MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem7 Structured version   Visualization version   GIF version

Theorem zorn2lem7 10396
Description: Lemma for zorn2 10400. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
zorn2lem.7 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem7 ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)
Distinct variable groups:   𝑎,𝑏,𝑓,𝑔,𝑟,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐴   𝐷,𝑎,𝑏,𝑓,𝑢,𝑣,𝑦   𝐹,𝑎,𝑏,𝑓,𝑔,𝑟,𝑠,𝑢,𝑣,𝑥,𝑦,𝑧   𝑅,𝑎,𝑏,𝑓,𝑔,𝑟,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝐶   𝑥,𝐻,𝑢,𝑣,𝑓,𝑠,𝑟,𝑎,𝑏
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔,𝑠,𝑟,𝑎,𝑏)   𝐷(𝑥,𝑧,𝑤,𝑔,𝑠,𝑟)   𝐹(𝑤)   𝐻(𝑦,𝑧,𝑤,𝑔)

Proof of Theorem zorn2lem7
StepHypRef Expression
1 ween 9929 . . 3 (𝐴 ∈ dom card ↔ ∃𝑤 𝑤 We 𝐴)
2 zorn2lem.3 . . . . . . . . 9 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
3 zorn2lem.4 . . . . . . . . 9 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
4 zorn2lem.5 . . . . . . . . 9 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
52, 3, 4zorn2lem4 10393 . . . . . . . 8 ((𝑅 Po 𝐴𝑤 We 𝐴) → ∃𝑥 ∈ On 𝐷 = ∅)
6 imaeq2 6007 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
76raleqdv 3289 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧))
87rabbidv 3402 . . . . . . . . . . . 12 (𝑥 = 𝑦 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧})
9 zorn2lem.7 . . . . . . . . . . . 12 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
108, 4, 93eqtr4g 2789 . . . . . . . . . . 11 (𝑥 = 𝑦𝐷 = 𝐻)
1110eqeq1d 2731 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐷 = ∅ ↔ 𝐻 = ∅))
1211onminex 7738 . . . . . . . . 9 (∃𝑥 ∈ On 𝐷 = ∅ → ∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 ¬ 𝐻 = ∅))
13 df-ne 2926 . . . . . . . . . . . 12 (𝐻 ≠ ∅ ↔ ¬ 𝐻 = ∅)
1413ralbii 3075 . . . . . . . . . . 11 (∀𝑦𝑥 𝐻 ≠ ∅ ↔ ∀𝑦𝑥 ¬ 𝐻 = ∅)
1514anbi2i 623 . . . . . . . . . 10 ((𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) ↔ (𝐷 = ∅ ∧ ∀𝑦𝑥 ¬ 𝐻 = ∅))
1615rexbii 3076 . . . . . . . . 9 (∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) ↔ ∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 ¬ 𝐻 = ∅))
1712, 16sylibr 234 . . . . . . . 8 (∃𝑥 ∈ On 𝐷 = ∅ → ∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅))
182, 3, 4, 9zorn2lem5 10394 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴)
1918a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴))
202, 3, 4, 9zorn2lem6 10395 . . . . . . . . . . . . . . . . . . 19 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → 𝑅 Or (𝐹𝑥)))
2119, 20jcad 512 . . . . . . . . . . . . . . . . . 18 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ((𝐹𝑥) ⊆ 𝐴𝑅 Or (𝐹𝑥))))
222tfr1 8319 . . . . . . . . . . . . . . . . . . . 20 𝐹 Fn On
23 fnfun 6582 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn On → Fun 𝐹)
24 vex 3440 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
2524funimaex 6570 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝐹 → (𝐹𝑥) ∈ V)
2622, 23, 25mp2b 10 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑥) ∈ V
27 sseq1 3961 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝐹𝑥) → (𝑠𝐴 ↔ (𝐹𝑥) ⊆ 𝐴))
28 soeq2 5549 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝐹𝑥) → (𝑅 Or 𝑠𝑅 Or (𝐹𝑥)))
2927, 28anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = (𝐹𝑥) → ((𝑠𝐴𝑅 Or 𝑠) ↔ ((𝐹𝑥) ⊆ 𝐴𝑅 Or (𝐹𝑥))))
30 raleq 3286 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝐹𝑥) → (∀𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎) ↔ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3130rexbidv 3153 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = (𝐹𝑥) → (∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎) ↔ ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3229, 31imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑠 = (𝐹𝑥) → (((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎)) ↔ (((𝐹𝑥) ⊆ 𝐴𝑅 Or (𝐹𝑥)) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎))))
3326, 32spcv 3560 . . . . . . . . . . . . . . . . . 18 (∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎)) → (((𝐹𝑥) ⊆ 𝐴𝑅 Or (𝐹𝑥)) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3421, 33sylan9 507 . . . . . . . . . . . . . . . . 17 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3534adantld 490 . . . . . . . . . . . . . . . 16 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ((𝐷 = ∅ ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3635imp 406 . . . . . . . . . . . . . . 15 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ (𝐷 = ∅ ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎))
