MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaass Structured version   Visualization version   GIF version

Theorem oaass 8479
Description: Ordinal addition is associative. Theorem 25 of [Suppes] p. 211. Theorem 4.2 of [Schloeder] p. 11. (Contributed by NM, 10-Dec-2004.)
Assertion
Ref Expression
oaass ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶)))

Proof of Theorem oaass
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7357 . . . . 5 (𝑥 = ∅ → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o ∅))
2 oveq2 7357 . . . . . 6 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
32oveq2d 7365 . . . . 5 (𝑥 = ∅ → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o ∅)))
41, 3eqeq12d 2745 . . . 4 (𝑥 = ∅ → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o (𝐵 +o ∅))))
5 oveq2 7357 . . . . 5 (𝑥 = 𝑦 → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o 𝑦))
6 oveq2 7357 . . . . . 6 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
76oveq2d 7365 . . . . 5 (𝑥 = 𝑦 → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o 𝑦)))
85, 7eqeq12d 2745 . . . 4 (𝑥 = 𝑦 → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))))
9 oveq2 7357 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o suc 𝑦))
10 oveq2 7357 . . . . . 6 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1110oveq2d 7365 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o suc 𝑦)))
129, 11eqeq12d 2745 . . . 4 (𝑥 = suc 𝑦 → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦))))
13 oveq2 7357 . . . . 5 (𝑥 = 𝐶 → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o 𝐶))
14 oveq2 7357 . . . . . 6 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
1514oveq2d 7365 . . . . 5 (𝑥 = 𝐶 → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o 𝐶)))
1613, 15eqeq12d 2745 . . . 4 (𝑥 = 𝐶 → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))))
17 oacl 8453 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
18 oa0 8434 . . . . . 6 ((𝐴 +o 𝐵) ∈ On → ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o 𝐵))
1917, 18syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o 𝐵))
20 oa0 8434 . . . . . . 7 (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵)
2120oveq2d 7365 . . . . . 6 (𝐵 ∈ On → (𝐴 +o (𝐵 +o ∅)) = (𝐴 +o 𝐵))
2221adantl 481 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o (𝐵 +o ∅)) = (𝐴 +o 𝐵))
2319, 22eqtr4d 2767 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o (𝐵 +o ∅)))
24 suceq 6375 . . . . . 6 (((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → suc ((𝐴 +o 𝐵) +o 𝑦) = suc (𝐴 +o (𝐵 +o 𝑦)))
25 oasuc 8442 . . . . . . . 8 (((𝐴 +o 𝐵) ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝐵) +o suc 𝑦) = suc ((𝐴 +o 𝐵) +o 𝑦))
2617, 25sylan 580 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o 𝐵) +o suc 𝑦) = suc ((𝐴 +o 𝐵) +o 𝑦))
27 oasuc 8442 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
2827oveq2d 7365 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o (𝐵 +o suc 𝑦)) = (𝐴 +o suc (𝐵 +o 𝑦)))
2928adantl 481 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 +o (𝐵 +o suc 𝑦)) = (𝐴 +o suc (𝐵 +o 𝑦)))
30 oacl 8453 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o 𝑦) ∈ On)
31 oasuc 8442 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐵 +o 𝑦) ∈ On) → (𝐴 +o suc (𝐵 +o 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3230, 31sylan2 593 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 +o suc (𝐵 +o 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3329, 32eqtrd 2764 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 +o (𝐵 +o suc 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3433anassrs 467 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (𝐴 +o (𝐵 +o suc 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3526, 34eqeq12d 2745 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦)) ↔ suc ((𝐴 +o 𝐵) +o 𝑦) = suc (𝐴 +o (𝐵 +o 𝑦))))
3624, 35imbitrrid 246 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → ((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦))))
3736expcom 413 . . . 4 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → ((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦)))))
38 iuneq2 4961 . . . . . . 7 (∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
3938adantl 481 . . . . . 6 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))) → 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
40 vex 3440 . . . . . . . . . 10 𝑥 ∈ V
41 oalim 8450 . . . . . . . . . 10 (((𝐴 +o 𝐵) ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
4240, 41mpanr1 703 . . . . . . . . 9 (((𝐴 +o 𝐵) ∈ On ∧ Lim 𝑥) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
4317, 42sylan 580 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝑥) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
4443ancoms 458 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
4544adantr 480 . . . . . 6 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
46 oalimcl 8478 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim (𝐵 +o 𝑥))
4740, 46mpanr1 703 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ Lim 𝑥) → Lim (𝐵 +o 𝑥))
4847ancoms 458 . . . . . . . . . 10 ((Lim 𝑥𝐵 ∈ On) → Lim (𝐵 +o 𝑥))
49 ovex 7382 . . . . . . . . . . 11 (𝐵 +o 𝑥) ∈ V
50 oalim 8450 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ ((𝐵 +o 𝑥) ∈ V ∧ Lim (𝐵 +o 𝑥))) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
5149, 50mpanr1 703 . . . . . . . . . 10 ((𝐴 ∈ On ∧ Lim (𝐵 +o 𝑥)) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
5248, 51sylan2 593 . . . . . . . . 9 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
53 limelon 6372 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
5440, 53mpan 690 . . . . . . . . . . . . . . . 16 (Lim 𝑥𝑥 ∈ On)
55 oacl 8453 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵 +o 𝑥) ∈ On)
5655ancoms 458 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝑥) ∈ On)
57 onelon 6332 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵 +o 𝑥) ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On)
5857ex 412 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 +o 𝑥) ∈ On → (𝑧 ∈ (𝐵 +o 𝑥) → 𝑧 ∈ On))
5956, 58syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑧 ∈ (𝐵 +o 𝑥) → 𝑧 ∈ On))
6059adantld 490 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On))
6160adantl 481 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On))
62 0ellim 6371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑥 → ∅ ∈ 𝑥)
63 onelss 6349 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐵 ∈ On → (𝑧𝐵𝑧𝐵))
6420sseq2d 3968 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐵 ∈ On → (𝑧 ⊆ (𝐵 +o ∅) ↔ 𝑧𝐵))
6563, 64sylibrd 259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐵 ∈ On → (𝑧𝐵𝑧 ⊆ (𝐵 +o ∅)))
6665imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐵 ∈ On ∧ 𝑧𝐵) → 𝑧 ⊆ (𝐵 +o ∅))
67 oveq2 7357 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ∅ → (𝐵 +o 𝑦) = (𝐵 +o ∅))
6867sseq2d 3968 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = ∅ → (𝑧 ⊆ (𝐵 +o 𝑦) ↔ 𝑧 ⊆ (𝐵 +o ∅)))
6968rspcev 3577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((∅ ∈ 𝑥𝑧 ⊆ (𝐵 +o ∅)) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))
7062, 66, 69syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Lim 𝑥 ∧ (𝐵 ∈ On ∧ 𝑧𝐵)) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))
7170expr 456 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Lim 𝑥𝐵 ∈ On) → (𝑧𝐵 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
7271adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑧𝐵 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
7372adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On))) → (𝑧𝐵 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
74 oawordex 8475 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝐵𝑧 ↔ ∃𝑦 ∈ On (𝐵 +o 𝑦) = 𝑧))
7574ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On)) → (𝐵𝑧 ↔ ∃𝑦 ∈ On (𝐵 +o 𝑦) = 𝑧))
76 oaord 8465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑦 ∈ On ∧ 𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑦𝑥 ↔ (𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥)))
77763expb 1120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑦 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑦𝑥 ↔ (𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥)))
78 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐵 +o 𝑦) = 𝑧 → ((𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥) ↔ 𝑧 ∈ (𝐵 +o 𝑥)))
7977, 78sylan9bb 509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑦 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +o 𝑦) = 𝑧) → (𝑦𝑥𝑧 ∈ (𝐵 +o 𝑥)))
8079an32s 652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑦𝑥𝑧 ∈ (𝐵 +o 𝑥)))
8180biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑦𝑥)
82 eqimss2 3995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐵 +o 𝑦) = 𝑧𝑧 ⊆ (𝐵 +o 𝑦))
8382ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ⊆ (𝐵 +o 𝑦))
8481, 83jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑦𝑥𝑧 ⊆ (𝐵 +o 𝑦)))
8584anasss 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥))) → (𝑦𝑥𝑧 ⊆ (𝐵 +o 𝑦)))
8685expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) → (𝑦𝑥𝑧 ⊆ (𝐵 +o 𝑦))))
8786reximdv2 3139 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (∃𝑦 ∈ On (𝐵 +o 𝑦) = 𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
8887adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On)) → (∃𝑦 ∈ On (𝐵 +o 𝑦) = 𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
8975, 88sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On)) → (𝐵𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
9089adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On))) → (𝐵𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
91 eloni 6317 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ On → Ord 𝑧)
92 eloni 6317 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐵 ∈ On → Ord 𝐵)
93 ordtri2or 6407 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Ord 𝑧 ∧ Ord 𝐵) → (𝑧𝐵𝐵𝑧))
9491, 92, 93syl2anr 597 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝑧𝐵𝐵𝑧))
9594ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On)) → (𝑧𝐵𝐵𝑧))
9695adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On))) → (𝑧𝐵𝐵𝑧))
9773, 90, 96mpjaod 860 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On))) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))
9897exp45 438 . . . . . . . . . . . . . . . . . . . . . . 23 (Lim 𝑥 → ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑧 ∈ (𝐵 +o 𝑥) → (𝑧 ∈ On → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))))
9998imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑧 ∈ (𝐵 +o 𝑥) → (𝑧 ∈ On → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))))
10099adantld 490 . . . . . . . . . . . . . . . . . . . . 21 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧 ∈ On → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))))
101100imp32 418 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))
102 simplrr 777 . . . . . . . . . . . . . . . . . . . . . 22 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → 𝑧 ∈ On)
103 onelon 6332 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
104103, 30sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦𝑥)) → (𝐵 +o 𝑦) ∈ On)
105104exp32 420 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ On → (𝑥 ∈ On → (𝑦𝑥 → (𝐵 +o 𝑦) ∈ On)))
106105com12 32 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ On → (𝐵 ∈ On → (𝑦𝑥 → (𝐵 +o 𝑦) ∈ On)))
107106imp31 417 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦𝑥) → (𝐵 +o 𝑦) ∈ On)
108107ad4ant24 754 . . . . . . . . . . . . . . . . . . . . . 22 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → (𝐵 +o 𝑦) ∈ On)
109 simpll 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On) → 𝐴 ∈ On)
