MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem7 Structured version   Visualization version   GIF version

Theorem zorn2lem7 10393
Description: Lemma for zorn2 10397. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
zorn2lem.7 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem7 ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)
Distinct variable groups:   𝑎,𝑏,𝑓,𝑔,𝑟,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐴   𝐷,𝑎,𝑏,𝑓,𝑢,𝑣,𝑦   𝐹,𝑎,𝑏,𝑓,𝑔,𝑟,𝑠,𝑢,𝑣,𝑥,𝑦,𝑧   𝑅,𝑎,𝑏,𝑓,𝑔,𝑟,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝐶   𝑥,𝐻,𝑢,𝑣,𝑓,𝑠,𝑟,𝑎,𝑏
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔,𝑠,𝑟,𝑎,𝑏)   𝐷(𝑥,𝑧,𝑤,𝑔,𝑠,𝑟)   𝐹(𝑤)   𝐻(𝑦,𝑧,𝑤,𝑔)

Proof of Theorem zorn2lem7
StepHypRef Expression
1 ween 9926 . . 3 (𝐴 ∈ dom card ↔ ∃𝑤 𝑤 We 𝐴)
2 zorn2lem.3 . . . . . . . . 9 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
3 zorn2lem.4 . . . . . . . . 9 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
4 zorn2lem.5 . . . . . . . . 9 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
52, 3, 4zorn2lem4 10390 . . . . . . . 8 ((𝑅 Po 𝐴𝑤 We 𝐴) → ∃𝑥 ∈ On 𝐷 = ∅)
6 imaeq2 6004 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
76raleqdv 3292 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧))
87rabbidv 3402 . . . . . . . . . . . 12 (𝑥 = 𝑦 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧})
9 zorn2lem.7 . . . . . . . . . . . 12 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
108, 4, 93eqtr4g 2791 . . . . . . . . . . 11 (𝑥 = 𝑦𝐷 = 𝐻)
1110eqeq1d 2733 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐷 = ∅ ↔ 𝐻 = ∅))
1211onminex 7735 . . . . . . . . 9 (∃𝑥 ∈ On 𝐷 = ∅ → ∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 ¬ 𝐻 = ∅))
13 df-ne 2929 . . . . . . . . . . . 12 (𝐻 ≠ ∅ ↔ ¬ 𝐻 = ∅)
1413ralbii 3078 . . . . . . . . . . 11 (∀𝑦𝑥 𝐻 ≠ ∅ ↔ ∀𝑦𝑥 ¬ 𝐻 = ∅)
1514anbi2i 623 . . . . . . . . . 10 ((𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) ↔ (𝐷 = ∅ ∧ ∀𝑦𝑥 ¬ 𝐻 = ∅))
1615rexbii 3079 . . . . . . . . 9 (∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) ↔ ∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 ¬ 𝐻 = ∅))
1712, 16sylibr 234 . . . . . . . 8 (∃𝑥 ∈ On 𝐷 = ∅ → ∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅))
182, 3, 4, 9zorn2lem5 10391 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴)
1918a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴))
202, 3, 4, 9zorn2lem6 10392 . . . . . . . . . . . . . . . . . . 19 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → 𝑅 Or (𝐹𝑥)))
2119, 20jcad 512 . . . . . . . . . . . . . . . . . 18 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ((𝐹𝑥) ⊆ 𝐴𝑅 Or (𝐹𝑥))))
222tfr1 8316 . . . . . . . . . . . . . . . . . . . 20 𝐹 Fn On
23 fnfun 6581 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn On → Fun 𝐹)
24 vex 3440 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
2524funimaex 6569 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝐹 → (𝐹𝑥) ∈ V)
2622, 23, 25mp2b 10 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑥) ∈ V
27 sseq1 3955 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝐹𝑥) → (𝑠𝐴 ↔ (𝐹𝑥) ⊆ 𝐴))
28 soeq2 5544 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝐹𝑥) → (𝑅 Or 𝑠𝑅 Or (𝐹𝑥)))
2927, 28anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = (𝐹𝑥) → ((𝑠𝐴𝑅 Or 𝑠) ↔ ((𝐹𝑥) ⊆ 𝐴𝑅 Or (𝐹𝑥))))
30 raleq 3289 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝐹𝑥) → (∀𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎) ↔ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3130rexbidv 3156 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = (𝐹𝑥) → (∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎) ↔ ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3229, 31imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑠 = (𝐹𝑥) → (((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎)) ↔ (((𝐹𝑥) ⊆ 𝐴𝑅 Or (𝐹𝑥)) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎))))
3326, 32spcv 3555 . . . . . . . . . . . . . . . . . 18 (∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎)) → (((𝐹𝑥) ⊆ 𝐴𝑅 Or (𝐹𝑥)) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3421, 33sylan9 507 . . . . . . . . . . . . . . . . 17 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3534adantld 490 . . . . . . . . . . . . . . . 16 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ((𝐷 = ∅ ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3635imp 406 . . . . . . . . . . . . . . 15 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ (𝐷 = ∅ ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎))
