . . . . . . 11 𝑗 𝐹 = 𝑙 / 𝑗𝐶
6967, 68nfim 1900 . . . . . . . . . 10 𝑗(𝑧 = ⟨𝑙, 𝑘⟩ → 𝐹 = 𝑙 / 𝑗𝐶)
70 opeq1 4801 . . . . . . . . . . . 12 (𝑗 = 𝑙 → ⟨𝑗, 𝑘⟩ = ⟨𝑙, 𝑘⟩)
7170eqeq2d 2749 . . . . . . . . . . 11 (𝑗 = 𝑙 → (𝑧 = ⟨𝑗, 𝑘⟩ ↔ 𝑧 = ⟨𝑙, 𝑘⟩))
7233eqeq2d 2749 . . . . . . . . . . 11 (𝑗 = 𝑙 → (𝐹 = 𝐶𝐹 = 𝑙 / 𝑗𝐶))
7371, 72imbi12d 344 . . . . . . . . . 10 (𝑗 = 𝑙 → ((𝑧 = ⟨𝑗, 𝑘⟩ → 𝐹 = 𝐶) ↔ (𝑧 = ⟨𝑙, 𝑘⟩ → 𝐹 = 𝑙 / 𝑗𝐶)))
74 esum2d.1 . . . . . . . . . 10 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐹 = 𝐶)
7569, 73, 74chvarfv 2236 . . . . . . . . 9 (𝑧 = ⟨𝑙, 𝑘⟩ → 𝐹 = 𝑙 / 𝑗𝐶)
76 vsnid 4595 . . . . . . . . . . . . . . . . 17 𝑗 ∈ {𝑗}
7776a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝑗 ∈ {𝑗})
78 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝑘𝐵)
7977, 78opelxpd 5618 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → ⟨𝑗, 𝑘⟩ ∈ ({𝑗} × 𝐵))
80 xp2nd 7837 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ({𝑗} × 𝐵) → (2nd𝑧) ∈ 𝐵)
81 xp1st 7836 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) ∈ {𝑗})
82 fvex 6769 . . . . . . . . . . . . . . . . . . . . . 22 (1st𝑧) ∈ V
8382elsn 4573 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑧) ∈ {𝑗} ↔ (1st𝑧) = 𝑗)
8481, 83sylib 217 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) = 𝑗)
85 eqop 7846 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ({𝑗} × 𝐵) → (𝑧 = ⟨𝑗, 𝑘⟩ ↔ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) = 𝑘)))
8684, 85mpbirand 703 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ({𝑗} × 𝐵) → (𝑧 = ⟨𝑗, 𝑘⟩ ↔ (2nd𝑧) = 𝑘))
87 eqcom 2745 . . . . . . . . . . . . . . . . . . 19 ((2nd𝑧) = 𝑘𝑘 = (2nd𝑧))
8886, 87bitrdi 286 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ({𝑗} × 𝐵) → (𝑧 = ⟨𝑗, 𝑘⟩ ↔ 𝑘 = (2nd𝑧)))
8988ad2antlr 723 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘𝐵) → (𝑧 = ⟨𝑗, 𝑘⟩ ↔ 𝑘 = (2nd𝑧)))
9089ralrimiva 3107 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∀𝑘𝐵 (𝑧 = ⟨𝑗, 𝑘⟩ ↔ 𝑘 = (2nd𝑧)))
91 reu6i 3658 . . . . . . . . . . . . . . . 16 (((2nd𝑧) ∈ 𝐵 ∧ ∀𝑘𝐵 (𝑧 = ⟨𝑗, 𝑘⟩ ↔ 𝑘 = (2nd𝑧))) → ∃!𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
9280, 90, 91syl2an2 682 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃!𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
9379, 92f1mptrn 30871 . . . . . . . . . . . . . 14 ((𝜑𝑗𝐴) → Fun (𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩))
9493ex 412 . . . . . . . . . . . . 13 (𝜑 → (𝑗𝐴 → Fun (𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩)))
9594sbcimdv 3786 . . . . . . . . . . . 12 (𝜑 → ([𝑙 / 𝑗]𝑗𝐴[𝑙 / 𝑗]Fun (𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩)))
96 sbcfung 6442 . . . . . . . . . . . . . 14 (𝑙 ∈ V → ([𝑙 / 𝑗]Fun (𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩) ↔ Fun 𝑙 / 𝑗(𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩)))
97 csbcnv 5781 . . . . . . . . . . . . . . . 16 𝑙 / 𝑗(𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩) = 𝑙 / 𝑗(𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩)
98 csbmpt12 5463 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ V → 𝑙 / 𝑗(𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩) = (𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝑗, 𝑘⟩))
