MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgss2 Structured version   Visualization version   GIF version

Theorem fgss2 22574
Description: A condition for a filter to be finer than another involving their filter bases. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgss2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) ↔ ∀𝑥𝐹𝑦𝐺 𝑦𝑥))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝑥,𝑋,𝑦

Proof of Theorem fgss2
Dummy variables 𝑢 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssfg 22572 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
21adantr 484 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → 𝐹 ⊆ (𝑋filGen𝐹))
32sseld 3891 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (𝑥𝐹𝑥 ∈ (𝑋filGen𝐹)))
4 ssel2 3887 . . . . . 6 (((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → 𝑥 ∈ (𝑋filGen𝐺))
5 elfg 22571 . . . . . . . 8 (𝐺 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐺) ↔ (𝑥𝑋 ∧ ∃𝑦𝐺 𝑦𝑥)))
6 simpr 488 . . . . . . . 8 ((𝑥𝑋 ∧ ∃𝑦𝐺 𝑦𝑥) → ∃𝑦𝐺 𝑦𝑥)
75, 6syl6bi 256 . . . . . . 7 (𝐺 ∈ (fBas‘𝑋) → (𝑥 ∈ (𝑋filGen𝐺) → ∃𝑦𝐺 𝑦𝑥))
87adantl 485 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (𝑥 ∈ (𝑋filGen𝐺) → ∃𝑦𝐺 𝑦𝑥))
94, 8syl5 34 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) ∧ 𝑥 ∈ (𝑋filGen𝐹)) → ∃𝑦𝐺 𝑦𝑥))
109expd 419 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) → (𝑥 ∈ (𝑋filGen𝐹) → ∃𝑦𝐺 𝑦𝑥)))
113, 10syl5d 73 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) → (𝑥𝐹 → ∃𝑦𝐺 𝑦𝑥)))
1211ralrimdv 3117 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) → ∀𝑥𝐹𝑦𝐺 𝑦𝑥))
13 sseq2 3918 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑦𝑥𝑦𝑢))
1413rexbidv 3221 . . . . . . . . . . 11 (𝑥 = 𝑢 → (∃𝑦𝐺 𝑦𝑥 ↔ ∃𝑦𝐺 𝑦𝑢))
1514rspcv 3536 . . . . . . . . . 10 (𝑢𝐹 → (∀𝑥𝐹𝑦𝐺 𝑦𝑥 → ∃𝑦𝐺 𝑦𝑢))
1615adantl 485 . . . . . . . . 9 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢𝐹) → (∀𝑥𝐹𝑦𝐺 𝑦𝑥 → ∃𝑦𝐺 𝑦𝑢))
17 sstr 3900 . . . . . . . . . . . . 13 ((𝑦𝑢𝑢𝑡) → 𝑦𝑡)
18 sseq1 3917 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑦 → (𝑣𝑡𝑦𝑡))
1918rspcev 3541 . . . . . . . . . . . . . . 15 ((𝑦𝐺𝑦𝑡) → ∃𝑣𝐺 𝑣𝑡)
2019adantl 485 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢𝐹) ∧ (𝑦𝐺𝑦𝑡)) → ∃𝑣𝐺 𝑣𝑡)
2120a1d 25 . . . . . . . . . . . . 13 ((((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢𝐹) ∧ (𝑦𝐺𝑦𝑡)) → (𝑡𝑋 → ∃𝑣𝐺 𝑣𝑡))
2217, 21sylanr2 682 . . . . . . . . . . . 12 ((((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢𝐹) ∧ (𝑦𝐺 ∧ (𝑦𝑢𝑢𝑡))) → (𝑡𝑋 → ∃𝑣𝐺 𝑣𝑡))
2322ancld 554 . . . . . . . . . . 11 ((((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢𝐹) ∧ (𝑦𝐺 ∧ (𝑦𝑢𝑢𝑡))) → (𝑡𝑋 → (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡)))
2423exp45 442 . . . . . . . . . 10 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢𝐹) → (𝑦𝐺 → (𝑦𝑢 → (𝑢𝑡 → (𝑡𝑋 → (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡))))))
2524rexlimdv 3207 . . . . . . . . 9 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢𝐹) → (∃𝑦𝐺 𝑦𝑢 → (𝑢𝑡 → (𝑡𝑋 → (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡)))))
2616, 25syld 47 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ 𝑢𝐹) → (∀𝑥𝐹𝑦𝐺 𝑦𝑥 → (𝑢𝑡 → (𝑡𝑋 → (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡)))))
2726impancom 455 . . . . . . 7 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥𝐹𝑦𝐺 𝑦𝑥) → (𝑢𝐹 → (𝑢𝑡 → (𝑡𝑋 → (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡)))))
2827rexlimdv 3207 . . . . . 6 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥𝐹𝑦𝐺 𝑦𝑥) → (∃𝑢𝐹 𝑢𝑡 → (𝑡𝑋 → (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡))))
2928impcomd 415 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥𝐹𝑦𝐺 𝑦𝑥) → ((𝑡𝑋 ∧ ∃𝑢𝐹 𝑢𝑡) → (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡)))
30 elfg 22571 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑢𝐹 𝑢𝑡)))
3130adantr 484 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑢𝐹 𝑢𝑡)))
3231adantr 484 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥𝐹𝑦𝐺 𝑦𝑥) → (𝑡 ∈ (𝑋filGen𝐹) ↔ (𝑡𝑋 ∧ ∃𝑢𝐹 𝑢𝑡)))
33 elfg 22571 . . . . . . 7 (𝐺 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡)))
3433adantl 485 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡)))
3534adantr 484 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥𝐹𝑦𝐺 𝑦𝑥) → (𝑡 ∈ (𝑋filGen𝐺) ↔ (𝑡𝑋 ∧ ∃𝑣𝐺 𝑣𝑡)))
3629, 32, 353imtr4d 297 . . . 4 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥𝐹𝑦𝐺 𝑦𝑥) → (𝑡 ∈ (𝑋filGen𝐹) → 𝑡 ∈ (𝑋filGen𝐺)))
3736ssrdv 3898 . . 3 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) ∧ ∀𝑥𝐹𝑦𝐺 𝑦𝑥) → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺))
3837ex 416 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → (∀𝑥𝐹𝑦𝐺 𝑦𝑥 → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺)))
3912, 38impbid 215 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) ↔ ∀𝑥𝐹𝑦𝐺 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111  wral 3070  wrex 3071  wss 3858  cfv 6335  (class class class)co 7150  fBascfbas 20154  filGencfg 20155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-fbas 20163  df-fg 20164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator