Step | Hyp | Ref
| Expression |
1 | | grprcan.1 |
. . . . . . . 8
⊢ 𝑋 = ran 𝐺 |
2 | | eqid 2738 |
. . . . . . . 8
⊢
(GId‘𝐺) =
(GId‘𝐺) |
3 | 1, 2 | grpoidinv2 28877 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ 𝐶 ∈ 𝑋) → ((((GId‘𝐺)𝐺𝐶) = 𝐶 ∧ (𝐶𝐺(GId‘𝐺)) = 𝐶) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐶) = (GId‘𝐺) ∧ (𝐶𝐺𝑦) = (GId‘𝐺)))) |
4 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝑦𝐺𝐶) = (GId‘𝐺) ∧ (𝐶𝐺𝑦) = (GId‘𝐺)) → (𝐶𝐺𝑦) = (GId‘𝐺)) |
5 | 4 | reximi 3178 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝑋 ((𝑦𝐺𝐶) = (GId‘𝐺) ∧ (𝐶𝐺𝑦) = (GId‘𝐺)) → ∃𝑦 ∈ 𝑋 (𝐶𝐺𝑦) = (GId‘𝐺)) |
6 | 5 | adantl 482 |
. . . . . . 7
⊢
(((((GId‘𝐺)𝐺𝐶) = 𝐶 ∧ (𝐶𝐺(GId‘𝐺)) = 𝐶) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐶) = (GId‘𝐺) ∧ (𝐶𝐺𝑦) = (GId‘𝐺))) → ∃𝑦 ∈ 𝑋 (𝐶𝐺𝑦) = (GId‘𝐺)) |
7 | 3, 6 | syl 17 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐶 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 (𝐶𝐺𝑦) = (GId‘𝐺)) |
8 | 7 | ad2ant2rl 746 |
. . . . 5
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ∃𝑦 ∈ 𝑋 (𝐶𝐺𝑦) = (GId‘𝐺)) |
9 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) → ((𝐴𝐺𝐶)𝐺𝑦) = ((𝐵𝐺𝐶)𝐺𝑦)) |
10 | 9 | ad2antll 726 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ (𝑦 ∈ 𝑋 ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶))) → ((𝐴𝐺𝐶)𝐺𝑦) = ((𝐵𝐺𝐶)𝐺𝑦)) |
11 | 1 | grpoass 28865 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐴𝐺𝐶)𝐺𝑦) = (𝐴𝐺(𝐶𝐺𝑦))) |
12 | 11 | 3anassrs 1359 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝐶 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝐴𝐺𝐶)𝐺𝑦) = (𝐴𝐺(𝐶𝐺𝑦))) |
13 | 12 | adantlrl 717 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝑦 ∈ 𝑋) → ((𝐴𝐺𝐶)𝐺𝑦) = (𝐴𝐺(𝐶𝐺𝑦))) |
14 | 13 | adantrr 714 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ (𝑦 ∈ 𝑋 ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶))) → ((𝐴𝐺𝐶)𝐺𝑦) = (𝐴𝐺(𝐶𝐺𝑦))) |
15 | 1 | grpoass 28865 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐵𝐺𝐶)𝐺𝑦) = (𝐵𝐺(𝐶𝐺𝑦))) |
16 | 15 | 3exp2 1353 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ GrpOp → (𝐵 ∈ 𝑋 → (𝐶 ∈ 𝑋 → (𝑦 ∈ 𝑋 → ((𝐵𝐺𝐶)𝐺𝑦) = (𝐵𝐺(𝐶𝐺𝑦)))))) |
17 | 16 | imp42 427 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝑦 ∈ 𝑋) → ((𝐵𝐺𝐶)𝐺𝑦) = (𝐵𝐺(𝐶𝐺𝑦))) |
18 | 17 | adantllr 716 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝑦 ∈ 𝑋) → ((𝐵𝐺𝐶)𝐺𝑦) = (𝐵𝐺(𝐶𝐺𝑦))) |
19 | 18 | adantrr 714 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ (𝑦 ∈ 𝑋 ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶))) → ((𝐵𝐺𝐶)𝐺𝑦) = (𝐵𝐺(𝐶𝐺𝑦))) |
20 | 10, 14, 19 | 3eqtr3d 2786 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ (𝑦 ∈ 𝑋 ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶))) → (𝐴𝐺(𝐶𝐺𝑦)) = (𝐵𝐺(𝐶𝐺𝑦))) |
21 | 20 | adantrrl 721 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ (𝑦 ∈ 𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → (𝐴𝐺(𝐶𝐺𝑦)) = (𝐵𝐺(𝐶𝐺𝑦))) |
22 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ ((𝐶𝐺𝑦) = (GId‘𝐺) → (𝐴𝐺(𝐶𝐺𝑦)) = (𝐴𝐺(GId‘𝐺))) |
23 | 22 | ad2antrl 725 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶))) → (𝐴𝐺(𝐶𝐺𝑦)) = (𝐴𝐺(GId‘𝐺))) |
24 | 23 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ (𝑦 ∈ 𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → (𝐴𝐺(𝐶𝐺𝑦)) = (𝐴𝐺(GId‘𝐺))) |
25 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ ((𝐶𝐺𝑦) = (GId‘𝐺) → (𝐵𝐺(𝐶𝐺𝑦)) = (𝐵𝐺(GId‘𝐺))) |
26 | 25 | ad2antrl 725 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶))) → (𝐵𝐺(𝐶𝐺𝑦)) = (𝐵𝐺(GId‘𝐺))) |
27 | 26 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ (𝑦 ∈ 𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → (𝐵𝐺(𝐶𝐺𝑦)) = (𝐵𝐺(GId‘𝐺))) |
28 | 21, 24, 27 | 3eqtr3d 2786 |
. . . . . . . 8
⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ (𝑦 ∈ 𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → (𝐴𝐺(GId‘𝐺)) = (𝐵𝐺(GId‘𝐺))) |
29 | 1, 2 | grporid 28879 |
. . . . . . . . 9
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(GId‘𝐺)) = 𝐴) |
30 | 29 | ad2antrr 723 |
. . . . . . . 8
⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ (𝑦 ∈ 𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → (𝐴𝐺(GId‘𝐺)) = 𝐴) |
31 | 1, 2 | grporid 28879 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝐵𝐺(GId‘𝐺)) = 𝐵) |
32 | 31 | ad2ant2r 744 |
. . . . . . . . 9
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐺(GId‘𝐺)) = 𝐵) |
33 | 32 | adantr 481 |
. . . . . . . 8
⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ (𝑦 ∈ 𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → (𝐵𝐺(GId‘𝐺)) = 𝐵) |
34 | 28, 30, 33 | 3eqtr3d 2786 |
. . . . . . 7
⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ (𝑦 ∈ 𝑋 ∧ ((𝐶𝐺𝑦) = (GId‘𝐺) ∧ (𝐴𝐺𝐶) = (𝐵𝐺𝐶)))) → 𝐴 = 𝐵) |
35 | 34 | exp45 439 |
. . . . . 6
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝑦 ∈ 𝑋 → ((𝐶𝐺𝑦) = (GId‘𝐺) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) → 𝐴 = 𝐵)))) |
36 | 35 | rexlimdv 3212 |
. . . . 5
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (∃𝑦 ∈ 𝑋 (𝐶𝐺𝑦) = (GId‘𝐺) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) → 𝐴 = 𝐵))) |
37 | 8, 36 | mpd 15 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) → 𝐴 = 𝐵)) |
38 | | oveq1 7282 |
. . . 4
⊢ (𝐴 = 𝐵 → (𝐴𝐺𝐶) = (𝐵𝐺𝐶)) |
39 | 37, 38 | impbid1 224 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵)) |
40 | 39 | exp43 437 |
. 2
⊢ (𝐺 ∈ GrpOp → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐶 ∈ 𝑋 → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵))))) |
41 | 40 | 3imp2 1348 |
1
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵)) |