MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp44 Structured version   Visualization version   GIF version

Theorem exp44 438
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp44.1 ((𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)) → 𝜏)
Assertion
Ref Expression
exp44 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp44
StepHypRef Expression
1 exp44.1 . . 3 ((𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)) → 𝜏)
21exp32 421 . 2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
32expd 416 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  wefrc  5583  tz7.7  6292  oalimcl  8391  unbenlem  16609  rnelfm  23104  uspgr2wlkeqi  28015  1pthon2v  28517  spansncvi  30014  atom1d  30715  chirredlem3  30754  conway  33993  finminlem  34507  cvlcvr1  37353  lhpexle2lem  38023  trlord  38583  cdlemkid4  38948  dihord6apre  39270  dihglbcpreN  39314
  Copyright terms: Public domain W3C validator