| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp44 | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp44.1 | ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| exp44 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp44.1 | . . 3 ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | exp32 420 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
| 3 | 2 | expd 415 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: wefrc 5635 tz7.7 6361 oalimcl 8527 unbenlem 16886 rnelfm 23847 conway 27718 uspgr2wlkeqi 29583 1pthon2v 30089 spansncvi 31588 atom1d 32289 chirredlem3 32328 finminlem 36313 cvlcvr1 39339 lhpexle2lem 40010 trlord 40570 cdlemkid4 40935 dihord6apre 41257 dihglbcpreN 41301 |
| Copyright terms: Public domain | W3C validator |