MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaass Structured version   Visualization version   GIF version

Theorem oaass 8528
Description: Ordinal addition is associative. Theorem 25 of [Suppes] p. 211. Theorem 4.2 of [Schloeder] p. 11. (Contributed by NM, 10-Dec-2004.)
Assertion
Ref Expression
oaass ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶)))

Proof of Theorem oaass
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . . 5 (𝑥 = ∅ → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o ∅))
2 oveq2 7398 . . . . . 6 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
32oveq2d 7406 . . . . 5 (𝑥 = ∅ → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o ∅)))
41, 3eqeq12d 2746 . . . 4 (𝑥 = ∅ → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o (𝐵 +o ∅))))
5 oveq2 7398 . . . . 5 (𝑥 = 𝑦 → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o 𝑦))
6 oveq2 7398 . . . . . 6 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
76oveq2d 7406 . . . . 5 (𝑥 = 𝑦 → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o 𝑦)))
85, 7eqeq12d 2746 . . . 4 (𝑥 = 𝑦 → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))))
9 oveq2 7398 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o suc 𝑦))
10 oveq2 7398 . . . . . 6 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1110oveq2d 7406 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o suc 𝑦)))
129, 11eqeq12d 2746 . . . 4 (𝑥 = suc 𝑦 → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦))))
13 oveq2 7398 . . . . 5 (𝑥 = 𝐶 → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o 𝐶))
14 oveq2 7398 . . . . . 6 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
1514oveq2d 7406 . . . . 5 (𝑥 = 𝐶 → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o 𝐶)))
1613, 15eqeq12d 2746 . . . 4 (𝑥 = 𝐶 → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))))
17 oacl 8502 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
18 oa0 8483 . . . . . 6 ((𝐴 +o 𝐵) ∈ On → ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o 𝐵))
1917, 18syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o 𝐵))
20 oa0 8483 . . . . . . 7 (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵)
2120oveq2d 7406 . . . . . 6 (𝐵 ∈ On → (𝐴 +o (𝐵 +o ∅)) = (𝐴 +o 𝐵))
2221adantl 481 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o (𝐵 +o ∅)) = (𝐴 +o 𝐵))
2319, 22eqtr4d 2768 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o (𝐵 +o ∅)))
24 suceq 6403 . . . . . 6 (((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → suc ((𝐴 +o 𝐵) +o 𝑦) = suc (𝐴 +o (𝐵 +o 𝑦)))
25 oasuc 8491 . . . . . . . 8 (((𝐴 +o 𝐵) ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝐵) +o suc 𝑦) = suc ((𝐴 +o 𝐵) +o 𝑦))
2617, 25sylan 580 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o 𝐵) +o suc 𝑦) = suc ((𝐴 +o 𝐵) +o 𝑦))
27 oasuc 8491 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
2827oveq2d 7406 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o (𝐵 +o suc 𝑦)) = (𝐴 +o suc (𝐵 +o 𝑦)))
2928adantl 481 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 +o (𝐵 +o suc 𝑦)) = (𝐴 +o suc (𝐵 +o 𝑦)))
30 oacl 8502 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o 𝑦) ∈ On)
31 oasuc 8491 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐵 +o 𝑦) ∈ On) → (𝐴 +o suc (𝐵 +o 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3230, 31sylan2 593 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 +o suc (𝐵 +o 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3329, 32eqtrd 2765 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 +o (𝐵 +o suc 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3433anassrs 467 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (𝐴 +o (𝐵 +o suc 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3526, 34eqeq12d 2746 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦)) ↔ suc ((𝐴 +o 𝐵) +o 𝑦) = suc (𝐴 +o (𝐵 +o 𝑦))))
3624, 35imbitrrid 246 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → ((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦))))
3736expcom 413 . . . 4 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → ((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦)))))
38 iuneq2 4978 . . . . . . 7 (∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
3938adantl 481 . . . . . 6 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))) → 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
40 vex 3454 . . . . . . . . . 10 𝑥 ∈ V
41 oalim 8499 . . . . . . . . . 10 (((𝐴 +o 𝐵) ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
4240, 41mpanr1 703 . . . . . . . . 9 (((𝐴 +o 𝐵) ∈ On ∧ Lim 𝑥) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
4317, 42sylan 580 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝑥) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
4443ancoms 458 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
4544adantr 480 . . . . . 6 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
46 oalimcl 8527 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim (𝐵 +o 𝑥))
4740, 46mpanr1 703 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ Lim 𝑥) → Lim (𝐵 +o 𝑥))
4847ancoms 458 . . . . . . . . . 10 ((Lim 𝑥𝐵 ∈ On) → Lim (𝐵 +o 𝑥))
49 ovex 7423 . . . . . . . . . . 11 (𝐵 +o 𝑥) ∈ V
50 oalim 8499 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ ((𝐵 +o 𝑥) ∈ V ∧ Lim (𝐵 +o 𝑥))) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
5149, 50mpanr1 703 . . . . . . . . . 10 ((𝐴 ∈ On ∧ Lim (𝐵 +o 𝑥)) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
5248, 51sylan2 593 . . . . . . . . 9 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
53 limelon 6400 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
5440, 53mpan 690 . . . . . . . . . . . . . . . 16 (Lim 𝑥𝑥 ∈ On)
55 oacl 8502 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵 +o 𝑥) ∈ On)
5655ancoms 458 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝑥) ∈ On)
57 onelon 6360 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵 +o 𝑥) ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On)
5857ex 412 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 +o 𝑥) ∈ On → (𝑧 ∈ (𝐵 +o 𝑥) → 𝑧 ∈ On))
5956, 58syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑧 ∈ (𝐵 +o 𝑥) → 𝑧 ∈ On))
6059adantld 490 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On))
6160adantl 481 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On))
62 0ellim 6399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑥 → ∅ ∈ 𝑥)
63 onelss 6377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐵 ∈ On → (𝑧𝐵𝑧𝐵))
6420sseq2d 3982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐵 ∈ On → (𝑧 ⊆ (𝐵 +o ∅) ↔ 𝑧𝐵))
6563, 64sylibrd 259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐵 ∈ On → (𝑧𝐵𝑧 ⊆ (𝐵 +o ∅)))
6665imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐵 ∈ On ∧ 𝑧𝐵) → 𝑧 ⊆ (𝐵 +o ∅))
67 oveq2 7398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ∅ → (𝐵 +o 𝑦) = (𝐵 +o ∅))
6867sseq2d 3982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = ∅ → (𝑧 ⊆ (𝐵 +o 𝑦) ↔ 𝑧 ⊆ (𝐵 +o ∅)))
6968rspcev 3591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((∅ ∈ 𝑥𝑧 ⊆ (𝐵 +o ∅)) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))
7062, 66, 69syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Lim 𝑥 ∧ (𝐵 ∈ On ∧ 𝑧𝐵)) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))
7170expr 456 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Lim 𝑥𝐵 ∈ On) → (𝑧𝐵 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
7271adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑧𝐵 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
7372adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On))) → (𝑧𝐵 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
74 oawordex 8524 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝐵𝑧 ↔ ∃𝑦 ∈ On (𝐵 +o 𝑦) = 𝑧))
7574ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On)) → (𝐵𝑧 ↔ ∃𝑦 ∈ On (𝐵 +o 𝑦) = 𝑧))
76 oaord 8514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑦 ∈ On ∧ 𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑦𝑥 ↔ (𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥)))
77763expb 1120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑦 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑦𝑥 ↔ (𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥)))
78 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐵 +o 𝑦) = 𝑧 → ((𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥) ↔ 𝑧 ∈ (𝐵 +o 𝑥)))
7977, 78sylan9bb 509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑦 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +o 𝑦) = 𝑧) → (𝑦𝑥𝑧 ∈ (𝐵 +o 𝑥)))
8079an32s 652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑦𝑥𝑧 ∈ (𝐵 +o 𝑥)))
8180biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑦𝑥)
82 eqimss2 4009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐵 +o 𝑦) = 𝑧𝑧 ⊆ (𝐵 +o 𝑦))
8382ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ⊆ (𝐵 +o 𝑦))
8481, 83jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑦𝑥𝑧 ⊆ (𝐵 +o 𝑦)))
8584anasss 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥))) → (𝑦𝑥𝑧 ⊆ (𝐵 +o 𝑦)))
8685expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) → (𝑦𝑥𝑧 ⊆ (𝐵 +o 𝑦))))
8786reximdv2 3144 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (∃𝑦 ∈ On (𝐵 +o 𝑦) = 𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
8887adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On)) → (∃𝑦 ∈ On (𝐵 +o 𝑦) = 𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
8975, 88sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On)) → (𝐵𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
9089adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On))) → (𝐵𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
91 eloni 6345 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ On → Ord 𝑧)
92 eloni 6345 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐵 ∈ On → Ord 𝐵)
93 ordtri2or 6435 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Ord 𝑧 ∧ Ord 𝐵) → (𝑧𝐵𝐵𝑧))
9491, 92, 93syl2anr 597 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝑧𝐵𝐵𝑧))
9594ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On)) → (𝑧𝐵𝐵𝑧))
9695adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On))) → (𝑧𝐵𝐵𝑧))
9773, 90, 96mpjaod 860 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On))) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))
9897exp45 438 . . . . . . . . . . . . . . . . . . . . . . 23 (Lim 𝑥 → ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑧 ∈ (𝐵 +o 𝑥) → (𝑧 ∈ On → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))))
9998imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑧 ∈ (𝐵 +o 𝑥) → (𝑧 ∈ On → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))))
10099adantld 490 . . . . . . . . . . . . . . . . . . . . 21 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧 ∈ On → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))))
101100imp32 418 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))
102 simplrr 777 . . . . . . . . . . . . . . . . . . . . . 22 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → 𝑧 ∈ On)
103 onelon 6360 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
104103, 30sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦𝑥)) → (𝐵 +o 𝑦) ∈ On)
105104exp32 420 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ On → (𝑥 ∈ On → (𝑦𝑥 → (𝐵 +o 𝑦) ∈ On)))
106105com12 32 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ On → (𝐵 ∈ On → (𝑦𝑥 → (𝐵 +o 𝑦) ∈ On)))
107106imp31 417 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦𝑥) → (𝐵 +o 𝑦) ∈ On)
108107ad4ant24 754 . . . . . . . . . . . . . . . . . . . . . 22 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → (𝐵 +o 𝑦) ∈ On)
109 simpll 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On) → 𝐴 ∈ On)