110109ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → 𝐴 ∈ On)
111 oaword 8467 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ On ∧ (𝐵 +o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ (𝐵 +o 𝑦) ↔ (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
112102, 108, 110, 111syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → (𝑧 ⊆ (𝐵 +o 𝑦) ↔ (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
113112rexbidva 3151 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) → (∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦) ↔ ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
114101, 113mpbid 232 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)))
115114exp32 420 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧 ∈ On → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)))))
11661, 115mpdd 43 . . . . . . . . . . . . . . . . 17 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
117116exp32 420 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → (𝑥 ∈ On → (𝐵 ∈ On → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))))
11854, 117mpd 15 . . . . . . . . . . . . . . 15 (Lim 𝑥 → (𝐵 ∈ On → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)))))
119118exp4a 431 . . . . . . . . . . . . . 14 (Lim 𝑥 → (𝐵 ∈ On → (𝐴 ∈ On → (𝑧 ∈ (𝐵 +o 𝑥) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))))
120119imp31 417 . . . . . . . . . . . . 13 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 +o 𝑥) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
121120ralrimiv 3120 . . . . . . . . . . . 12 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐴 ∈ On) → ∀𝑧 ∈ (𝐵 +o 𝑥)∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)))
122 iunss2 4998 . . . . . . . . . . . 12 (∀𝑧 ∈ (𝐵 +o 𝑥)∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) ⊆ 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
123121, 122syl 17 . . . . . . . . . . 11 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐴 ∈ On) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) ⊆ 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
124123ancoms 458 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) ⊆ 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
125 oaordi 8464 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑦𝑥 → (𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥)))
126125anim1d 611 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → ((𝑦𝑥𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦))) → ((𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥) ∧ 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦)))))
127 oveq2 7357 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐵 +o 𝑦) → (𝐴 +o 𝑧) = (𝐴 +o (𝐵 +o 𝑦)))
128127eleq2d 2814 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐵 +o 𝑦) → (𝑤 ∈ (𝐴 +o 𝑧) ↔ 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦))))
129128rspcev 3577 . . . . . . . . . . . . . . . . 17 (((𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥) ∧ 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦))) → ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧))
130126, 129syl6 35 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → ((𝑦𝑥𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦))) → ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧)))
131130expd 415 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑦𝑥 → (𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦)) → ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧))))
132131rexlimdv 3128 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (∃𝑦𝑥 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦)) → ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧)))
133 eliun 4945 . . . . . . . . . . . . . 14 (𝑤 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) ↔ ∃𝑦𝑥 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦)))
134 eliun 4945 . . . . . . . . . . . . . 14 (𝑤 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) ↔ ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧))
135132, 133, 1343imtr4g 296 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑤 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) → 𝑤 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧)))
136135ssrdv 3941 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
13754, 136sylan 580 . . . . . . . . . . 11 ((Lim 𝑥𝐵 ∈ On) → 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
138137adantl 481 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
139124, 138eqssd 3953 . . . . . . . . 9 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
14052, 139eqtrd 2764 . . . . . . . 8 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
141140an12s 649 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
142141adantr 480 . . . . . 6 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
14339, 45, 1423eqtr4d 2774 . . . . 5 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))) → ((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)))
144143exp31 419 . . . 4 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → ((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)))))
1454, 8, 12, 16, 23, 37, 144tfinds3 7798 . . 3 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))))
146145com12 32 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ On → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))))
1471463impia 1117 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  wss 3903  c0 4284   ciun 4941  Ord word 6306  Oncon0 6307  Lim wlim 6308  suc csuc 6309  (class class class)co 7349   +o coa 8385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-oadd 8392
This theorem is referenced by:  odi  8497  oaabs  8566  oaabs2  8567  oaabsb  43277  omabs2  43315  ofoaass  43343  naddwordnexlem3  43382  naddwordnexlem4  43384
  Copyright terms: Public domain W3C validator