MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaass Structured version   Visualization version   GIF version

Theorem oaass 8392
Description: Ordinal addition is associative. Theorem 25 of [Suppes] p. 211. (Contributed by NM, 10-Dec-2004.)
Assertion
Ref Expression
oaass ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶)))

Proof of Theorem oaass
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7283 . . . . 5 (𝑥 = ∅ → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o ∅))
2 oveq2 7283 . . . . . 6 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
32oveq2d 7291 . . . . 5 (𝑥 = ∅ → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o ∅)))
41, 3eqeq12d 2754 . . . 4 (𝑥 = ∅ → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o (𝐵 +o ∅))))
5 oveq2 7283 . . . . 5 (𝑥 = 𝑦 → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o 𝑦))
6 oveq2 7283 . . . . . 6 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
76oveq2d 7291 . . . . 5 (𝑥 = 𝑦 → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o 𝑦)))
85, 7eqeq12d 2754 . . . 4 (𝑥 = 𝑦 → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))))
9 oveq2 7283 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o suc 𝑦))
10 oveq2 7283 . . . . . 6 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1110oveq2d 7291 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o suc 𝑦)))
129, 11eqeq12d 2754 . . . 4 (𝑥 = suc 𝑦 → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦))))
13 oveq2 7283 . . . . 5 (𝑥 = 𝐶 → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o 𝐶))
14 oveq2 7283 . . . . . 6 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
1514oveq2d 7291 . . . . 5 (𝑥 = 𝐶 → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o 𝐶)))
1613, 15eqeq12d 2754 . . . 4 (𝑥 = 𝐶 → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))))
17 oacl 8365 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
18 oa0 8346 . . . . . 6 ((𝐴 +o 𝐵) ∈ On → ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o 𝐵))
1917, 18syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o 𝐵))
20 oa0 8346 . . . . . . 7 (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵)
2120oveq2d 7291 . . . . . 6 (𝐵 ∈ On → (𝐴 +o (𝐵 +o ∅)) = (𝐴 +o 𝐵))
2221adantl 482 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o (𝐵 +o ∅)) = (𝐴 +o 𝐵))
2319, 22eqtr4d 2781 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o (𝐵 +o ∅)))
24 suceq 6331 . . . . . 6 (((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → suc ((𝐴 +o 𝐵) +o 𝑦) = suc (𝐴 +o (𝐵 +o 𝑦)))
25 oasuc 8354 . . . . . . . 8 (((𝐴 +o 𝐵) ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝐵) +o suc 𝑦) = suc ((𝐴 +o 𝐵) +o 𝑦))
2617, 25sylan 580 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o 𝐵) +o suc 𝑦) = suc ((𝐴 +o 𝐵) +o 𝑦))
27 oasuc 8354 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
2827oveq2d 7291 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o (𝐵 +o suc 𝑦)) = (𝐴 +o suc (𝐵 +o 𝑦)))
2928adantl 482 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 +o (𝐵 +o suc 𝑦)) = (𝐴 +o suc (𝐵 +o 𝑦)))
30 oacl 8365 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o 𝑦) ∈ On)
31 oasuc 8354 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐵 +o 𝑦) ∈ On) → (𝐴 +o suc (𝐵 +o 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3230, 31sylan2 593 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 +o suc (𝐵 +o 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3329, 32eqtrd 2778 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 +o (𝐵 +o suc 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3433anassrs 468 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (𝐴 +o (𝐵 +o suc 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3526, 34eqeq12d 2754 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦)) ↔ suc ((𝐴 +o 𝐵) +o 𝑦) = suc (𝐴 +o (𝐵 +o 𝑦))))
3624, 35syl5ibr 245 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → ((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦))))
3736expcom 414 . . . 4 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → ((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦)))))
38 iuneq2 4943 . . . . . . 7 (∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
3938adantl 482 . . . . . 6 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))) → 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
40 vex 3436 . . . . . . . . . 10 𝑥 ∈ V
41 oalim 8362 . . . . . . . . . 10 (((𝐴 +o 𝐵) ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
