Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvratlem Structured version   Visualization version   GIF version

Theorem cvratlem 39403
Description: Lemma for cvrat 39404. (atcvatlem 32347 analog.) (Contributed by NM, 22-Nov-2011.)
Hypotheses
Ref Expression
cvrat.b 𝐵 = (Base‘𝐾)
cvrat.s < = (lt‘𝐾)
cvrat.j = (join‘𝐾)
cvrat.z 0 = (0.‘𝐾)
cvrat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvratlem (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))

Proof of Theorem cvratlem
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 hlatl 39341 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
21adantr 480 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ AtLat)
3 simpr1 1195 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
4 cvrat.b . . . . . 6 𝐵 = (Base‘𝐾)
5 eqid 2729 . . . . . 6 (le‘𝐾) = (le‘𝐾)
6 cvrat.z . . . . . 6 0 = (0.‘𝐾)
7 cvrat.a . . . . . 6 𝐴 = (Atoms‘𝐾)
84, 5, 6, 7atlex 39297 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑋0 ) → ∃𝑟𝐴 𝑟(le‘𝐾)𝑋)
983expia 1121 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → (𝑋0 → ∃𝑟𝐴 𝑟(le‘𝐾)𝑋))
102, 3, 9syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋0 → ∃𝑟𝐴 𝑟(le‘𝐾)𝑋))
1113ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ AtLat)
12 simp22 1208 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃𝐴)
13 simp3 1138 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑟𝐴)
145, 7atcmp 39292 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑟𝐴) → (𝑃(le‘𝐾)𝑟𝑃 = 𝑟))
1511, 12, 13, 14syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃(le‘𝐾)𝑟𝑃 = 𝑟))
16 breq1 5098 . . . . . . . . . . . . . . . . 17 (𝑃 = 𝑟 → (𝑃(le‘𝐾)𝑋𝑟(le‘𝐾)𝑋))
1716biimprd 248 . . . . . . . . . . . . . . . 16 (𝑃 = 𝑟 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋))
1815, 17biimtrdi 253 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃(le‘𝐾)𝑟 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋)))
1918com23 86 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑃(le‘𝐾)𝑟𝑃(le‘𝐾)𝑋)))
20 con3 153 . . . . . . . . . . . . . 14 ((𝑃(le‘𝐾)𝑟𝑃(le‘𝐾)𝑋) → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑃(le‘𝐾)𝑟))
2119, 20syl6 35 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑃(le‘𝐾)𝑟)))
2221impd 410 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋) → ¬ 𝑃(le‘𝐾)𝑟))
23 simp1 1136 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ HL)
244, 7atbase 39270 . . . . . . . . . . . . . 14 (𝑟𝐴𝑟𝐵)
25243ad2ant3 1135 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑟𝐵)
26 cvrat.j . . . . . . . . . . . . . 14 = (join‘𝐾)
27 eqid 2729 . . . . . . . . . . . . . 14 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
284, 5, 26, 27, 7cvr1 39392 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐵𝑃𝐴) → (¬ 𝑃(le‘𝐾)𝑟𝑟( ⋖ ‘𝐾)(𝑟 𝑃)))
2923, 25, 12, 28syl3anc 1373 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (¬ 𝑃(le‘𝐾)𝑟𝑟( ⋖ ‘𝐾)(𝑟 𝑃)))
3022, 29sylibd 239 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋) → 𝑟( ⋖ ‘𝐾)(𝑟 𝑃)))
3130imp 406 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → 𝑟( ⋖ ‘𝐾)(𝑟 𝑃))
32 hllat 39344 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Lat)
33323ad2ant1 1133 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ Lat)
344, 7atbase 39270 . . . . . . . . . . . . 13 (𝑃𝐴𝑃𝐵)
3512, 34syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃𝐵)
364, 26latjcom 18371 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑟𝐵) → (𝑃 𝑟) = (𝑟 𝑃))
3733, 35, 25, 36syl3anc 1373 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃 𝑟) = (𝑟 𝑃))
3837adantr 480 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → (𝑃 𝑟) = (𝑟 𝑃))
3931, 38breqtrrd 5123 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → 𝑟( ⋖ ‘𝐾)(𝑃 𝑟))
4039adantrrl 724 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟( ⋖ ‘𝐾)(𝑃 𝑟))
415, 26, 7hlatlej1 39356 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑟𝐴) → 𝑃(le‘𝐾)(𝑃 𝑟))
4223, 12, 13, 41syl3anc 1373 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃(le‘𝐾)(𝑃 𝑟))
4342adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑃(le‘𝐾)(𝑃 𝑟))
445, 7atcmp 39292 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ AtLat ∧ 𝑟𝐴𝑃𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
4511, 13, 12, 44syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
46 breq1 5098 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑃 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋))
4746biimpd 229 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑃 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋))
4845, 47biimtrdi 253 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑃 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋)))
4948com23 86 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑟(le‘𝐾)𝑃𝑃(le‘𝐾)𝑋)))
50 con3 153 . . . . . . . . . . . . . . 15 ((𝑟(le‘𝐾)𝑃𝑃(le‘𝐾)𝑋) → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑟(le‘𝐾)𝑃))
5149, 50syl6 35 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑟(le‘𝐾)𝑃)))
5251imp32 418 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → ¬ 𝑟(le‘𝐾)𝑃)
5352adantrrl 724 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ¬ 𝑟(le‘𝐾)𝑃)
54 simprl 770 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → 𝑟(le‘𝐾)𝑋)
55 simp21 1207 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑋𝐵)
56 simp23 1209 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑄𝐴)
574, 7atbase 39270 . . . . . . . . . . . . . . . . . . 19 (𝑄𝐴𝑄𝐵)
5856, 57syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑄𝐵)
594, 26latjcl 18363 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
6033, 35, 58, 59syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃 𝑄) ∈ 𝐵)
6123, 55, 603jca 1128 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵))
62 cvrat.s . . . . . . . . . . . . . . . . . 18 < = (lt‘𝐾)
635, 62pltle 18255 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋 < (𝑃 𝑄) → 𝑋(le‘𝐾)(𝑃 𝑄)))
6463imp 406 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) ∧ 𝑋 < (𝑃 𝑄)) → 𝑋(le‘𝐾)(𝑃 𝑄))
6561, 64sylan 580 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ 𝑋 < (𝑃 𝑄)) → 𝑋(le‘𝐾)(𝑃 𝑄))
6665adantrl 716 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → 𝑋(le‘𝐾)(𝑃 𝑄))
67 hlpos 39347 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ HL → 𝐾 ∈ Poset)
68673ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ Poset)
694, 5postr 18244 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Poset ∧ (𝑟𝐵𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵)) → ((𝑟(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑃 𝑄)) → 𝑟(le‘𝐾)(𝑃 𝑄)))
7068, 25, 55, 60, 69syl13anc 1374 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑟(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑃 𝑄)) → 𝑟(le‘𝐾)(𝑃 𝑄)))
7170adantr 480 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → ((𝑟(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑃 𝑄)) → 𝑟(le‘𝐾)(𝑃 𝑄)))
7254, 66, 71mp2and 699 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → 𝑟(le‘𝐾)(𝑃 𝑄))
7372adantrrr 725 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟(le‘𝐾)(𝑃 𝑄))
744, 5, 26, 7hlexch1 39364 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑃𝐵) ∧ ¬ 𝑟(le‘𝐾)𝑃) → (𝑟(le‘𝐾)(𝑃 𝑄) → 𝑄(le‘𝐾)(𝑃 𝑟)))
75743expia 1121 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑃𝐵)) → (¬ 𝑟(le‘𝐾)𝑃 → (𝑟(le‘𝐾)(𝑃 𝑄) → 𝑄(le‘𝐾)(𝑃 𝑟))))
7675impd 410 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑃𝐵)) → ((¬ 𝑟(le‘𝐾)𝑃𝑟(le‘𝐾)(𝑃 𝑄)) → 𝑄(le‘𝐾)(𝑃 𝑟)))
7723, 13, 56, 35, 76syl13anc 1374 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((¬ 𝑟(le‘𝐾)𝑃𝑟(le‘𝐾)(𝑃 𝑄)) → 𝑄(le‘𝐾)(𝑃 𝑟)))
7877adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((¬ 𝑟(le‘𝐾)𝑃𝑟(le‘𝐾)(𝑃 𝑄)) → 𝑄(le‘𝐾)(𝑃 𝑟)))
7953, 73, 78mp2and 699 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑄(le‘𝐾)(𝑃 𝑟))
804, 26latjcl 18363 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑟𝐵) → (𝑃 𝑟) ∈ 𝐵)
8133, 35, 25, 80syl3anc 1373 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃 𝑟) ∈ 𝐵)
824, 5, 26latjle12 18374 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑄𝐵 ∧ (𝑃 𝑟) ∈ 𝐵)) → ((𝑃(le‘𝐾)(𝑃 𝑟) ∧ 𝑄(le‘𝐾)(𝑃 𝑟)) ↔ (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟)))
8333, 35, 58, 81, 82syl13anc 1374 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑃(le‘𝐾)(𝑃 𝑟) ∧ 𝑄(le‘𝐾)(𝑃 𝑟)) ↔ (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟)))
8483adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑃(le‘𝐾)(𝑃 𝑟) ∧ 𝑄(le‘𝐾)(𝑃 𝑟)) ↔ (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟)))
8543, 79, 84mpbi2and 712 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟))
865, 26, 7hlatlej1 39356 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃(le‘𝐾)(𝑃 𝑄))
8723, 12, 56, 86syl3anc 1373 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃(le‘𝐾)(𝑃 𝑄))
8887adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑃(le‘𝐾)(𝑃 𝑄))
894, 5, 26latjle12 18374 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑟𝐵 ∧ (𝑃 𝑄) ∈ 𝐵)) → ((𝑃(le‘𝐾)(𝑃 𝑄) ∧ 𝑟(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)))
9033, 35, 25, 60, 89syl13anc 1374 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑃(le‘𝐾)(𝑃 𝑄) ∧ 𝑟(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)))
9190adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑃(le‘𝐾)(𝑃 𝑄) ∧ 𝑟(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)))
9288, 73, 91mpbi2and 712 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄))
9333, 60, 813jca 1128 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵 ∧ (𝑃 𝑟) ∈ 𝐵))
9493adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵 ∧ (𝑃 𝑟) ∈ 𝐵))
954, 5latasymb 18366 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵 ∧ (𝑃 𝑟) ∈ 𝐵) → (((𝑃 𝑄)(le‘𝐾)(𝑃 𝑟) ∧ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑄) = (𝑃 𝑟)))
9694, 95syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (((𝑃 𝑄)(le‘𝐾)(𝑃 𝑟) ∧ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑄) = (𝑃 𝑟)))
9785, 92, 96mpbi2and 712 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝑃 𝑄) = (𝑃 𝑟))
98 breq2 5099 . . . . . . . . . . . 12 ((𝑃 𝑄) = (𝑃 𝑟) → (𝑋 < (𝑃 𝑄) ↔ 𝑋 < (𝑃 𝑟)))
9998biimpcd 249 . . . . . . . . . . 11 (𝑋 < (𝑃 𝑄) → ((𝑃 𝑄) = (𝑃 𝑟) → 𝑋 < (𝑃 𝑟)))
10099adantr 480 . . . . . . . . . 10 ((𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋) → ((𝑃 𝑄) = (𝑃 𝑟) → 𝑋 < (𝑃 𝑟)))
101100ad2antll 729 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑃 𝑄) = (𝑃 𝑟) → 𝑋 < (𝑃 𝑟)))
10297, 101mpd 15 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑋 < (𝑃 𝑟))
1034, 5, 62, 27cvrnbtwn3 39257 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Poset ∧ (𝑟𝐵 ∧ (𝑃 𝑟) ∈ 𝐵𝑋𝐵) ∧ 𝑟( ⋖ ‘𝐾)(𝑃 𝑟)) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) ↔ 𝑟 = 𝑋))
104103biimpd 229 . . . . . . . . . . . . . 14 ((𝐾 ∈ Poset ∧ (𝑟𝐵 ∧ (𝑃 𝑟) ∈ 𝐵𝑋𝐵) ∧ 𝑟( ⋖ ‘𝐾)(𝑃 𝑟)) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋))
1051043expia 1121 . . . . . . . . . . . . 13 ((𝐾 ∈ Poset ∧ (𝑟𝐵 ∧ (𝑃 𝑟) ∈ 𝐵𝑋𝐵)) → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋)))
10668, 25, 81, 55, 105syl13anc 1374 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋)))
107106exp4a 431 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → (𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑟) → 𝑟 = 𝑋))))
108107com23 86 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → (𝑋 < (𝑃 𝑟) → 𝑟 = 𝑋))))
109108imp4b 421 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ 𝑟(le‘𝐾)𝑋) → ((𝑟( ⋖ ‘𝐾)(𝑃 𝑟) ∧ 𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋))
110109adantrr 717 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑟( ⋖ ‘𝐾)(𝑃 𝑟) ∧ 𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋))
11140, 102, 110mp2and 699 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟 = 𝑋)
112 simpl3 1194 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟𝐴)
113111, 112eqeltrrd 2829 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑋𝐴)
114113exp45 438 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
1151143expa 1118 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
116115rexlimdva 3130 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (∃𝑟𝐴 𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
11710, 116syld 47 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋0 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
118117imp32 418 1 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  Posetcpo 18231  ltcplt 18232  joincjn 18235  0.cp0 18345  Latclat 18355  ccvr 39243  Atomscatm 39244  AtLatcal 39245  HLchlt 39331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-lat 18356  df-clat 18423  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332
This theorem is referenced by:  cvrat  39404
  Copyright terms: Public domain W3C validator