99 csbopg 4819 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ V → 𝑙 / 𝑗𝑗, 𝑘⟩ = ⟨𝑙 / 𝑗𝑗, 𝑙 / 𝑗𝑘⟩)
100 csbvarg 4362 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ V → 𝑙 / 𝑗𝑗 = 𝑙)
101 csbconstg 3847 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ V → 𝑙 / 𝑗𝑘 = 𝑘)
102100, 101opeq12d 4809 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ V → ⟨𝑙 / 𝑗𝑗, 𝑙 / 𝑗𝑘⟩ = ⟨𝑙, 𝑘⟩)
10399, 102eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 (𝑙 ∈ V → 𝑙 / 𝑗𝑗, 𝑘⟩ = ⟨𝑙, 𝑘⟩)
104103mpteq2dv 5172 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ V → (𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝑗, 𝑘⟩) = (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩))
10598, 104eqtrd 2778 . . . . . . . . . . . . . . . . 17 (𝑙 ∈ V → 𝑙 / 𝑗(𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩) = (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩))
106105cnveqd 5773 . . . . . . . . . . . . . . . 16 (𝑙 ∈ V → 𝑙 / 𝑗(𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩) = (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩))
10797, 106eqtr3id 2793 . . . . . . . . . . . . . . 15 (𝑙 ∈ V → 𝑙 / 𝑗(𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩) = (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩))
108107funeqd 6440 . . . . . . . . . . . . . 14 (𝑙 ∈ V → (Fun 𝑙 / 𝑗(𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩) ↔ Fun (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩)))
10996, 108bitrd 278 . . . . . . . . . . . . 13 (𝑙 ∈ V → ([𝑙 / 𝑗]Fun (𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩) ↔ Fun (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩)))
11054, 109ax-mp 5 . . . . . . . . . . . 12 ([𝑙 / 𝑗]Fun (𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩) ↔ Fun (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩))
11195, 50, 1103imtr3g 294 . . . . . . . . . . 11 (𝜑 → (𝑙𝐴 → Fun (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩)))
112111imp 406 . . . . . . . . . 10 ((𝜑𝑙𝐴) → Fun (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩))
11337, 112syldan 590 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → Fun (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩))
114 vsnid 4595 . . . . . . . . . . 11 𝑙 ∈ {𝑙}
115114a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑘𝑙 / 𝑗𝐵) → 𝑙 ∈ {𝑙})
116115, 45opelxpd 5618 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑘𝑙 / 𝑗𝐵) → ⟨𝑙, 𝑘⟩ ∈ ({𝑙} × 𝑙 / 𝑗𝐵))
11765, 66, 61, 75, 42, 113, 59, 116esumc 31919 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → Σ*𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶 = Σ*𝑧 ∈ {𝑡 ∣ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩}𝐹)
118 nfab1 2908 . . . . . . . . . 10 𝑡{𝑡 ∣ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩}
119 nfcv 2906 . . . . . . . . . 10 𝑡({𝑙} × 𝑙 / 𝑗𝐵)
120 opeq1 4801 . . . . . . . . . . . . . 14 (𝑖 = 𝑙 → ⟨𝑖, 𝑘⟩ = ⟨𝑙, 𝑘⟩)
121120eqeq2d 2749 . . . . . . . . . . . . 13 (𝑖 = 𝑙 → (𝑡 = ⟨𝑖, 𝑘⟩ ↔ 𝑡 = ⟨𝑙, 𝑘⟩))
122121rexbidv 3225 . . . . . . . . . . . 12 (𝑖 = 𝑙 → (∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑖, 𝑘⟩ ↔ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩))
12354, 122rexsn 4615 . . . . . . . . . . 11 (∃𝑖 ∈ {𝑙}∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑖, 𝑘⟩ ↔ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩)
124 elxp2 5604 . . . . . . . . . . 11 (𝑡 ∈ ({𝑙} × 𝑙 / 𝑗𝐵) ↔ ∃𝑖 ∈ {𝑙}∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑖, 𝑘⟩)
125 abid 2719 . . . . . . . . . . 11 (𝑡 ∈ {𝑡 ∣ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩} ↔ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩)
126123, 124, 1253bitr4ri 303 . . . . . . . . . 10 (𝑡 ∈ {𝑡 ∣ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩} ↔ 𝑡 ∈ ({𝑙} × 𝑙 / 𝑗𝐵))
127118, 119, 126eqri 3937 . . . . . . . . 9 {𝑡 ∣ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩} = ({𝑙} × 𝑙 / 𝑗𝐵)
128 esumeq1 31902 . . . . . . . . 9 ({𝑡 ∣ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩} = ({𝑙} × 𝑙 / 𝑗𝐵) → Σ*𝑧 ∈ {𝑡 ∣ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩}𝐹 = Σ*𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)𝐹)
129127, 128ax-mp 5 . . . . . . . 8 Σ*𝑧 ∈ {𝑡 ∣ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩}𝐹 = Σ*𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)𝐹
130117, 129eqtrdi 2795 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → Σ*𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶 = Σ*𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)𝐹)
13164, 130eqtrd 2778 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → Σ*𝑗 ∈ {𝑙*𝑘𝐵𝐶 = Σ*𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)𝐹)
132131adantr 480 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ Σ*𝑗𝑏Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹) → Σ*𝑗 ∈ {𝑙*𝑘𝐵𝐶 = Σ*𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)𝐹)
13328, 132oveq12d 7273 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ Σ*𝑗𝑏Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹) → (Σ*𝑗𝑏Σ*𝑘𝐵𝐶 +𝑒 Σ*𝑗 ∈ {𝑙*𝑘𝐵𝐶) = (Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹 +𝑒 Σ*𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)𝐹))
134 nfv 1918 . . . . . 6 𝑗(𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏)))
135 nfcv 2906 . . . . . 6 𝑗𝑏
136 nfcv 2906 . . . . . 6 𝑗{𝑙}
137 vex 3426 . . . . . . 7 𝑏 ∈ V
138137a1i 11 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → 𝑏 ∈ V)
139 snex 5349 . . . . . . 7 {𝑙} ∈ V
140139a1i 11 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → {𝑙} ∈ V)
14136eldifbd 3896 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → ¬ 𝑙𝑏)
142 disjsn 4644 . . . . . . 7 ((𝑏 ∩ {𝑙}) = ∅ ↔ ¬ 𝑙𝑏)
143141, 142sylibr 233 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → (𝑏 ∩ {𝑙}) = ∅)
144 simpll 763 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝑏) → 𝜑)
145 simprl 767 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → 𝑏𝐴)
146145sselda 3917 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝑏) → 𝑗𝐴)
14746anassrs 467 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
148147ralrimiva 3107 . . . . . . . 8 ((𝜑𝑗𝐴) → ∀𝑘𝐵 𝐶 ∈ (0[,]+∞))
149 nfcv 2906 . . . . . . . . 9 𝑘𝐵
150149esumcl 31898 . . . . . . . 8 ((𝐵𝑊 ∧ ∀𝑘𝐵 𝐶 ∈ (0[,]+∞)) → Σ*𝑘𝐵𝐶 ∈ (0[,]+∞))
15138, 148, 150syl2anc 583 . . . . . . 7 ((𝜑𝑗𝐴) → Σ*𝑘𝐵𝐶 ∈ (0[,]+∞))
152144, 146, 151syl2anc 583 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝑏) → Σ*𝑘𝐵𝐶 ∈ (0[,]+∞))
153 simpll 763 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗 ∈ {𝑙}) → 𝜑)
15437snssd 4739 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → {𝑙} ⊆ 𝐴)
155154sselda 3917 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗 ∈ {𝑙}) → 𝑗𝐴)
156153, 155, 151syl2anc 583 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗 ∈ {𝑙}) → Σ*𝑘𝐵𝐶 ∈ (0[,]+∞))
157134, 135, 136, 138, 140, 143, 152, 156esumsplit 31921 . . . . 5 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → Σ*𝑗 ∈ (𝑏 ∪ {𝑙})Σ*𝑘𝐵𝐶 = (Σ*𝑗𝑏Σ*𝑘𝐵𝐶 +𝑒 Σ*𝑗 ∈ {𝑙*𝑘𝐵𝐶))
158157adantr 480 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ Σ*𝑗𝑏Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹) → Σ*𝑗 ∈ (𝑏 ∪ {𝑙})Σ*𝑘𝐵𝐶 = (Σ*𝑗𝑏Σ*𝑘𝐵𝐶 +𝑒 Σ*𝑗 ∈ {𝑙*𝑘𝐵𝐶))
159 iunxun 5019 . . . . . . . 8 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵) = ( 𝑗𝑏 ({𝑗} × 𝐵) ∪ 𝑗 ∈ {𝑙} ({𝑗} × 𝐵))
160136, 29nfxp 5613 . . . . . . . . . . 11 𝑗({𝑙} × 𝑙 / 𝑗𝐵)
161 sneq 4568 . . . . . . . . . . . 12 (𝑗 = 𝑙 → {𝑗} = {𝑙})
162161, 32xpeq12d 5611 . . . . . . . . . . 11 (𝑗 = 𝑙 → ({𝑗} × 𝐵) = ({𝑙} × 𝑙 / 𝑗𝐵))
163160, 162iunxsngf 5017 . . . . . . . . . 10 (𝑙 ∈ V → 𝑗 ∈ {𝑙} ({𝑗} × 𝐵) = ({𝑙} × 𝑙 / 𝑗𝐵))
16454, 163ax-mp 5 . . . . . . . . 9 𝑗 ∈ {𝑙} ({𝑗} × 𝐵) = ({𝑙} × 𝑙 / 𝑗𝐵)
165164uneq2i 4090 . . . . . . . 8 ( 𝑗𝑏 ({𝑗} × 𝐵) ∪ 𝑗 ∈ {𝑙} ({𝑗} × 𝐵)) = ( 𝑗𝑏 ({𝑗} × 𝐵) ∪ ({𝑙} × 𝑙 / 𝑗𝐵))
166159, 165eqtri 2766 . . . . . . 7 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵) = ( 𝑗𝑏 ({𝑗} × 𝐵) ∪ ({𝑙} × 𝑙 / 𝑗𝐵))
167 esumeq1 31902 . . . . . . 7 ( 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵) = ( 𝑗𝑏 ({𝑗} × 𝐵) ∪ ({𝑙} × 𝑙 / 𝑗𝐵)) → Σ*𝑧 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵)𝐹 = Σ*𝑧 ∈ ( 𝑗𝑏 ({𝑗} × 𝐵) ∪ ({𝑙} × 𝑙 / 𝑗𝐵))𝐹)
168166, 167ax-mp 5 . . . . . 6 Σ*𝑧 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵)𝐹 = Σ*𝑧 ∈ ( 𝑗𝑏 ({𝑗} × 𝐵) ∪ ({𝑙} × 𝑙 / 𝑗𝐵))𝐹
169 nfv 1918 . . . . . . 7 𝑧(𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏)))
170 nfcv 2906 . . . . . . 7 𝑧 𝑗𝑏 ({𝑗} × 𝐵)
171 nfcv 2906 . . . . . . 7 𝑧({𝑙} × 𝑙 / 𝑗𝐵)
172 snex 5349 . . . . . . . . . 10 {𝑗} ∈ V
173146, 39syldan 590 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝑏) → 𝐵𝑊)
174 xpexg 7578 . . . . . . . . . 10 (({𝑗} ∈ V ∧ 𝐵𝑊) → ({𝑗} × 𝐵) ∈ V)
175172, 173, 174sylancr 586 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝑏) → ({𝑗} × 𝐵) ∈ V)
176175ralrimiva 3107 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → ∀𝑗𝑏 ({𝑗} × 𝐵) ∈ V)
177 iunexg 7779 . . . . . . . 8 ((𝑏 ∈ V ∧ ∀𝑗𝑏 ({𝑗} × 𝐵) ∈ V) → 𝑗𝑏 ({𝑗} × 𝐵) ∈ V)
178137, 176, 177sylancr 586 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → 𝑗𝑏 ({𝑗} × 𝐵) ∈ V)
179 xpexg 7578 . . . . . . . 8 (({𝑙} ∈ V ∧ 𝑙 / 𝑗𝐵𝑊) → ({𝑙} × 𝑙 / 𝑗𝐵) ∈ V)
180139, 42, 179sylancr 586 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → ({𝑙} × 𝑙 / 𝑗𝐵) ∈ V)
181 simpr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝑏) → 𝑗𝑏)
182141adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝑏) → ¬ 𝑙𝑏)
183 nelne2 3041 . . . . . . . . . . 11 ((𝑗𝑏 ∧ ¬ 𝑙𝑏) → 𝑗𝑙)
184181, 182, 183syl2anc 583 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝑏) → 𝑗𝑙)
