MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp44 Structured version   Visualization version   GIF version

Theorem exp44 441
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp44.1 ((𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)) → 𝜏)
Assertion
Ref Expression
exp44 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp44
StepHypRef Expression
1 exp44.1 . . 3 ((𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)) → 𝜏)
21exp32 424 . 2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
32expd 419 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  wefrc  5545  tz7.7  6239  oalimcl  8288  unbenlem  16461  rnelfm  22850  uspgr2wlkeqi  27735  1pthon2v  28236  spansncvi  29733  atom1d  30434  chirredlem3  30473  conway  33730  finminlem  34244  cvlcvr1  37090  lhpexle2lem  37760  trlord  38320  cdlemkid4  38685  dihord6apre  39007  dihglbcpreN  39051
  Copyright terms: Public domain W3C validator