MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusv2lem3 Structured version   Visualization version   GIF version

Theorem reusv2lem3 5418
Description: Lemma for reusv2 5421. (Contributed by NM, 14-Dec-2012.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reusv2lem3 (∀𝑦𝐴 𝐵 ∈ V → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃!𝑥𝑦𝐴 𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem reusv2lem3
StepHypRef Expression
1 simpr 484 . . . 4 ((∀𝑦𝐴 𝐵 ∈ V ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵) → ∃!𝑥𝑦𝐴 𝑥 = 𝐵)
2 nfv 1913 . . . . . 6 𝑥𝑦𝐴 𝐵 ∈ V
3 nfeu1 2591 . . . . . 6 𝑥∃!𝑥𝑦𝐴 𝑥 = 𝐵
42, 3nfan 1898 . . . . 5 𝑥(∀𝑦𝐴 𝐵 ∈ V ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵)
5 euex 2580 . . . . . . . 8 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃𝑥𝑦𝐴 𝑥 = 𝐵)
6 rexn0 4534 . . . . . . . . 9 (∃𝑦𝐴 𝑥 = 𝐵𝐴 ≠ ∅)
76exlimiv 1929 . . . . . . . 8 (∃𝑥𝑦𝐴 𝑥 = 𝐵𝐴 ≠ ∅)
8 r19.2z 4518 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑥 = 𝐵) → ∃𝑦𝐴 𝑥 = 𝐵)
98ex 412 . . . . . . . 8 (𝐴 ≠ ∅ → (∀𝑦𝐴 𝑥 = 𝐵 → ∃𝑦𝐴 𝑥 = 𝐵))
105, 7, 93syl 18 . . . . . . 7 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∀𝑦𝐴 𝑥 = 𝐵 → ∃𝑦𝐴 𝑥 = 𝐵))
1110adantl 481 . . . . . 6 ((∀𝑦𝐴 𝐵 ∈ V ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵) → (∀𝑦𝐴 𝑥 = 𝐵 → ∃𝑦𝐴 𝑥 = 𝐵))
12 nfra1 3290 . . . . . . . 8 𝑦𝑦𝐴 𝐵 ∈ V
13 nfre1 3291 . . . . . . . . 9 𝑦𝑦𝐴 𝑥 = 𝐵
1413nfeuw 2596 . . . . . . . 8 𝑦∃!𝑥𝑦𝐴 𝑥 = 𝐵
1512, 14nfan 1898 . . . . . . 7 𝑦(∀𝑦𝐴 𝐵 ∈ V ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵)
16 rsp 3253 . . . . . . . . . . . . . 14 (∀𝑦𝐴 𝐵 ∈ V → (𝑦𝐴𝐵 ∈ V))
1716impcom 407 . . . . . . . . . . . . 13 ((𝑦𝐴 ∧ ∀𝑦𝐴 𝐵 ∈ V) → 𝐵 ∈ V)
18 isset 3502 . . . . . . . . . . . . 13 (𝐵 ∈ V ↔ ∃𝑥 𝑥 = 𝐵)
1917, 18sylib 218 . . . . . . . . . . . 12 ((𝑦𝐴 ∧ ∀𝑦𝐴 𝐵 ∈ V) → ∃𝑥 𝑥 = 𝐵)
2019adantrr 716 . . . . . . . . . . 11 ((𝑦𝐴 ∧ (∀𝑦𝐴 𝐵 ∈ V ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵)) → ∃𝑥 𝑥 = 𝐵)
21 rspe 3255 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑥 = 𝐵) → ∃𝑦𝐴 𝑥 = 𝐵)
2221ex 412 . . . . . . . . . . . . . 14 (𝑦𝐴 → (𝑥 = 𝐵 → ∃𝑦𝐴 𝑥 = 𝐵))
2322ancrd 551 . . . . . . . . . . . . 13 (𝑦𝐴 → (𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵𝑥 = 𝐵)))
2423eximdv 1916 . . . . . . . . . . . 12 (𝑦𝐴 → (∃𝑥 𝑥 = 𝐵 → ∃𝑥(∃𝑦𝐴 𝑥 = 𝐵𝑥 = 𝐵)))
2524imp 406 . . . . . . . . . . 11 ((𝑦𝐴 ∧ ∃𝑥 𝑥 = 𝐵) → ∃𝑥(∃𝑦𝐴 𝑥 = 𝐵𝑥 = 𝐵))
2620, 25syldan 590 . . . . . . . . . 10 ((𝑦𝐴 ∧ (∀𝑦𝐴 𝐵 ∈ V ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵)) → ∃𝑥(∃𝑦𝐴 𝑥 = 𝐵𝑥 = 𝐵))
27 eupick 2636 . . . . . . . . . 10 ((∃!𝑥𝑦𝐴 𝑥 = 𝐵 ∧ ∃𝑥(∃𝑦𝐴 𝑥 = 𝐵𝑥 = 𝐵)) → (∃𝑦𝐴 𝑥 = 𝐵𝑥 = 𝐵))
281, 26, 27syl2an2 685 . . . . . . . . 9 ((𝑦𝐴 ∧ (∀𝑦𝐴 𝐵 ∈ V ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵)) → (∃𝑦𝐴 𝑥 = 𝐵𝑥 = 𝐵))
2928ex 412 . . . . . . . 8 (𝑦𝐴 → ((∀𝑦𝐴 𝐵 ∈ V ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵) → (∃𝑦𝐴 𝑥 = 𝐵𝑥 = 𝐵)))
3029com3l 89 . . . . . . 7 ((∀𝑦𝐴 𝐵 ∈ V ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵) → (∃𝑦𝐴 𝑥 = 𝐵 → (𝑦𝐴𝑥 = 𝐵)))
3115, 13, 30ralrimd 3270 . . . . . 6 ((∀𝑦𝐴 𝐵 ∈ V ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵) → (∃𝑦𝐴 𝑥 = 𝐵 → ∀𝑦𝐴 𝑥 = 𝐵))
3211, 31impbid 212 . . . . 5 ((∀𝑦𝐴 𝐵 ∈ V ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵) → (∀𝑦𝐴 𝑥 = 𝐵 ↔ ∃𝑦𝐴 𝑥 = 𝐵))
334, 32eubid 2590 . . . 4 ((∀𝑦𝐴 𝐵 ∈ V ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵) → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃!𝑥𝑦𝐴 𝑥 = 𝐵))
341, 33mpbird 257 . . 3 ((∀𝑦𝐴 𝐵 ∈ V ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵) → ∃!𝑥𝑦𝐴 𝑥 = 𝐵)
3534ex 412 . 2 (∀𝑦𝐴 𝐵 ∈ V → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃!𝑥𝑦𝐴 𝑥 = 𝐵))
36 reusv2lem2 5417 . 2 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃!𝑥𝑦𝐴 𝑥 = 𝐵)
3735, 36impbid1 225 1 (∀𝑦𝐴 𝐵 ∈ V → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃!𝑥𝑦𝐴 𝑥 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  ∃!weu 2571  wne 2946  wral 3067  wrex 3076  Vcvv 3488  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-nul 5324  ax-pow 5383
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-v 3490  df-dif 3979  df-nul 4353
This theorem is referenced by:  reusv2lem4  5419  eusv4  5424
  Copyright terms: Public domain W3C validator