4240, 41mpanr1 700 . . . . . . . . 9 (((𝐴 +o 𝐵) ∈ On ∧ Lim 𝑥) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
4317, 42sylan 580 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝑥) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
4443ancoms 459 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
4544adantr 481 . . . . . 6 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))) → ((𝐴 +o 𝐵) +o 𝑥) = 𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦))
46 oalimcl 8391 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim (𝐵 +o 𝑥))
4740, 46mpanr1 700 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ Lim 𝑥) → Lim (𝐵 +o 𝑥))
4847ancoms 459 . . . . . . . . . 10 ((Lim 𝑥𝐵 ∈ On) → Lim (𝐵 +o 𝑥))
49 ovex 7308 . . . . . . . . . . 11 (𝐵 +o 𝑥) ∈ V
50 oalim 8362 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ ((𝐵 +o 𝑥) ∈ V ∧ Lim (𝐵 +o 𝑥))) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
5149, 50mpanr1 700 . . . . . . . . . 10 ((𝐴 ∈ On ∧ Lim (𝐵 +o 𝑥)) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
5248, 51sylan2 593 . . . . . . . . 9 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
53 limelon 6329 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
5440, 53mpan 687 . . . . . . . . . . . . . . . 16 (Lim 𝑥𝑥 ∈ On)
55 oacl 8365 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵 +o 𝑥) ∈ On)
5655ancoms 459 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o 𝑥) ∈ On)
57 onelon 6291 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵 +o 𝑥) ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On)
5857ex 413 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 +o 𝑥) ∈ On → (𝑧 ∈ (𝐵 +o 𝑥) → 𝑧 ∈ On))
5956, 58syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑧 ∈ (𝐵 +o 𝑥) → 𝑧 ∈ On))
6059adantld 491 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On))
6160adantl 482 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ∈ On))
62 0ellim 6328 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑥 → ∅ ∈ 𝑥)
63 onelss 6308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐵 ∈ On → (𝑧𝐵𝑧𝐵))
6420sseq2d 3953 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐵 ∈ On → (𝑧 ⊆ (𝐵 +o ∅) ↔ 𝑧𝐵))
6563, 64sylibrd 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐵 ∈ On → (𝑧𝐵𝑧 ⊆ (𝐵 +o ∅)))
6665imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐵 ∈ On ∧ 𝑧𝐵) → 𝑧 ⊆ (𝐵 +o ∅))
67 oveq2 7283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ∅ → (𝐵 +o 𝑦) = (𝐵 +o ∅))
6867sseq2d 3953 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = ∅ → (𝑧 ⊆ (𝐵 +o 𝑦) ↔ 𝑧 ⊆ (𝐵 +o ∅)))
6968rspcev 3561 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((∅ ∈ 𝑥𝑧 ⊆ (𝐵 +o ∅)) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))
7062, 66, 69syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Lim 𝑥 ∧ (𝐵 ∈ On ∧ 𝑧𝐵)) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))
7170expr 457 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Lim 𝑥𝐵 ∈ On) → (𝑧𝐵 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
7271adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑧𝐵 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
7372adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On))) → (𝑧𝐵 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
74 oawordex 8388 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝐵𝑧 ↔ ∃𝑦 ∈ On (𝐵 +o 𝑦) = 𝑧))
7574ad2ant2l 743 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On)) → (𝐵𝑧 ↔ ∃𝑦 ∈ On (𝐵 +o 𝑦) = 𝑧))
76 oaord 8378 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑦 ∈ On ∧ 𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑦𝑥 ↔ (𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥)))
77763expb 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑦 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑦𝑥 ↔ (𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥)))
78 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐵 +o 𝑦) = 𝑧 → ((𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥) ↔ 𝑧 ∈ (𝐵 +o 𝑥)))
7977, 78sylan9bb 510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑦 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +o 𝑦) = 𝑧) → (𝑦𝑥𝑧 ∈ (𝐵 +o 𝑥)))
8079an32s 649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑦𝑥𝑧 ∈ (𝐵 +o 𝑥)))
8180biimpar 478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑦𝑥)
82 eqimss2 3978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐵 +o 𝑦) = 𝑧𝑧 ⊆ (𝐵 +o 𝑦))
8382ad3antlr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → 𝑧 ⊆ (𝐵 +o 𝑦))
8481, 83jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑦𝑥𝑧 ⊆ (𝐵 +o 𝑦)))
8584anasss 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥))) → (𝑦𝑥𝑧 ⊆ (𝐵 +o 𝑦)))
8685expcom 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ((𝑦 ∈ On ∧ (𝐵 +o 𝑦) = 𝑧) → (𝑦𝑥𝑧 ⊆ (𝐵 +o 𝑦))))
8786reximdv2 3199 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (∃𝑦 ∈ On (𝐵 +o 𝑦) = 𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
8887adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On)) → (∃𝑦 ∈ On (𝐵 +o 𝑦) = 𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
8975, 88sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On)) → (𝐵𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
9089adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On))) → (𝐵𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))
91 eloni 6276 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ On → Ord 𝑧)
92 eloni 6276 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐵 ∈ On → Ord 𝐵)
93 ordtri2or 6361 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Ord 𝑧 ∧ Ord 𝐵) → (𝑧𝐵𝐵𝑧))
9491, 92, 93syl2anr 597 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝑧𝐵𝐵𝑧))
9594ad2ant2l 743 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On)) → (𝑧𝐵𝐵𝑧))
9695adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On))) → (𝑧𝐵𝐵𝑧))
9773, 90, 96mpjaod 857 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +o 𝑥) ∧ 𝑧 ∈ On))) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))
9897exp45 439 . . . . . . . . . . . . . . . . . . . . . . 23 (Lim 𝑥 → ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑧 ∈ (𝐵 +o 𝑥) → (𝑧 ∈ On → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦)))))
9998imp 407 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑧 ∈ (𝐵 +o 𝑥) → (𝑧 ∈ On → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))))
10099adantld 491 . . . . . . . . . . . . . . . . . . . . 21 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧 ∈ On → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))))
101100imp32 419 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦))
102 simplrr 775 . . . . . . . . . . . . . . . . . . . . . 22 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → 𝑧 ∈ On)
103 onelon 6291 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
104103, 30sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦𝑥)) → (𝐵 +o 𝑦) ∈ On)
105104exp32 421 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ On → (𝑥 ∈ On → (𝑦𝑥 → (𝐵 +o 𝑦) ∈ On)))
106105com12 32 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ On → (𝐵 ∈ On → (𝑦𝑥 → (𝐵 +o 𝑦) ∈ On)))
107106imp31 418 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦𝑥) → (𝐵 +o 𝑦) ∈ On)
108107ad4ant24 751 . . . . . . . . . . . . . . . . . . . . . 22 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → (𝐵 +o 𝑦) ∈ On)
109 simpll 764 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On) → 𝐴 ∈ On)
110109ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . 22 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → 𝐴 ∈ On)
111 oaword 8380 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ On ∧ (𝐵 +o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ (𝐵 +o 𝑦) ↔ (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
112102, 108, 110, 111syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → (𝑧 ⊆ (𝐵 +o 𝑦) ↔ (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
113112rexbidva 3225 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) → (∃𝑦𝑥 𝑧 ⊆ (𝐵 +o 𝑦) ↔ ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
114101, 113mpbid 231 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) ∧ 𝑧 ∈ On)) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)))
115114exp32 421 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → (𝑧 ∈ On → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)))))
11661, 115mpdd 43 . . . . . . . . . . . . . . . . 17 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
117116exp32 421 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → (𝑥 ∈ On → (𝐵 ∈ On → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))))
11854, 117mpd 15 . . . . . . . . . . . . . . 15 (Lim 𝑥 → (𝐵 ∈ On → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +o 𝑥)) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)))))
119118exp4a 432 . . . . . . . . . . . . . 14 (Lim 𝑥 → (𝐵 ∈ On → (𝐴 ∈ On → (𝑧 ∈ (𝐵 +o 𝑥) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))))