185 disjsn2 4645 . . . . . . . . . 10 (𝑗𝑙 → ({𝑗} ∩ {𝑙}) = ∅)
186 xpdisj1 6053 . . . . . . . . . 10 (({𝑗} ∩ {𝑙}) = ∅ → (({𝑗} × 𝐵) ∩ ({𝑙} × 𝑙 / 𝑗𝐵)) = ∅)
187184, 185, 1863syl 18 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝑏) → (({𝑗} × 𝐵) ∩ ({𝑙} × 𝑙 / 𝑗𝐵)) = ∅)
188187iuneq2dv 4945 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → 𝑗𝑏 (({𝑗} × 𝐵) ∩ ({𝑙} × 𝑙 / 𝑗𝐵)) = 𝑗𝑏 ∅)
189160iunin1f 30798 . . . . . . . 8 𝑗𝑏 (({𝑗} × 𝐵) ∩ ({𝑙} × 𝑙 / 𝑗𝐵)) = ( 𝑗𝑏 ({𝑗} × 𝐵) ∩ ({𝑙} × 𝑙 / 𝑗𝐵))
190 iun0 4987 . . . . . . . 8 𝑗𝑏 ∅ = ∅
191188, 189, 1903eqtr3g 2802 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → ( 𝑗𝑏 ({𝑗} × 𝐵) ∩ ({𝑙} × 𝑙 / 𝑗𝐵)) = ∅)
192 simpll 763 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑧 𝑗𝑏 ({𝑗} × 𝐵)) → 𝜑)
193 iunss1 4935 . . . . . . . . . 10 (𝑏𝐴 𝑗𝑏 ({𝑗} × 𝐵) ⊆ 𝑗𝐴 ({𝑗} × 𝐵))
194145, 193syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → 𝑗𝑏 ({𝑗} × 𝐵) ⊆ 𝑗𝐴 ({𝑗} × 𝐵))
195194sselda 3917 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑧 𝑗𝑏 ({𝑗} × 𝐵)) → 𝑧 𝑗𝐴 ({𝑗} × 𝐵))
196 nfv 1918 . . . . . . . . . 10 𝑗𝜑
197 nfiu1 4955 . . . . . . . . . . 11 𝑗 𝑗𝐴 ({𝑗} × 𝐵)
198197nfcri 2893 . . . . . . . . . 10 𝑗 𝑧 𝑗𝐴 ({𝑗} × 𝐵)
199196, 198nfan 1903 . . . . . . . . 9 𝑗(𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵))
200 nfv 1918 . . . . . . . . . 10 𝑘(((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵))
201 nfcv 2906 . . . . . . . . . . 11 𝑘(0[,]+∞)
20265, 201nfel 2920 . . . . . . . . . 10 𝑘 𝐹 ∈ (0[,]+∞)
20374adantl 481 . . . . . . . . . . 11 ((((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘𝐵) ∧ 𝑧 = ⟨𝑗, 𝑘⟩) → 𝐹 = 𝐶)
204 simp-5l 781 . . . . . . . . . . . 12 ((((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘𝐵) ∧ 𝑧 = ⟨𝑗, 𝑘⟩) → 𝜑)
205 simp-4r 780 . . . . . . . . . . . 12 ((((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘𝐵) ∧ 𝑧 = ⟨𝑗, 𝑘⟩) → 𝑗𝐴)
206 simplr 765 . . . . . . . . . . . 12 ((((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘𝐵) ∧ 𝑧 = ⟨𝑗, 𝑘⟩) → 𝑘𝐵)
207204, 205, 206, 46syl12anc 833 . . . . . . . . . . 11 ((((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘𝐵) ∧ 𝑧 = ⟨𝑗, 𝑘⟩) → 𝐶 ∈ (0[,]+∞))
208203, 207eqeltrd 2839 . . . . . . . . . 10 ((((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘𝐵) ∧ 𝑧 = ⟨𝑗, 𝑘⟩) → 𝐹 ∈ (0[,]+∞))
209 elsnxp 6183 . . . . . . . . . . . 12 (𝑗𝐴 → (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩))
210209biimpa 476 . . . . . . . . . . 11 ((𝑗𝐴𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
211210adantll 710 . . . . . . . . . 10 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
212200, 202, 208, 211r19.29af2 3258 . . . . . . . . 9 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝐹 ∈ (0[,]+∞))
213 simpr 484 . . . . . . . . . 10 ((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → 𝑧 𝑗𝐴 ({𝑗} × 𝐵))
214 eliun 4925 . . . . . . . . . 10 (𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵))
215213, 214sylib 217 . . . . . . . . 9 ((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → ∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵))
216199, 212, 215r19.29af 3259 . . . . . . . 8 ((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → 𝐹 ∈ (0[,]+∞))