37 noel 4289 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ¬ 𝑏 ∈ ∅
3818sseld 3934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝑟 ∈ (𝐹𝑥) → 𝑟𝐴))
39 3anass 1094 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑟𝐴𝑎𝐴𝑏𝐴) ↔ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴)))
40 potr 5540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑅 Po 𝐴 ∧ (𝑟𝐴𝑎𝐴𝑏𝐴)) → ((𝑟𝑅𝑎𝑎𝑅𝑏) → 𝑟𝑅𝑏))
4139, 40sylan2br 595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) → ((𝑟𝑅𝑎𝑎𝑅𝑏) → 𝑟𝑅𝑏))
4241expcomd 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) → (𝑎𝑅𝑏 → (𝑟𝑅𝑎𝑟𝑅𝑏)))
4342imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) ∧ 𝑎𝑅𝑏) → (𝑟𝑅𝑎𝑟𝑅𝑏))
44 breq1 5095 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑟 = 𝑎 → (𝑟𝑅𝑏𝑎𝑅𝑏))
4544biimprcd 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑎𝑅𝑏 → (𝑟 = 𝑎𝑟𝑅𝑏))
4645adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) ∧ 𝑎𝑅𝑏) → (𝑟 = 𝑎𝑟𝑅𝑏))
4743, 46jaod 859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) ∧ 𝑎𝑅𝑏) → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏))
4847exp42 435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑅 Po 𝐴 → (𝑟𝐴 → ((𝑎𝐴𝑏𝐴) → (𝑎𝑅𝑏 → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))))
4938, 48sylan9r 508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑟 ∈ (𝐹𝑥) → ((𝑎𝐴𝑏𝐴) → (𝑎𝑅𝑏 → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))))
5049com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑎𝑅𝑏 → ((𝑎𝐴𝑏𝐴) → (𝑟 ∈ (𝐹𝑥) → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))))
5150com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → ((𝑎𝐴𝑏𝐴) → (𝑎𝑅𝑏 → (𝑟 ∈ (𝐹𝑥) → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))))
5251imp31 417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑎𝑅𝑏) → (𝑟 ∈ (𝐹𝑥) → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))
5352a2d 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑎𝑅𝑏) → ((𝑟 ∈ (𝐹𝑥) → (𝑟𝑅𝑎𝑟 = 𝑎)) → (𝑟 ∈ (𝐹𝑥) → 𝑟𝑅𝑏)))
5453ralimdv2 3138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑎𝑅𝑏) → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∀𝑟 ∈ (𝐹𝑥)𝑟𝑅𝑏))
55 breq1 5095 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑟 = 𝑔 → (𝑟𝑅𝑏𝑔𝑅𝑏))
5655cbvralvw 3207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (∀𝑟 ∈ (𝐹𝑥)𝑟𝑅𝑏 ↔ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏)
57 breq2 5096 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑧 = 𝑏 → (𝑔𝑅𝑧𝑔𝑅𝑏))
5857ralbidv 3152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑧 = 𝑏 → (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏))
5958elrab 3648 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑏 ∈ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} ↔ (𝑏𝐴 ∧ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏))
604eqeq1i 2734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐷 = ∅ ↔ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} = ∅)
61 eleq2 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} = ∅ → (𝑏 ∈ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} ↔ 𝑏 ∈ ∅))
6260, 61sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐷 = ∅ → (𝑏 ∈ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} ↔ 𝑏 ∈ ∅))
6359, 62bitr3id 285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝐷 = ∅ → ((𝑏𝐴 ∧ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏) ↔ 𝑏 ∈ ∅))
6463biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐷 = ∅ → ((𝑏𝐴 ∧ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏) → 𝑏 ∈ ∅))
6564expdimp 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐷 = ∅ ∧ 𝑏𝐴) → (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏𝑏 ∈ ∅))
6656, 65biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐷 = ∅ ∧ 𝑏𝐴) → (∀𝑟 ∈ (𝐹𝑥)𝑟𝑅𝑏𝑏 ∈ ∅))
6754, 66sylan9r 508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐷 = ∅ ∧ 𝑏𝐴) ∧ (((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑎𝑅𝑏)) → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → 𝑏 ∈ ∅))
6867exp32 420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐷 = ∅ ∧ 𝑏𝐴) → (((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → 𝑏 ∈ ∅))))
6968com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐷 = ∅ ∧ 𝑏𝐴) → (((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → (𝑎𝑅𝑏𝑏 ∈ ∅))))
7069imp31 417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐷 = ∅ ∧ 𝑏𝐴) ∧ ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴))) ∧ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)) → (𝑎𝑅𝑏𝑏 ∈ ∅))
7137, 70mtoi 199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐷 = ∅ ∧ 𝑏𝐴) ∧ ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴))) ∧ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)) → ¬ 𝑎𝑅𝑏)
