MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporcan Structured version   Visualization version   GIF version

Theorem grporcan 30504
Description: Right cancellation law for groups. (Contributed by NM, 26-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grprcan.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grporcan ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem grporcan
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grprcan.1 . . . . . . . 8 𝑋 = ran 𝐺
2 eqid 2736 . . . . . . . 8 (GId‘𝐺) = (GId‘𝐺)
31, 2grpoidinv2 30501 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐶𝑋) → ((((GId‘𝐺)𝐺𝐶) = 𝐶 ∧ (𝐶𝐺(GId‘𝐺)) = 𝐶) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐶) = (GId‘𝐺) ∧ (𝐶𝐺𝑦) = (GId‘𝐺))))
4 simpr 484 . . . . . . . . 9 (((𝑦𝐺𝐶) = (GId‘𝐺) ∧ (𝐶𝐺𝑦) = (GId‘𝐺)) → (𝐶𝐺𝑦) = (GId‘𝐺))
54reximi 3075 . . . . . . . 8 (∃𝑦𝑋 ((𝑦𝐺𝐶) = (GId‘𝐺) ∧ (𝐶𝐺𝑦) = (GId‘𝐺)) → ∃𝑦𝑋 (𝐶𝐺𝑦) = (GId‘𝐺))
65adantl 481 . . . . . . 7 (((((GId‘𝐺)𝐺𝐶) = 𝐶 ∧ (𝐶𝐺(GId‘𝐺)) = 𝐶) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐶) = (GId‘𝐺) ∧ (𝐶𝐺𝑦) = (GId‘𝐺))) → ∃𝑦𝑋 (𝐶𝐺𝑦) = (GId‘𝐺))
73, 6syl 17 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐶𝑋) → ∃𝑦𝑋 (𝐶𝐺𝑦) = (GId‘𝐺))
87ad2ant2rl 749 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → ∃𝑦𝑋 (𝐶𝐺𝑦) = (GId‘𝐺))
9 oveq1 7417 . . . . . . . . . . . 12 ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) → ((𝐴𝐺𝐶)𝐺𝑦) = ((𝐵𝐺𝐶)𝐺𝑦))
109ad2antll 729 . . . . . . . . . . 11 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶))) → ((𝐴𝐺𝐶)𝐺𝑦) = ((𝐵𝐺𝐶)𝐺𝑦))
111grpoass 30489 . . . . . . . . . . . . . 14 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋𝑦𝑋)) → ((𝐴𝐺𝐶)𝐺𝑦) = (𝐴𝐺(𝐶𝐺𝑦)))
12113anassrs 1361 . . . . . . . . . . . . 13 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝐶𝑋) ∧ 𝑦𝑋) → ((𝐴𝐺𝐶)𝐺𝑦) = (𝐴𝐺(𝐶𝐺𝑦)))
1312adantlrl 720 . . . . . . . . . . . 12 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ 𝑦𝑋) → ((𝐴𝐺𝐶)𝐺𝑦) = (𝐴𝐺(𝐶𝐺𝑦)))
1413adantrr 717 . . . . . . . . . . 11 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶))) → ((𝐴𝐺𝐶)𝐺𝑦) = (𝐴𝐺(𝐶𝐺𝑦)))
151grpoass 30489 . . . . . . . . . . . . . . 15 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋𝑦𝑋)) → ((𝐵𝐺𝐶)𝐺𝑦) = (𝐵𝐺(𝐶𝐺𝑦)))
16153exp2 1355 . . . . . . . . . . . . . 14 (𝐺 ∈ GrpOp → (𝐵𝑋 → (𝐶𝑋 → (𝑦𝑋 → ((𝐵𝐺𝐶)𝐺𝑦) = (𝐵𝐺(𝐶𝐺𝑦))))))
1716imp42 426 . . . . . . . . . . . . 13 (((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) ∧ 𝑦𝑋) → ((𝐵𝐺𝐶)𝐺𝑦) = (𝐵𝐺(𝐶𝐺𝑦)))
1817adantllr 719 . . . . . . . . . . . 12 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ 𝑦𝑋) → ((𝐵𝐺𝐶)𝐺𝑦) = (𝐵𝐺(𝐶𝐺𝑦)))
1918adantrr 717 . . . . . . . . . . 11 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶))) → ((𝐵𝐺𝐶)𝐺𝑦) = (𝐵𝐺(𝐶𝐺𝑦)))
