| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp44 | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp44.1 | ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| exp44 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp44.1 | . . 3 ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | exp32 420 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
| 3 | 2 | expd 415 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: wefrc 5615 tz7.7 6339 oalimcl 8483 unbenlem 16824 rnelfm 23871 conway 27743 uspgr2wlkeqi 29630 1pthon2v 30137 spansncvi 31636 atom1d 32337 chirredlem3 32376 finminlem 36385 cvlcvr1 39461 lhpexle2lem 40131 trlord 40691 cdlemkid4 41056 dihord6apre 41378 dihglbcpreN 41422 |
| Copyright terms: Public domain | W3C validator |