217192, 195, 216syl2anc 583 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑧 𝑗𝑏 ({𝑗} × 𝐵)) → 𝐹 ∈ (0[,]+∞))
218 simpll 763 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)) → 𝜑)
219 nfcv 2906 . . . . . . . . . . 11 𝑗𝐴
220 nfcv 2906 . . . . . . . . . . 11 𝑗𝑙
221219, 220, 160, 162ssiun2sf 30800 . . . . . . . . . 10 (𝑙𝐴 → ({𝑙} × 𝑙 / 𝑗𝐵) ⊆ 𝑗𝐴 ({𝑗} × 𝐵))
22237, 221syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → ({𝑙} × 𝑙 / 𝑗𝐵) ⊆ 𝑗𝐴 ({𝑗} × 𝐵))
223222sselda 3917 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)) → 𝑧 𝑗𝐴 ({𝑗} × 𝐵))
224218, 223, 216syl2anc 583 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)) → 𝐹 ∈ (0[,]+∞))
225169, 170, 171, 178, 180, 191, 217, 224esumsplit 31921 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → Σ*𝑧 ∈ ( 𝑗𝑏 ({𝑗} × 𝐵) ∪ ({𝑙} × 𝑙 / 𝑗𝐵))𝐹 = (Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹 +𝑒 Σ*𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)𝐹))
226168, 225syl5eq 2791 . . . . 5 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → Σ*𝑧 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵)𝐹 = (Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹 +𝑒 Σ*𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)𝐹))
227226adantr 480 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ Σ*𝑗𝑏Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹) → Σ*𝑧 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵)𝐹 = (Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹 +𝑒 Σ*𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)𝐹))
228133, 158, 2273eqtr4d 2788 . . 3 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ Σ*𝑗𝑏Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹) → Σ*𝑗 ∈ (𝑏 ∪ {𝑙})Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵)𝐹)
229228ex 412 . 2 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → (Σ*𝑗𝑏Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹 → Σ*𝑗 ∈ (𝑏 ∪ {𝑙})Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵)𝐹))
230 esum2dlem.e . 2 (𝜑𝐴 ∈ Fin)
2315, 10, 15, 20, 27, 229, 230findcard2d 8911 1 (𝜑 → Σ*𝑗𝐴Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wnfc 2886  wne 2942  wral 3063  wrex 3064  ∃!wreu 3065  Vcvv 3422  [wsbc 3711  csb 3828  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558  cop 4564   ciun 4921  cmpt 5153   × cxp 5578  ccnv 5579  Fun wfun 6412  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Fincfn 8691  0cc0 10802  +∞cpnf 10937   +𝑒 cxad 12775  [,]cicc 13011  Σ*cesum 31895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-ordt 17129  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-ps 18199  df-tsr 18200  df-plusf 18240  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-abv 19992  df-lmod 20040  df-scaf 20041  df-sra 20349  df-rgmod 20350  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tmd 23131  df-tgp 23132  df-tsms 23186  df-trg 23219  df-xms 23381  df-ms 23382  df-tms 23383  df-nm 23644  df-ngp 23645  df-nrg 23647  df-nlm 23648  df-ii 23946  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-esum 31896
This theorem is referenced by:  esum2d  31961
  Copyright terms: Public domain W3C validator