2010, 14, 193eqtr3d 2779 . . . . . . . . . 10 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶))) → (𝐴𝐺(𝐶𝐺𝑦)) = (𝐵𝐺(𝐶𝐺𝑦)))
2120adantrrl 724 . . . . . . . . 9 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → (𝐴𝐺(𝐶𝐺𝑦)) = (𝐵𝐺(𝐶𝐺𝑦)))
22 oveq2 7418 . . . . . . . . . . 11 ((𝐶𝐺𝑦) = (GId‘𝐺) → (𝐴𝐺(𝐶𝐺𝑦)) = (𝐴𝐺(GId‘𝐺)))
2322ad2antrl 728 . . . . . . . . . 10 ((𝑦𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶))) → (𝐴𝐺(𝐶𝐺𝑦)) = (𝐴𝐺(GId‘𝐺)))
2423adantl 481 . . . . . . . . 9 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → (𝐴𝐺(𝐶𝐺𝑦)) = (𝐴𝐺(GId‘𝐺)))
25 oveq2 7418 . . . . . . . . . . 11 ((𝐶𝐺𝑦) = (GId‘𝐺) → (𝐵𝐺(𝐶𝐺𝑦)) = (𝐵𝐺(GId‘𝐺)))
2625ad2antrl 728 . . . . . . . . . 10 ((𝑦𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶))) → (𝐵𝐺(𝐶𝐺𝑦)) = (𝐵𝐺(GId‘𝐺)))
2726adantl 481 . . . . . . . . 9 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → (𝐵𝐺(𝐶𝐺𝑦)) = (𝐵𝐺(GId‘𝐺)))
2821, 24, 273eqtr3d 2779 . . . . . . . 8 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → (𝐴𝐺(GId‘𝐺)) = (𝐵𝐺(GId‘𝐺)))
291, 2grporid 30503 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺(GId‘𝐺)) = 𝐴)
3029ad2antrr 726 . . . . . . . 8 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → (𝐴𝐺(GId‘𝐺)) = 𝐴)
311, 2grporid 30503 . . . . . . . . . 10 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝐵𝐺(GId‘𝐺)) = 𝐵)
3231ad2ant2r 747 . . . . . . . . 9 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵𝐺(GId‘𝐺)) = 𝐵)
3332adantr 480 . . . . . . . 8 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → (𝐵𝐺(GId‘𝐺)) = 𝐵)
3428, 30, 333eqtr3d 2779 . . . . . . 7 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) ∧ (𝑦𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → 𝐴 = 𝐵)
3534exp45 438 . . . . . 6 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → (𝑦𝑋 → ((𝐶𝐺𝑦) = (GId‘𝐺) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) → 𝐴 = 𝐵))))
3635rexlimdv 3140 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → (∃𝑦𝑋 (𝐶𝐺𝑦) = (GId‘𝐺) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) → 𝐴 = 𝐵)))
378, 36mpd 15 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) → 𝐴 = 𝐵))
38 oveq1 7417 . . . 4 (𝐴 = 𝐵 → (𝐴𝐺𝐶) = (𝐵𝐺𝐶))
3937, 38impbid1 225 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵))
4039exp43 436 . 2 (𝐺 ∈ GrpOp → (𝐴𝑋 → (𝐵𝑋 → (𝐶𝑋 → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵)))))
41403imp2 1350 1 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3061  ran crn 5660  cfv 6536  (class class class)co 7410  GrpOpcgr 30475  GIdcgi 30476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-riota 7367  df-ov 7413  df-grpo 30479  df-gid 30480
This theorem is referenced by:  grpoinveu  30505  grpoid  30506  nvrcan  30610  ghomdiv  37921  rngorcan  37946  rngorz  37952
  Copyright terms: Public domain W3C validator