Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvratlem Structured version   Visualization version   GIF version

Theorem cvratlem 39404
Description: Lemma for cvrat 39405. (atcvatlem 32414 analog.) (Contributed by NM, 22-Nov-2011.)
Hypotheses
Ref Expression
cvrat.b 𝐵 = (Base‘𝐾)
cvrat.s < = (lt‘𝐾)
cvrat.j = (join‘𝐾)
cvrat.z 0 = (0.‘𝐾)
cvrat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvratlem (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))

Proof of Theorem cvratlem
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 hlatl 39342 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
21adantr 480 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ AtLat)
3 simpr1 1193 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
4 cvrat.b . . . . . 6 𝐵 = (Base‘𝐾)
5 eqid 2735 . . . . . 6 (le‘𝐾) = (le‘𝐾)
6 cvrat.z . . . . . 6 0 = (0.‘𝐾)
7 cvrat.a . . . . . 6 𝐴 = (Atoms‘𝐾)
84, 5, 6, 7atlex 39298 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑋0 ) → ∃𝑟𝐴 𝑟(le‘𝐾)𝑋)
983expia 1120 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → (𝑋0 → ∃𝑟𝐴 𝑟(le‘𝐾)𝑋))
102, 3, 9syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋0 → ∃𝑟𝐴 𝑟(le‘𝐾)𝑋))
1113ad2ant1 1132 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ AtLat)
12 simp22 1206 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃𝐴)
13 simp3 1137 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑟𝐴)
145, 7atcmp 39293 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑟𝐴) → (𝑃(le‘𝐾)𝑟𝑃 = 𝑟))
1511, 12, 13, 14syl3anc 1370 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃(le‘𝐾)𝑟𝑃 = 𝑟))
16 breq1 5151 . . . . . . . . . . . . . . . . 17 (𝑃 = 𝑟 → (𝑃(le‘𝐾)𝑋𝑟(le‘𝐾)𝑋))
1716biimprd 248 . . . . . . . . . . . . . . . 16 (𝑃 = 𝑟 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋))
1815, 17biimtrdi 253 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃(le‘𝐾)𝑟 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋)))
1918com23 86 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑃(le‘𝐾)𝑟𝑃(le‘𝐾)𝑋)))
20 con3 153 . . . . . . . . . . . . . 14 ((𝑃(le‘𝐾)𝑟𝑃(le‘𝐾)𝑋) → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑃(le‘𝐾)𝑟))
2119, 20syl6 35 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑃(le‘𝐾)𝑟)))
2221impd 410 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋) → ¬ 𝑃(le‘𝐾)𝑟))
23 simp1 1135 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ HL)
244, 7atbase 39271 . . . . . . . . . . . . . 14 (𝑟𝐴𝑟𝐵)
25243ad2ant3 1134 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑟𝐵)
26 cvrat.j . . . . . . . . . . . . . 14 = (join‘𝐾)
27 eqid 2735 . . . . . . . . . . . . . 14 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
284, 5, 26, 27, 7cvr1 39393 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐵𝑃𝐴) → (¬ 𝑃(le‘𝐾)𝑟𝑟( ⋖ ‘𝐾)(𝑟 𝑃)))
2923, 25, 12, 28syl3anc 1370 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (¬ 𝑃(le‘𝐾)𝑟𝑟( ⋖ ‘𝐾)(𝑟 𝑃)))
3022, 29sylibd 239 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋) → 𝑟( ⋖ ‘𝐾)(𝑟 𝑃)))
3130imp 406 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → 𝑟( ⋖ ‘𝐾)(𝑟 𝑃))
32 hllat 39345 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Lat)
33323ad2ant1 1132 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ Lat)
344, 7atbase 39271 . . . . . . . . . . . . 13 (𝑃𝐴𝑃𝐵)
3512, 34syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃𝐵)
364, 26latjcom 18505 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑟𝐵) → (𝑃 𝑟) = (𝑟 𝑃))
3733, 35, 25, 36syl3anc 1370 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃 𝑟) = (𝑟 𝑃))
3837adantr 480 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → (𝑃 𝑟) = (𝑟 𝑃))
3931, 38breqtrrd 5176 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → 𝑟( ⋖ ‘𝐾)(𝑃 𝑟))
4039adantrrl 724 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟( ⋖ ‘𝐾)(𝑃 𝑟))
415, 26, 7hlatlej1 39357 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑟𝐴) → 𝑃(le‘𝐾)(𝑃 𝑟))
4223, 12, 13, 41syl3anc 1370 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃(le‘𝐾)(𝑃 𝑟))
4342adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑃(le‘𝐾)(𝑃 𝑟))
445, 7atcmp 39293 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ AtLat ∧ 𝑟𝐴𝑃𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