37 noel 4285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ¬ 𝑏 ∈ ∅
3818sseld 3928 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝑟 ∈ (𝐹𝑥) → 𝑟𝐴))
39 3anass 1094 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑟𝐴𝑎𝐴𝑏𝐴) ↔ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴)))
40 potr 5535 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑅 Po 𝐴 ∧ (𝑟𝐴𝑎𝐴𝑏𝐴)) → ((𝑟𝑅𝑎𝑎𝑅𝑏) → 𝑟𝑅𝑏))
4139, 40sylan2br 595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) → ((𝑟𝑅𝑎𝑎𝑅𝑏) → 𝑟𝑅𝑏))
4241expcomd 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) → (𝑎𝑅𝑏 → (𝑟𝑅𝑎𝑟𝑅𝑏)))
4342imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) ∧ 𝑎𝑅𝑏) → (𝑟𝑅𝑎𝑟𝑅𝑏))
44 breq1 5092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑟 = 𝑎 → (𝑟𝑅𝑏𝑎𝑅𝑏))
4544biimprcd 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑎𝑅𝑏 → (𝑟 = 𝑎𝑟𝑅𝑏))
4645adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) ∧ 𝑎𝑅𝑏) → (𝑟 = 𝑎𝑟𝑅𝑏))
4743, 46jaod 859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) ∧ 𝑎𝑅𝑏) → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏))
4847exp42 435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑅 Po 𝐴 → (𝑟𝐴 → ((𝑎𝐴𝑏𝐴) → (𝑎𝑅𝑏 → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))))
4938, 48sylan9r 508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑟 ∈ (𝐹𝑥) → ((𝑎𝐴𝑏𝐴) → (𝑎𝑅𝑏 → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))))
5049com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑎𝑅𝑏 → ((𝑎𝐴𝑏𝐴) → (𝑟 ∈ (𝐹𝑥) → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))))
5150com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → ((𝑎𝐴𝑏𝐴) → (𝑎𝑅𝑏 → (𝑟 ∈ (𝐹𝑥) → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))))
5251imp31 417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑎𝑅𝑏) → (𝑟 ∈ (𝐹𝑥) → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))
5352a2d 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑎𝑅𝑏) → ((𝑟 ∈ (𝐹𝑥) → (𝑟𝑅𝑎𝑟 = 𝑎)) → (𝑟 ∈ (𝐹𝑥) → 𝑟𝑅𝑏)))
5453ralimdv2 3141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑎𝑅𝑏) → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∀𝑟 ∈ (𝐹𝑥)𝑟𝑅𝑏))
55 breq1 5092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑟 = 𝑔 → (𝑟𝑅𝑏𝑔𝑅𝑏))
5655cbvralvw 3210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (∀𝑟 ∈ (𝐹𝑥)𝑟𝑅𝑏 ↔ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏)
57 breq2 5093 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑧 = 𝑏 → (𝑔𝑅𝑧𝑔𝑅𝑏))
5857ralbidv 3155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑧 = 𝑏 → (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏))
5958elrab 3642 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑏 ∈ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} ↔ (𝑏𝐴 ∧ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏))
604eqeq1i 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐷 = ∅ ↔ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} = ∅)
61 eleq2 2820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} = ∅ → (𝑏 ∈ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} ↔ 𝑏 ∈ ∅))
6260, 61sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐷 = ∅ → (𝑏 ∈ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} ↔ 𝑏 ∈ ∅))
6359, 62bitr3id 285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝐷 = ∅ → ((𝑏𝐴 ∧ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏) ↔ 𝑏 ∈ ∅))
6463biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐷 = ∅ → ((𝑏𝐴 ∧ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏) → 𝑏 ∈ ∅))
6564expdimp 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐷 = ∅ ∧ 𝑏𝐴) → (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏𝑏 ∈ ∅))
6656, 65biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐷 = ∅ ∧ 𝑏𝐴) → (∀𝑟 ∈ (𝐹𝑥)𝑟𝑅𝑏𝑏 ∈ ∅))
6754, 66sylan9r 508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐷 = ∅ ∧ 𝑏𝐴) ∧ (((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑎𝑅𝑏)) → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → 𝑏 ∈ ∅))
6867exp32 420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐷 = ∅ ∧ 𝑏𝐴) → (((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → 𝑏 ∈ ∅))))
6968com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐷 = ∅ ∧ 𝑏𝐴) → (((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → (𝑎𝑅𝑏𝑏 ∈ ∅))))
7069imp31 417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐷 = ∅ ∧ 𝑏𝐴) ∧ ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴))) ∧ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)) → (𝑎𝑅𝑏𝑏 ∈ ∅))
7137, 70mtoi 199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐷 = ∅ ∧ 𝑏𝐴) ∧ ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴))) ∧ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)) → ¬ 𝑎𝑅𝑏)