120119imp31 418 . . . . . . . . . . . . 13 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 +o 𝑥) → ∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦))))
121120ralrimiv 3102 . . . . . . . . . . . 12 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐴 ∈ On) → ∀𝑧 ∈ (𝐵 +o 𝑥)∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)))
122 iunss2 4979 . . . . . . . . . . . 12 (∀𝑧 ∈ (𝐵 +o 𝑥)∃𝑦𝑥 (𝐴 +o 𝑧) ⊆ (𝐴 +o (𝐵 +o 𝑦)) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) ⊆ 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
123121, 122syl 17 . . . . . . . . . . 11 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐴 ∈ On) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) ⊆ 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
124123ancoms 459 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) ⊆ 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
125 oaordi 8377 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑦𝑥 → (𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥)))
126125anim1d 611 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → ((𝑦𝑥𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦))) → ((𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥) ∧ 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦)))))
127 oveq2 7283 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐵 +o 𝑦) → (𝐴 +o 𝑧) = (𝐴 +o (𝐵 +o 𝑦)))
128127eleq2d 2824 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐵 +o 𝑦) → (𝑤 ∈ (𝐴 +o 𝑧) ↔ 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦))))
129128rspcev 3561 . . . . . . . . . . . . . . . . 17 (((𝐵 +o 𝑦) ∈ (𝐵 +o 𝑥) ∧ 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦))) → ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧))
130126, 129syl6 35 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → ((𝑦𝑥𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦))) → ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧)))
131130expd 416 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑦𝑥 → (𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦)) → ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧))))
132131rexlimdv 3212 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (∃𝑦𝑥 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦)) → ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧)))
133 eliun 4928 . . . . . . . . . . . . . 14 (𝑤 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) ↔ ∃𝑦𝑥 𝑤 ∈ (𝐴 +o (𝐵 +o 𝑦)))
134 eliun 4928 . . . . . . . . . . . . . 14 (𝑤 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) ↔ ∃𝑧 ∈ (𝐵 +o 𝑥)𝑤 ∈ (𝐴 +o 𝑧))
135132, 133, 1343imtr4g 296 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑤 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) → 𝑤 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧)))
136135ssrdv 3927 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
13754, 136sylan 580 . . . . . . . . . . 11 ((Lim 𝑥𝐵 ∈ On) → 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
138137adantl 482 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)) ⊆ 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧))
139124, 138eqssd 3938 . . . . . . . . 9 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → 𝑧 ∈ (𝐵 +o 𝑥)(𝐴 +o 𝑧) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
14052, 139eqtrd 2778 . . . . . . . 8 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
141140an12s 646 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
142141adantr 481 . . . . . 6 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))) → (𝐴 +o (𝐵 +o 𝑥)) = 𝑦𝑥 (𝐴 +o (𝐵 +o 𝑦)))
14339, 45, 1423eqtr4d 2788 . . . . 5 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))) → ((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)))
144143exp31 420 . . . 4 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → ((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)))))
1454, 8, 12, 16, 23, 37, 144tfinds3 7711 . . 3 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))))
146145com12 32 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ On → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))))
1471463impia 1116 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887  c0 4256   ciun 4924  Ord word 6265  Oncon0 6266  Lim wlim 6267  suc csuc 6268  (class class class)co 7275   +o coa 8294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-oadd 8301
This theorem is referenced by:  odi  8410  oaabs  8478  oaabs2  8479
  Copyright terms: Public domain W3C validator