4511, 13, 12, 44syl3anc 1370 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
46 breq1 5151 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑃 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋))
4746biimpd 229 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑃 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋))
4845, 47biimtrdi 253 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑃 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋)))
4948com23 86 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑟(le‘𝐾)𝑃𝑃(le‘𝐾)𝑋)))
50 con3 153 . . . . . . . . . . . . . . 15 ((𝑟(le‘𝐾)𝑃𝑃(le‘𝐾)𝑋) → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑟(le‘𝐾)𝑃))
5149, 50syl6 35 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑟(le‘𝐾)𝑃)))
5251imp32 418 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → ¬ 𝑟(le‘𝐾)𝑃)
5352adantrrl 724 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ¬ 𝑟(le‘𝐾)𝑃)
54 simprl 771 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → 𝑟(le‘𝐾)𝑋)
55 simp21 1205 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑋𝐵)
56 simp23 1207 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑄𝐴)
574, 7atbase 39271 . . . . . . . . . . . . . . . . . . 19 (𝑄𝐴𝑄𝐵)
5856, 57syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑄𝐵)
594, 26latjcl 18497 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
6033, 35, 58, 59syl3anc 1370 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃 𝑄) ∈ 𝐵)
6123, 55, 603jca 1127 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵))
62 cvrat.s . . . . . . . . . . . . . . . . . 18 < = (lt‘𝐾)
635, 62pltle 18391 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋 < (𝑃 𝑄) → 𝑋(le‘𝐾)(𝑃 𝑄)))
6463imp 406 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) ∧ 𝑋 < (𝑃 𝑄)) → 𝑋(le‘𝐾)(𝑃 𝑄))
6561, 64sylan 580 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ 𝑋 < (𝑃 𝑄)) → 𝑋(le‘𝐾)(𝑃 𝑄))
6665adantrl 716 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → 𝑋(le‘𝐾)(𝑃 𝑄))
67 hlpos 39348 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ HL → 𝐾 ∈ Poset)
68673ad2ant1 1132 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ Poset)
694, 5postr 18378 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Poset ∧ (𝑟𝐵𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵)) → ((𝑟(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑃 𝑄)) → 𝑟(le‘𝐾)(𝑃 𝑄)))
7068, 25, 55, 60, 69syl13anc 1371 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑟(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑃 𝑄)) → 𝑟(le‘𝐾)(𝑃 𝑄)))
7170adantr 480 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → ((𝑟(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑃 𝑄)) → 𝑟(le‘𝐾)(𝑃 𝑄)))
7254, 66, 71mp2and 699 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → 𝑟(le‘𝐾)(𝑃 𝑄))
7372adantrrr 725 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟(le‘𝐾)(𝑃 𝑄))
744, 5, 26, 7hlexch1 39365 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑃𝐵) ∧ ¬ 𝑟(le‘𝐾)𝑃) → (𝑟(le‘𝐾)(𝑃 𝑄) → 𝑄(le‘𝐾)(𝑃 𝑟)))
75743expia 1120 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑃𝐵)) → (¬ 𝑟(le‘𝐾)𝑃 → (𝑟(le‘𝐾)(𝑃 𝑄) → 𝑄(le‘𝐾)(𝑃 𝑟))))
7675impd 410 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑃𝐵)) → ((¬ 𝑟(le‘𝐾)𝑃𝑟(le‘𝐾)(𝑃 𝑄)) → 𝑄(le‘𝐾)(𝑃 𝑟)))
7723, 13, 56, 35, 76syl13anc 1371 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((¬ 𝑟(le‘𝐾)𝑃𝑟(le‘𝐾)(𝑃 𝑄)) → 𝑄(le‘𝐾)(𝑃 𝑟)))
7877adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((¬ 𝑟(le‘𝐾)𝑃𝑟(le‘𝐾)(𝑃 𝑄)) → 𝑄(le‘𝐾)(𝑃 𝑟)))
7953, 73, 78mp2and 699 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑄(le‘𝐾)(𝑃 𝑟))
804, 26latjcl 18497 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑟𝐵) → (𝑃 𝑟) ∈ 𝐵)
8133, 35, 25, 80syl3anc 1370 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃 𝑟) ∈ 𝐵)
824, 5, 26latjle12 18508 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑄𝐵 ∧ (𝑃 𝑟) ∈ 𝐵)) → ((𝑃(le‘𝐾)(𝑃 𝑟) ∧ 𝑄(le‘𝐾)(𝑃 𝑟)) ↔ (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟)))
8333, 35, 58, 81, 82syl13anc 1371 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑃(le‘𝐾)(𝑃 𝑟) ∧ 𝑄(le‘𝐾)(𝑃 𝑟)) ↔ (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟)))
8483adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑃(le‘𝐾)(𝑃 𝑟) ∧ 𝑄(le‘𝐾)(𝑃 𝑟)) ↔ (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟)))
8543, 79, 84mpbi2and 712 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟))
865, 26, 7hlatlej1 39357 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃(le‘𝐾)(𝑃 𝑄))
8723, 12, 56, 86syl3anc 1370 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃(le‘𝐾)(𝑃 𝑄))
8887adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑃(le‘𝐾)(𝑃 𝑄))
894, 5, 26latjle12 18508 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑟𝐵 ∧ (𝑃 𝑄) ∈ 𝐵)) → ((𝑃(le‘𝐾)(𝑃 𝑄) ∧ 𝑟(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)))
9033, 35, 25, 60, 89syl13anc 1371 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑃(le‘𝐾)(𝑃 𝑄) ∧ 𝑟(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)))
9190adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑃(le‘𝐾)(𝑃 𝑄) ∧ 𝑟(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)))
9288, 73, 91mpbi2and 712 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄))
9333, 60, 813jca 1127 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵 ∧ (𝑃 𝑟) ∈ 𝐵))
9493adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵 ∧ (𝑃 𝑟) ∈ 𝐵))
954, 5latasymb 18500 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵 ∧ (𝑃 𝑟) ∈ 𝐵) → (((𝑃 𝑄)(le‘𝐾)(𝑃 𝑟) ∧ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑄) = (𝑃 𝑟)))
9694, 95syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (((𝑃 𝑄)(le‘𝐾)(𝑃 𝑟) ∧ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑄) = (𝑃 𝑟)))
9785, 92, 96mpbi2and 712 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝑃 𝑄) = (𝑃 𝑟))
98 breq2 5152 . . . . . . . . . . . 12 ((𝑃 𝑄) = (𝑃 𝑟) → (𝑋 < (𝑃 𝑄) ↔ 𝑋 < (𝑃 𝑟)))
9998biimpcd 249 . . . . . . . . . . 11 (𝑋 < (𝑃 𝑄) → ((𝑃 𝑄) = (𝑃 𝑟) → 𝑋 < (𝑃 𝑟)))
10099adantr 480 . . . . . . . . . 10 ((𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋) → ((𝑃 𝑄) = (𝑃 𝑟) → 𝑋 < (𝑃 𝑟)))
101100ad2antll 729 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑃 𝑄) = (𝑃 𝑟) → 𝑋 < (𝑃 𝑟)))
10297, 101mpd 15 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑋 < (𝑃 𝑟))
1034, 5, 62, 27cvrnbtwn3 39258 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Poset ∧ (𝑟𝐵 ∧ (𝑃 𝑟) ∈ 𝐵𝑋𝐵) ∧ 𝑟( ⋖ ‘𝐾)(𝑃 𝑟)) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) ↔ 𝑟 = 𝑋))
104103biimpd 229 . . . . . . . . . . . . . 14 ((𝐾 ∈ Poset ∧ (𝑟𝐵 ∧ (𝑃 𝑟) ∈ 𝐵𝑋𝐵) ∧ 𝑟( ⋖ ‘𝐾)(𝑃 𝑟)) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋))
1051043expia 1120 . . . . . . . . . . . . 13 ((𝐾 ∈ Poset ∧ (𝑟𝐵 ∧ (𝑃 𝑟) ∈ 𝐵𝑋𝐵)) → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋)))
10668, 25, 81, 55, 105syl13anc 1371 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋)))
107106exp4a 431 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → (𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑟) → 𝑟 = 𝑋))))
108107com23 86 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → (𝑋 < (𝑃 𝑟) → 𝑟 = 𝑋))))
109108imp4b 421 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ 𝑟(le‘𝐾)𝑋) → ((𝑟( ⋖ ‘𝐾)(𝑃 𝑟) ∧ 𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋))
110109adantrr 717 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑟( ⋖ ‘𝐾)(𝑃 𝑟) ∧ 𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋))
11140, 102, 110mp2and 699 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟 = 𝑋)
112 simpl3 1192 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟𝐴)
113111, 112eqeltrrd 2840 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑋𝐴)
114113exp45 438 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
1151143expa 1117 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
116115rexlimdva 3153 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (∃𝑟𝐴 𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
11710, 116syld 47 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋0 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
118117imp32 418 1 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  Posetcpo 18365  ltcplt 18366  joincjn 18369  0.cp0 18481  Latclat 18489  ccvr 39244  Atomscatm 39245  AtLatcal 39246  HLchlt 39332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333
This theorem is referenced by:  cvrat  39405
  Copyright terms: Public domain W3C validator