7271exp42 435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐷 = ∅ ∧ 𝑏𝐴) → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → ((𝑎𝐴𝑏𝐴) → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏))))
7372exp4a 431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐷 = ∅ ∧ 𝑏𝐴) → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑎𝐴 → (𝑏𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏)))))
7473com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐷 = ∅ ∧ 𝑏𝐴) → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑏𝐴 → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏)))))
7574ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐷 = ∅ → (𝑏𝐴 → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑏𝐴 → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏))))))
7675com4r 94 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏𝐴 → (𝐷 = ∅ → (𝑏𝐴 → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏))))))
7776pm2.43a 54 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏𝐴 → (𝐷 = ∅ → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏)))))
7877impd 410 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏𝐴 → ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏))))
7978com4l 92 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → (𝑏𝐴 → ¬ 𝑎𝑅𝑏))))
8079impd 410 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → ((𝑎𝐴 ∧ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)) → (𝑏𝐴 → ¬ 𝑎𝑅𝑏)))
8180ralrimdv 3130 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → ((𝑎𝐴 ∧ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)) → ∀𝑏𝐴 ¬ 𝑎𝑅𝑏))
8281expd 415 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∀𝑏𝐴 ¬ 𝑎𝑅𝑏)))
8382reximdvai 3143 . . . . . . . . . . . . . . . . . . 19 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
8483exp32 420 . . . . . . . . . . . . . . . . . 18 (𝐷 = ∅ → (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
8584com12 32 . . . . . . . . . . . . . . . . 17 (𝑅 Po 𝐴 → (𝐷 = ∅ → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
8685adantr 480 . . . . . . . . . . . . . . . 16 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → (𝐷 = ∅ → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
8786imp32 418 . . . . . . . . . . . . . . 15 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ (𝐷 = ∅ ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
8836, 87mpd 15 . . . . . . . . . . . . . 14 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ (𝐷 = ∅ ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)
8988exp45 438 . . . . . . . . . . . . 13 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → (𝐷 = ∅ → ((𝑤 We 𝐴𝑥 ∈ On) → (∀𝑦𝑥 𝐻 ≠ ∅ → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
9089com23 86 . . . . . . . . . . . 12 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ((𝑤 We 𝐴𝑥 ∈ On) → (𝐷 = ∅ → (∀𝑦𝑥 𝐻 ≠ ∅ → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
9190expdimp 452 . . . . . . . . . . 11 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → (𝑥 ∈ On → (𝐷 = ∅ → (∀𝑦𝑥 𝐻 ≠ ∅ → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
9291imp4a 422 . . . . . . . . . 10 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → (𝑥 ∈ On → ((𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)))
9392com3l 89 . . . . . . . . 9 (𝑥 ∈ On → ((𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)))
9493rexlimiv 3126 . . . . . . . 8 (∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
955, 17, 943syl 18 . . . . . . 7 ((𝑅 Po 𝐴𝑤 We 𝐴) → (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
9695adantlr 715 . . . . . 6 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
9796pm2.43i 52 . . . . 5 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)
9897expcom 413 . . . 4 (𝑤 We 𝐴 → ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
9998exlimiv 1931 . . 3 (∃𝑤 𝑤 We 𝐴 → ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
1001, 99sylbi 217 . 2 (𝐴 ∈ dom card → ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
1011003impib 1116 1 ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  c0 4280   class class class wbr 5089  cmpt 5170   Po wpo 5520   Or wor 5521   We wwe 5566  dom cdm 5614  ran crn 5615  cima 5617  Oncon0 6306  Fun wfun 6475   Fn wfn 6476  crio 7302  recscrecs 8290  cardccrd 9828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-en 8870  df-card 9832
This theorem is referenced by:  zorn2g  10394
  Copyright terms: Public domain W3C validator