MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp44 Structured version   Visualization version   GIF version

Theorem exp44 437
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp44.1 ((𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)) → 𝜏)
Assertion
Ref Expression
exp44 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp44
StepHypRef Expression
1 exp44.1 . . 3 ((𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)) → 𝜏)
21exp32 420 . 2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
32expd 415 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  wefrc  5574  tz7.7  6277  oalimcl  8353  unbenlem  16537  rnelfm  23012  uspgr2wlkeqi  27917  1pthon2v  28418  spansncvi  29915  atom1d  30616  chirredlem3  30655  conway  33920  finminlem  34434  cvlcvr1  37280  lhpexle2lem  37950  trlord  38510  cdlemkid4  38875  dihord6apre  39197  dihglbcpreN  39241
  Copyright terms: Public domain W3C validator