MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp44 Structured version   Visualization version   GIF version

Theorem exp44 439
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp44.1 ((𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)) → 𝜏)
Assertion
Ref Expression
exp44 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp44
StepHypRef Expression
1 exp44.1 . . 3 ((𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)) → 𝜏)
21exp32 422 . 2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
32expd 417 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  wefrc  5671  tz7.7  6391  oalimcl  8560  unbenlem  16841  rnelfm  23457  conway  27300  uspgr2wlkeqi  28905  1pthon2v  29406  spansncvi  30905  atom1d  31606  chirredlem3  31645  finminlem  35203  cvlcvr1  38209  lhpexle2lem  38880  trlord  39440  cdlemkid4  39805  dihord6apre  40127  dihglbcpreN  40171
  Copyright terms: Public domain W3C validator