110109ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → 𝐴 ∈ On)
111 oaword 8516 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ On ∧ (𝐵 +o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ (𝐵 +o 𝑦) ↔ (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
112102, 108, 110, 111syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → (𝑧 ⊆ (𝐵 +o 𝑦) ↔ (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
113112rexbidva 3156 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) → (∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦) ↔ ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
114101, 113mpbid 232 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)))
115114exp32 420 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧 ∈ On → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)))))
11661, 115mpdd 43 . . . . . . . . . . . . . . . . 17 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
117116exp32 420 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → (𝑥 ∈ On → (𝐵 ∈ On → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))))
11854, 117mpd 15 . . . . . . . . . . . . . . 15 (Lim 𝑥 → (𝐵 ∈ On → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)))))
119118exp4a 431 . . . . . . . . . . . . . 14 (Lim 𝑥 → (𝐵 ∈ On → (𝐴 ∈ On → (𝑧 ∈ (𝐵 +o 𝑥) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))))
120119imp31 417 . . . . . . . . . . . . 13 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 +o 𝑥) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
121120ralrimiv 3125 . . . . . . . . . . . 12 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐴 ∈ On) → ∀𝑧 ∈ (𝐵 +o 𝑥)∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)))
122 iunss2 5016 . . . . . . . . . . . 12 (∀𝑧 ∈ (𝐵 +o 𝑥)∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) ⊆ 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
123121, 122syl 17 . . . . . . . . . . 11 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐴 ∈ On) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) ⊆ 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
124123ancoms 458 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) ⊆ 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
125 oaordi 8513 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑦𝑥 → (𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥)))
126125anim1d 611 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → ((𝑦𝑥𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦))) → ((𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥) ∧ 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦)))))
127 oveq2 7398 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐵 +o 𝑦) → (𝐴 +o 𝑧) = (𝐴 +o (𝐵 +o 𝑦)))
128127eleq2d 2815 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐵 +o 𝑦) → (𝑤 ∈ (𝐴 +o 𝑧) ↔ 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦))))
129128rspcev 3591 . . . . . . . . . . . . . . . . 17 (((𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥) ∧ 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦))) → ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧))
130126, 129syl6 35 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → ((𝑦𝑥𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦))) → ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧)))
131130expd 415 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑦𝑥 → (𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦)) → ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧))))
132131rexlimdv 3133 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (∃𝑦𝑥 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦)) → ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧)))
133 eliun 4962 . . . . . . . . . . . . . 14 (𝑤 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) ↔ ∃𝑦𝑥 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦)))
134 eliun 4962 . . . . . . . . . . . . . 14 (𝑤 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) ↔ ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧))
135132, 133, 1343imtr4g 296 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑤 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) → 𝑤 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧)))
136135ssrdv 3955 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
13754, 136sylan 580 . . . . . . . . . . 11 ((Lim 𝑥𝐵 ∈ On) → 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
138137adantl 481 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
139124, 138eqssd 3967 . . . . . . . . 9 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
14052, 139eqtrd 2765 . . . . . . . 8 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
141140an12s 649 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
142141adantr 480 . . . . . 6 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
14339, 45, 1423eqtr4d 2775 . . . . 5 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))) → ((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)))
144143exp31 419 . . . 4 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → ((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)))))
1454, 8, 12, 16, 23, 37, 144tfinds3 7844 . . 3 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))))
146145com12 32 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ On → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))))
1471463impia 1117 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299   ciun 4958  Ord word 6334  Oncon0 6335  Lim wlim 6336  suc csuc 6337  (class class class)co 7390   +o coa 8434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-oadd 8441
This theorem is referenced by:  odi  8546  oaabs  8615  oaabs2  8616  oaabsb  43290  omabs2  43328  ofoaass  43356  naddwordnexlem3  43395  naddwordnexlem4  43397
  Copyright terms: Public domain W3C validator