Proof of Theorem reusv2lem3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpr 484 | . . . 4
⊢
((∀𝑦 ∈
𝐴 𝐵 ∈ V ∧ ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) → ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) | 
| 2 |  | nfv 1913 | . . . . . 6
⊢
Ⅎ𝑥∀𝑦 ∈ 𝐴 𝐵 ∈ V | 
| 3 |  | nfeu1 2587 | . . . . . 6
⊢
Ⅎ𝑥∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 | 
| 4 | 2, 3 | nfan 1898 | . . . . 5
⊢
Ⅎ𝑥(∀𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) | 
| 5 |  | euex 2576 | . . . . . . . 8
⊢
(∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) | 
| 6 |  | rexn0 4510 | . . . . . . . . 9
⊢
(∃𝑦 ∈
𝐴 𝑥 = 𝐵 → 𝐴 ≠ ∅) | 
| 7 | 6 | exlimiv 1929 | . . . . . . . 8
⊢
(∃𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝐴 ≠ ∅) | 
| 8 |  | r19.2z 4494 | . . . . . . . . 9
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑥 = 𝐵) → ∃𝑦 ∈ 𝐴 𝑥 = 𝐵) | 
| 9 | 8 | ex 412 | . . . . . . . 8
⊢ (𝐴 ≠ ∅ →
(∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) | 
| 10 | 5, 7, 9 | 3syl 18 | . . . . . . 7
⊢
(∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → (∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) | 
| 11 | 10 | adantl 481 | . . . . . 6
⊢
((∀𝑦 ∈
𝐴 𝐵 ∈ V ∧ ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) → (∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) | 
| 12 |  | nfra1 3283 | . . . . . . . 8
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐴 𝐵 ∈ V | 
| 13 |  | nfre1 3284 | . . . . . . . . 9
⊢
Ⅎ𝑦∃𝑦 ∈ 𝐴 𝑥 = 𝐵 | 
| 14 | 13 | nfeuw 2592 | . . . . . . . 8
⊢
Ⅎ𝑦∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 | 
| 15 | 12, 14 | nfan 1898 | . . . . . . 7
⊢
Ⅎ𝑦(∀𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) | 
| 16 |  | rsp 3246 | . . . . . . . . . . . . . 14
⊢
(∀𝑦 ∈
𝐴 𝐵 ∈ V → (𝑦 ∈ 𝐴 → 𝐵 ∈ V)) | 
| 17 | 16 | impcom 407 | . . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ V) → 𝐵 ∈ V) | 
| 18 |  | isset 3493 | . . . . . . . . . . . . 13
⊢ (𝐵 ∈ V ↔ ∃𝑥 𝑥 = 𝐵) | 
| 19 | 17, 18 | sylib 218 | . . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ V) → ∃𝑥 𝑥 = 𝐵) | 
| 20 | 19 | adantrr 717 | . . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) → ∃𝑥 𝑥 = 𝐵) | 
| 21 |  | rspe 3248 | . . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = 𝐵) → ∃𝑦 ∈ 𝐴 𝑥 = 𝐵) | 
| 22 | 21 | ex 412 | . . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐴 → (𝑥 = 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) | 
| 23 | 22 | ancrd 551 | . . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐴 → (𝑥 = 𝐵 → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ 𝑥 = 𝐵))) | 
| 24 | 23 | eximdv 1916 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 → (∃𝑥 𝑥 = 𝐵 → ∃𝑥(∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ 𝑥 = 𝐵))) | 
| 25 | 24 | imp 406 | . . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ ∃𝑥 𝑥 = 𝐵) → ∃𝑥(∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ 𝑥 = 𝐵)) | 
| 26 | 20, 25 | syldan 591 | . . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) → ∃𝑥(∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ 𝑥 = 𝐵)) | 
| 27 |  | eupick 2632 | . . . . . . . . . 10
⊢
((∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ ∃𝑥(∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ 𝑥 = 𝐵)) → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵)) | 
| 28 | 1, 26, 27 | syl2an2 686 | . . . . . . . . 9
⊢ ((𝑦 ∈ 𝐴 ∧ (∀𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵)) | 
| 29 | 28 | ex 412 | . . . . . . . 8
⊢ (𝑦 ∈ 𝐴 → ((∀𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵))) | 
| 30 | 29 | com3l 89 | . . . . . . 7
⊢
((∀𝑦 ∈
𝐴 𝐵 ∈ V ∧ ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → (𝑦 ∈ 𝐴 → 𝑥 = 𝐵))) | 
| 31 | 15, 13, 30 | ralrimd 3263 | . . . . . 6
⊢
((∀𝑦 ∈
𝐴 𝐵 ∈ V ∧ ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | 
| 32 | 11, 31 | impbid 212 | . . . . 5
⊢
((∀𝑦 ∈
𝐴 𝐵 ∈ V ∧ ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) → (∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) | 
| 33 | 4, 32 | eubid 2586 | . . . 4
⊢
((∀𝑦 ∈
𝐴 𝐵 ∈ V ∧ ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) → (∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) | 
| 34 | 1, 33 | mpbird 257 | . . 3
⊢
((∀𝑦 ∈
𝐴 𝐵 ∈ V ∧ ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) → ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) | 
| 35 | 34 | ex 412 | . 2
⊢
(∀𝑦 ∈
𝐴 𝐵 ∈ V → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | 
| 36 |  | reusv2lem2 5398 | . 2
⊢
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) | 
| 37 | 35, 36 | impbid1 225 | 1
⊢
(∀𝑦 ∈
𝐴 𝐵 ∈ V → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |