| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp44 | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp44.1 | ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| exp44 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp44.1 | . . 3 ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | exp32 420 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
| 3 | 2 | expd 415 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: wefrc 5648 tz7.7 6378 oalimcl 8572 unbenlem 16928 rnelfm 23891 conway 27763 uspgr2wlkeqi 29628 1pthon2v 30134 spansncvi 31633 atom1d 32334 chirredlem3 32373 finminlem 36336 cvlcvr1 39357 lhpexle2lem 40028 trlord 40588 cdlemkid4 40953 dihord6apre 41275 dihglbcpreN 41319 |
| Copyright terms: Public domain | W3C validator |