Step | Hyp | Ref
| Expression |
1 | | ssfg 23023 |
. . . . . 6
⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) |
2 | 1 | adantr 481 |
. . . . 5
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → 𝐹 ⊆ (𝑋filGen𝐹)) |
3 | 2 | sseld 3920 |
. . . 4
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (𝑥 ∈ 𝐹 → 𝑥 ∈ (𝑋filGen𝐹))) |
4 | | ssel2 3916 |
. . . . . 6
⊢ (((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → 𝑥 ∈ (𝑋filGen𝐺)) |
5 | | elfg 23022 |
. . . . . . . 8
⊢ (𝐺 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐺) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥))) |
6 | | simpr 485 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥) → ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥) |
7 | 5, 6 | syl6bi 252 |
. . . . . . 7
⊢ (𝐺 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐺) → ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥)) |
8 | 7 | adantl 482 |
. . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (𝑥 ∈ (𝑋filGen𝐺) → ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥)) |
9 | 4, 8 | syl5 34 |
. . . . 5
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥)) |
10 | 9 | expd 416 |
. . . 4
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) → (𝑥 ∈ (𝑋filGen𝐹) → ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥))) |
11 | 3, 10 | syl5d 73 |
. . 3
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) → (𝑥 ∈ 𝐹 → ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥))) |
12 | 11 | ralrimdv 3105 |
. 2
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) → ∀𝑥 ∈ 𝐹 ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥)) |
13 | | sseq2 3947 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → (𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ 𝑢)) |
14 | 13 | rexbidv 3226 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → (∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 ↔ ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑢)) |
15 | 14 | rspcv 3557 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝐹 → (∀𝑥 ∈ 𝐹 ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 → ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑢)) |
16 | 15 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢 ∈ 𝐹) → (∀𝑥 ∈ 𝐹 ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 → ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑢)) |
17 | | sstr 3929 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑡) → 𝑦 ⊆ 𝑡) |
18 | | sseq1 3946 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑦 → (𝑣 ⊆ 𝑡 ↔ 𝑦 ⊆ 𝑡)) |
19 | 18 | rspcev 3561 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐺 ∧ 𝑦 ⊆ 𝑡) → ∃𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡) |
20 | 19 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢 ∈ 𝐹) ∧ (𝑦 ∈ 𝐺 ∧ 𝑦 ⊆ 𝑡)) → ∃𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡) |
21 | 20 | a1d 25 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢 ∈ 𝐹) ∧ (𝑦 ∈ 𝐺 ∧ 𝑦 ⊆ 𝑡)) → (𝑡 ⊆ 𝑋 → ∃𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡)) |
22 | 17, 21 | sylanr2 680 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢 ∈ 𝐹) ∧ (𝑦 ∈ 𝐺 ∧ (𝑦 ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑡))) → (𝑡 ⊆ 𝑋 → ∃𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡)) |
23 | 22 | ancld 551 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢 ∈ 𝐹) ∧ (𝑦 ∈ 𝐺 ∧ (𝑦 ⊆ 𝑢 ∧ 𝑢 ⊆ 𝑡))) → (𝑡 ⊆ 𝑋 → (𝑡 ⊆ 𝑋 ∧ ∃𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡))) |
24 | 23 | exp45 439 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢 ∈ 𝐹) → (𝑦 ∈ 𝐺 → (𝑦 ⊆ 𝑢 → (𝑢 ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → (𝑡 ⊆ 𝑋 ∧ ∃𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡)))))) |
25 | 24 | rexlimdv 3212 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢 ∈ 𝐹) → (∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑢 → (𝑢 ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → (𝑡 ⊆ 𝑋 ∧ ∃𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡))))) |
26 | 16, 25 | syld 47 |
. . . . . . . 8
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢 ∈ 𝐹) → (∀𝑥 ∈ 𝐹 ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 → (𝑢 ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → (𝑡 ⊆ 𝑋 ∧ ∃𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡))))) |
27 | 26 | impancom 452 |
. . . . . . 7
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥 ∈ 𝐹 ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥) → (𝑢 ∈ 𝐹 → (𝑢 ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → (𝑡 ⊆ 𝑋 ∧ ∃𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡))))) |
28 | 27 | rexlimdv 3212 |
. . . . . 6
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥 ∈ 𝐹 ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥) → (∃𝑢 ∈ 𝐹 𝑢 ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → (𝑡 ⊆ 𝑋 ∧ ∃𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡)))) |
29 | 28 | impcomd 412 |
. . . . 5
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥 ∈ 𝐹 ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥) → ((𝑡 ⊆ 𝑋 ∧ ∃𝑢 ∈ 𝐹 𝑢 ⊆ 𝑡) → (𝑡 ⊆ 𝑋 ∧ ∃𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡))) |
30 | | elfg 23022 |
. . . . . . 7
⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑢 ∈ 𝐹 𝑢 ⊆ 𝑡))) |
31 | 30 | adantr 481 |
. . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑢 ∈ 𝐹 𝑢 ⊆ 𝑡))) |
32 | 31 | adantr 481 |
. . . . 5
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥 ∈ 𝐹 ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑢 ∈ 𝐹 𝑢 ⊆ 𝑡))) |
33 | | elfg 23022 |
. . . . . . 7
⊢ (𝐺 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡))) |
34 | 33 | adantl 482 |
. . . . . 6
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡))) |
35 | 34 | adantr 481 |
. . . . 5
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥 ∈ 𝐹 ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑣 ∈ 𝐺 𝑣 ⊆ 𝑡))) |
36 | 29, 32, 35 | 3imtr4d 294 |
. . . 4
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥 ∈ 𝐹 ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥) → (𝑡 ∈ (𝑋filGen𝐹) → 𝑡 ∈ (𝑋filGen𝐺))) |
37 | 36 | ssrdv 3927 |
. . 3
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥 ∈ 𝐹 ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥) → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺)) |
38 | 37 | ex 413 |
. 2
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥 ∈ 𝐹 ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥 → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺))) |
39 | 12, 38 | impbid 211 |
1
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) ↔ ∀𝑥 ∈ 𝐹 ∃𝑦 ∈ 𝐺 𝑦 ⊆ 𝑥)) |