7271exp42 435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐷 = ∅ ∧ 𝑏𝐴) → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → ((𝑎𝐴𝑏𝐴) → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏))))
7372exp4a 431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐷 = ∅ ∧ 𝑏𝐴) → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑎𝐴 → (𝑏𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏)))))
7473com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐷 = ∅ ∧ 𝑏𝐴) → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑏𝐴 → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏)))))
7574ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐷 = ∅ → (𝑏𝐴 → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑏𝐴 → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏))))))
7675com4r 94 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏𝐴 → (𝐷 = ∅ → (𝑏𝐴 → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏))))))
7776pm2.43a 54 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏𝐴 → (𝐷 = ∅ → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏)))))
7877impd 410 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏𝐴 → ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏))))
7978com4l 92 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → (𝑏𝐴 → ¬ 𝑎𝑅𝑏))))
8079impd 410 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → ((𝑎𝐴 ∧ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)) → (𝑏𝐴 → ¬ 𝑎𝑅𝑏)))
8180ralrimdv 3127 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → ((𝑎𝐴 ∧ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)) → ∀𝑏𝐴 ¬ 𝑎𝑅𝑏))
8281expd 415 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∀𝑏𝐴 ¬ 𝑎𝑅𝑏)))
8382reximdvai 3140 . . . . . . . . . . . . . . . . . . 19 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
8483exp32 420 . . . . . . . . . . . . . . . . . 18 (𝐷 = ∅ → (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
8584com12 32 . . . . . . . . . . . . . . . . 17 (𝑅 Po 𝐴 → (𝐷 = ∅ → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
8685adantr 480 . . . . . . . . . . . . . . . 16 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → (𝐷 = ∅ → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
8786imp32 418 . . . . . . . . . . . . . . 15 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ (𝐷 = ∅ ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
8836, 87mpd 15 . . . . . . . . . . . . . 14 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ (𝐷 = ∅ ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)
8988exp45 438 . . . . . . . . . . . . 13 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → (𝐷 = ∅ → ((𝑤 We 𝐴𝑥 ∈ On) → (∀𝑦𝑥 𝐻 ≠ ∅ → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
9089com23 86 . . . . . . . . . . . 12 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ((𝑤 We 𝐴𝑥 ∈ On) → (𝐷 = ∅ → (∀𝑦𝑥 𝐻 ≠ ∅ → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
9190expdimp 452 . . . . . . . . . . 11 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → (𝑥 ∈ On → (𝐷 = ∅ → (∀𝑦𝑥 𝐻 ≠ ∅ → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
9291imp4a 422 . . . . . . . . . 10 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → (𝑥 ∈ On → ((𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)))
9392com3l 89 . . . . . . . . 9 (𝑥 ∈ On → ((𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)))
9493rexlimiv 3123 . . . . . . . 8 (∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
955, 17, 943syl 18 . . . . . . 7 ((𝑅 Po 𝐴𝑤 We 𝐴) → (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
9695adantlr 715 . . . . . 6 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
9796pm2.43i 52 . . . . 5 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)
9897expcom 413 . . . 4 (𝑤 We 𝐴 → ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
9998exlimiv 1930 . . 3 (∃𝑤 𝑤 We 𝐴 → ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
1001, 99sylbi 217 . 2 (𝐴 ∈ dom card → ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
1011003impib 1116 1 ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  wss 3903  c0 4284   class class class wbr 5092  cmpt 5173   Po wpo 5525   Or wor 5526   We wwe 5571  dom cdm 5619  ran crn 5620  cima 5622  Oncon0 6307  Fun wfun 6476   Fn wfn 6477  crio 7305  recscrecs 8293  cardccrd 9831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-en 8873  df-card 9835
This theorem is referenced by:  zorn2g  10397
  Copyright terms: Public domain W3C validator