MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaass Structured version   Visualization version   GIF version

Theorem oaass 8573
Description: Ordinal addition is associative. Theorem 25 of [Suppes] p. 211. Theorem 4.2 of [Schloeder] p. 11. (Contributed by NM, 10-Dec-2004.)
Assertion
Ref Expression
oaass ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶)))

Proof of Theorem oaass
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7413 . . . . 5 (𝑥 = ∅ → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o ∅))
2 oveq2 7413 . . . . . 6 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
32oveq2d 7421 . . . . 5 (𝑥 = ∅ → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o ∅)))
41, 3eqeq12d 2751 . . . 4 (𝑥 = ∅ → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o (𝐵 +o ∅))))
5 oveq2 7413 . . . . 5 (𝑥 = 𝑦 → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o 𝑦))
6 oveq2 7413 . . . . . 6 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
76oveq2d 7421 . . . . 5 (𝑥 = 𝑦 → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o 𝑦)))
85, 7eqeq12d 2751 . . . 4 (𝑥 = 𝑦 → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))))
9 oveq2 7413 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o suc 𝑦))
10 oveq2 7413 . . . . . 6 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1110oveq2d 7421 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o suc 𝑦)))
129, 11eqeq12d 2751 . . . 4 (𝑥 = suc 𝑦 → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦))))
13 oveq2 7413 . . . . 5 (𝑥 = 𝐶 → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o 𝐶))
14 oveq2 7413 . . . . . 6 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
1514oveq2d 7421 . . . . 5 (𝑥 = 𝐶 → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o 𝐶)))
1613, 15eqeq12d 2751 . . . 4 (𝑥 = 𝐶 → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))))
17 oacl 8547 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
18 oa0 8528 . . . . . 6 ((𝐴 +o 𝐵) ∈ On → ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o 𝐵))
1917, 18syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o 𝐵))
20 oa0 8528 . . . . . . 7 (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵)
2120oveq2d 7421 . . . . . 6 (𝐵 ∈ On → (𝐴 +o (𝐵 +o ∅)) = (𝐴 +o 𝐵))
2221adantl 481 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o (𝐵 +o ∅)) = (𝐴 +o 𝐵))
2319, 22eqtr4d 2773 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o (𝐵 +o ∅)))
24 suceq 6419 . . . . . 6 (((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → suc ((𝐴 +o 𝐵) +o 𝑦) = suc (𝐴 +o (𝐵 +o 𝑦)))
25 oasuc 8536 . . . . . . . 8 (((𝐴 +o 𝐵) ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝐵) +o suc 𝑦) = suc ((𝐴 +o 𝐵) +o 𝑦))
2617, 25sylan 580 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o 𝐵) +o suc 𝑦) = suc ((𝐴 +o 𝐵) +o 𝑦))
27 oasuc 8536 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
2827oveq2d 7421 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o (𝐵 +o suc 𝑦)) = (𝐴 +o suc (𝐵 +o 𝑦)))
2928adantl 481 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 +o (𝐵 +o suc 𝑦)) = (𝐴 +o suc (𝐵 +o 𝑦)))
30 oacl 8547 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o 𝑦) ∈ On)
31 oasuc 8536 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐵 +o 𝑦) ∈ On) → (𝐴 +o suc (𝐵 +o 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3230, 31sylan2 593 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 +o suc (𝐵 +o 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3329, 32eqtrd 2770 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 +o (𝐵 +o suc 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3433anassrs 467 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (𝐴 +o (𝐵 +o suc 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3526, 34eqeq12d 2751 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦)) ↔ suc ((𝐴 +o 𝐵) +o 𝑦) = suc (𝐴 +o (𝐵 +o 𝑦))))
3624, 35imbitrrid 246 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → ((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦))))
3736expcom 413 . . . 4 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → ((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦)))))
38 iuneq2 4987 . . . . . . 7 (∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
3938adantl 481 . . . . . 6 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))) → 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
40 vex 3463 . . . . . . . . . 10 𝑥 ∈ V
41 oalim 8544 . . . . . . . . . 10 (((𝐴 +o 𝐵) ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
4240, 41mpanr1 703 . . . . . . . . 9 (((𝐴 +o 𝐵) ∈ On ∧ Lim 𝑥) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
4317, 42sylan 580 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝑥) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
4443ancoms 458 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
4544adantr 480 . . . . . 6 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
46 oalimcl 8572 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim (𝐵 +o 𝑥))
4740, 46mpanr1 703 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ Lim 𝑥) → Lim (𝐵 +o 𝑥))
4847ancoms 458 . . . . . . . . . 10 ((Lim 𝑥𝐵 ∈ On) → Lim (𝐵 +o 𝑥))
49 ovex 7438 . . . . . . . . . . 11 (𝐵 +o 𝑥) ∈ V
50 oalim 8544 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ ((𝐵 +o 𝑥) ∈ V ∧ Lim (𝐵 +o 𝑥))) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
5149, 50mpanr1 703 . . . . . . . . . 10 ((𝐴 ∈ On ∧ Lim (𝐵 +o 𝑥)) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
5248, 51sylan2 593 . . . . . . . . 9 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
53 limelon 6417 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
5440, 53mpan 690 . . . . . . . . . . . . . . . 16 (Lim 𝑥𝑥 ∈ On)
55 oacl 8547 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵 +o 𝑥) ∈ On)
5655ancoms 458 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝑥) ∈ On)
57 onelon 6377 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵 +o 𝑥) ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On)
5857ex 412 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 +o 𝑥) ∈ On → (𝑧 ∈ (𝐵 +o 𝑥) → 𝑧 ∈ On))
5956, 58syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑧 ∈ (𝐵 +o 𝑥) → 𝑧 ∈ On))
6059adantld 490 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On))
6160adantl 481 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On))
62 0ellim 6416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑥 → ∅ ∈ 𝑥)
63 onelss 6394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐵 ∈ On → (𝑧𝐵𝑧𝐵))
6420sseq2d 3991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐵 ∈ On → (𝑧 ⊆ (𝐵 +o ∅) ↔ 𝑧𝐵))
6563, 64sylibrd 259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐵 ∈ On → (𝑧𝐵𝑧 ⊆ (𝐵 +o ∅)))
6665imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐵 ∈ On ∧ 𝑧𝐵) → 𝑧 ⊆ (𝐵 +o ∅))
67 oveq2 7413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ∅ → (𝐵 +o 𝑦) = (𝐵 +o ∅))
6867sseq2d 3991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = ∅ → (𝑧 ⊆ (𝐵 +o 𝑦) ↔ 𝑧 ⊆ (𝐵 +o ∅)))
6968rspcev 3601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((∅ ∈ 𝑥𝑧 ⊆ (𝐵 +o ∅)) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))
7062, 66, 69syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Lim 𝑥 ∧ (𝐵 ∈ On ∧ 𝑧𝐵)) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))
7170expr 456 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Lim 𝑥𝐵 ∈ On) → (𝑧𝐵 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
7271adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑧𝐵 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
7372adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On))) → (𝑧𝐵 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
74 oawordex 8569 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝐵𝑧 ↔ ∃𝑦 ∈ On (𝐵 +o 𝑦) = 𝑧))
7574ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On)) → (𝐵𝑧 ↔ ∃𝑦 ∈ On (𝐵 +o 𝑦) = 𝑧))
76 oaord 8559 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑦 ∈ On ∧ 𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑦𝑥 ↔ (𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥)))
77763expb 1120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑦 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑦𝑥 ↔ (𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥)))
78 eleq1 2822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐵 +o 𝑦) = 𝑧 → ((𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥) ↔ 𝑧 ∈ (𝐵 +o 𝑥)))
7977, 78sylan9bb 509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑦 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +o 𝑦) = 𝑧) → (𝑦𝑥𝑧 ∈ (𝐵 +o 𝑥)))
8079an32s 652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑦𝑥𝑧 ∈ (𝐵 +o 𝑥)))
8180biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑦𝑥)
82 eqimss2 4018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐵 +o 𝑦) = 𝑧𝑧 ⊆ (𝐵 +o 𝑦))
8382ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ⊆ (𝐵 +o 𝑦))
8481, 83jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑦𝑥𝑧 ⊆ (𝐵 +o 𝑦)))
8584anasss 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥))) → (𝑦𝑥𝑧 ⊆ (𝐵 +o 𝑦)))
8685expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) → (𝑦𝑥𝑧 ⊆ (𝐵 +o 𝑦))))
8786reximdv2 3150 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (∃𝑦 ∈ On (𝐵 +o 𝑦) = 𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
8887adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On)) → (∃𝑦 ∈ On (𝐵 +o 𝑦) = 𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
8975, 88sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On)) → (𝐵𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
9089adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On))) → (𝐵𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
91 eloni 6362 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ On → Ord 𝑧)
92 eloni 6362 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐵 ∈ On → Ord 𝐵)
93 ordtri2or 6452 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Ord 𝑧 ∧ Ord 𝐵) → (𝑧𝐵𝐵𝑧))
9491, 92, 93syl2anr 597 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝑧𝐵𝐵𝑧))
9594ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On)) → (𝑧𝐵𝐵𝑧))
9695adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On))) → (𝑧𝐵𝐵𝑧))
9773, 90, 96mpjaod 860 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On))) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))
9897exp45 438 . . . . . . . . . . . . . . . . . . . . . . 23 (Lim 𝑥 → ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑧 ∈ (𝐵 +o 𝑥) → (𝑧 ∈ On → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))))
9998imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑧 ∈ (𝐵 +o 𝑥) → (𝑧 ∈ On → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))))
10099adantld 490 . . . . . . . . . . . . . . . . . . . . 21 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧 ∈ On → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))))
101100imp32 418 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))
102 simplrr 777 . . . . . . . . . . . . . . . . . . . . . 22 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → 𝑧 ∈ On)
103 onelon 6377 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
104103, 30sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦𝑥)) → (𝐵 +o 𝑦) ∈ On)
105104exp32 420 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ On → (𝑥 ∈ On → (𝑦𝑥 → (𝐵 +o 𝑦) ∈ On)))
106105com12 32 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ On → (𝐵 ∈ On → (𝑦𝑥 → (𝐵 +o 𝑦) ∈ On)))
107106imp31 417 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦𝑥) → (𝐵 +o 𝑦) ∈ On)
108107ad4ant24 754 . . . . . . . . . . . . . . . . . . . . . 22 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → (𝐵 +o 𝑦) ∈ On)
109 simpll 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On) → 𝐴 ∈ On)
110109ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → 𝐴 ∈ On)
111 oaword 8561 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ On ∧ (𝐵 +o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ (𝐵 +o 𝑦) ↔ (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
112102, 108, 110, 111syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → (𝑧 ⊆ (𝐵 +o 𝑦) ↔ (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
113112rexbidva 3162 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) → (∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦) ↔ ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
114101, 113mpbid 232 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)))
115114exp32 420 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧 ∈ On → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)))))
11661, 115mpdd 43 . . . . . . . . . . . . . . . . 17 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
117116exp32 420 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → (𝑥 ∈ On → (𝐵 ∈ On → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))))
11854, 117mpd 15 . . . . . . . . . . . . . . 15 (Lim 𝑥 → (𝐵 ∈ On → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)))))
119118exp4a 431 . . . . . . . . . . . . . 14 (Lim 𝑥 → (𝐵 ∈ On → (𝐴 ∈ On → (𝑧 ∈ (𝐵 +o 𝑥) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))))
120119imp31 417 . . . . . . . . . . . . 13 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 +o 𝑥) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
121120ralrimiv 3131 . . . . . . . . . . . 12 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐴 ∈ On) → ∀𝑧 ∈ (𝐵 +o 𝑥)∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)))
122 iunss2 5025 . . . . . . . . . . . 12 (∀𝑧 ∈ (𝐵 +o 𝑥)∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) ⊆ 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
123121, 122syl 17 . . . . . . . . . . 11 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐴 ∈ On) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) ⊆ 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
124123ancoms 458 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) ⊆ 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
125 oaordi 8558 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑦𝑥 → (𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥)))
126125anim1d 611 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → ((𝑦𝑥𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦))) → ((𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥) ∧ 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦)))))
127 oveq2 7413 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐵 +o 𝑦) → (𝐴 +o 𝑧) = (𝐴 +o (𝐵 +o 𝑦)))
128127eleq2d 2820 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐵 +o 𝑦) → (𝑤 ∈ (𝐴 +o 𝑧) ↔ 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦))))
129128rspcev 3601 . . . . . . . . . . . . . . . . 17 (((𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥) ∧ 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦))) → ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧))
130126, 129syl6 35 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → ((𝑦𝑥𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦))) → ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧)))
131130expd 415 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑦𝑥 → (𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦)) → ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧))))
132131rexlimdv 3139 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (∃𝑦𝑥 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦)) → ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧)))
133 eliun 4971 . . . . . . . . . . . . . 14 (𝑤 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) ↔ ∃𝑦𝑥 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦)))
134 eliun 4971 . . . . . . . . . . . . . 14 (𝑤 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) ↔ ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧))
135132, 133, 1343imtr4g 296 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑤 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) → 𝑤 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧)))
136135ssrdv 3964 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
13754, 136sylan 580 . . . . . . . . . . 11 ((Lim 𝑥𝐵 ∈ On) → 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
138137adantl 481 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
139124, 138eqssd 3976 . . . . . . . . 9 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
14052, 139eqtrd 2770 . . . . . . . 8 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
141140an12s 649 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
142141adantr 480 . . . . . 6 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
14339, 45, 1423eqtr4d 2780 . . . . 5 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))) → ((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)))
144143exp31 419 . . . 4 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → ((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)))))
1454, 8, 12, 16, 23, 37, 144tfinds3 7860 . . 3 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))))
146145com12 32 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ On → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))))
1471463impia 1117 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  wss 3926  c0 4308   ciun 4967  Ord word 6351  Oncon0 6352  Lim wlim 6353  suc csuc 6354  (class class class)co 7405   +o coa 8477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-oadd 8484
This theorem is referenced by:  odi  8591  oaabs  8660  oaabs2  8661  oaabsb  43318  omabs2  43356  ofoaass  43384  naddwordnexlem3  43423  naddwordnexlem4  43425
  Copyright terms: Public domain W3C validator