HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spansncvi Structured version   Visualization version   GIF version

Theorem spansncvi 29915
Description: Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of [Kalmbach] p. 153. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spansncv.1 𝐴C
spansncv.2 𝐵C
spansncv.3 𝐶 ∈ ℋ
Assertion
Ref Expression
spansncvi ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐵 = (𝐴 (span‘{𝐶})))

Proof of Theorem spansncvi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐵 ⊆ (𝐴 (span‘{𝐶})))
2 pssss 4026 . . . 4 (𝐴𝐵𝐴𝐵)
32adantr 480 . . 3 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐴𝐵)
4 pssnel 4401 . . . . . . 7 (𝐴𝐵 → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴))
5 ssel2 3912 . . . . . . . . . . . 12 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐴 (span‘{𝐶})))
6 spansncv.1 . . . . . . . . . . . . . . . 16 𝐴C
7 spansncv.3 . . . . . . . . . . . . . . . 16 𝐶 ∈ ℋ
86, 7spansnji 29909 . . . . . . . . . . . . . . 15 (𝐴 + (span‘{𝐶})) = (𝐴 (span‘{𝐶}))
98eleq2i 2830 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 + (span‘{𝐶})) ↔ 𝑥 ∈ (𝐴 (span‘{𝐶})))
107spansnchi 29825 . . . . . . . . . . . . . . 15 (span‘{𝐶}) ∈ C
116, 10chseli 29722 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 + (span‘{𝐶})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{𝐶})𝑥 = (𝑦 + 𝑧))
129, 11bitr3i 276 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴 (span‘{𝐶})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{𝐶})𝑥 = (𝑦 + 𝑧))
13 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (𝑦 + 𝑧) → (𝑥𝐵 ↔ (𝑦 + 𝑧) ∈ 𝐵))
1413biimpac 478 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥𝐵𝑥 = (𝑦 + 𝑧)) → (𝑦 + 𝑧) ∈ 𝐵)
152sselda 3917 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴𝐵𝑦𝐴) → 𝑦𝐵)
16 spansncv.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐵C
1716chshii 29490 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐵S
18 shsubcl 29483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵S ∧ (𝑦 + 𝑧) ∈ 𝐵𝑦𝐵) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
1917, 18mp3an1 1446 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦 + 𝑧) ∈ 𝐵𝑦𝐵) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
2014, 15, 19syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥𝐵𝑥 = (𝑦 + 𝑧)) ∧ (𝐴𝐵𝑦𝐴)) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
2120exp43 436 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝐵 → (𝑥 = (𝑦 + 𝑧) → (𝐴𝐵 → (𝑦𝐴 → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵))))
2221com14 96 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐴 → (𝑥 = (𝑦 + 𝑧) → (𝐴𝐵 → (𝑥𝐵 → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵))))
2322imp45 429 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐴 ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵))) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
246cheli 29495 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝐴𝑦 ∈ ℋ)
2510cheli 29495 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ (span‘{𝐶}) → 𝑧 ∈ ℋ)
26 hvpncan2 29303 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) − 𝑦) = 𝑧)
2724, 25, 26syl2an 595 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → ((𝑦 + 𝑧) − 𝑦) = 𝑧)
2827eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → (((𝑦 + 𝑧) − 𝑦) ∈ 𝐵𝑧𝐵))
2923, 28syl5ib 243 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → ((𝑦𝐴 ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵))) → 𝑧𝐵))
3029imp 406 . . . . . . . . . . . . . . . . . . . 20 (((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ (𝑦𝐴 ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵)))) → 𝑧𝐵)
3130anandis 674 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝐴 ∧ (𝑧 ∈ (span‘{𝐶}) ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵)))) → 𝑧𝐵)
3231exp45 438 . . . . . . . . . . . . . . . . . 18 (𝑦𝐴 → (𝑧 ∈ (span‘{𝐶}) → (𝑥 = (𝑦 + 𝑧) → ((𝐴𝐵𝑥𝐵) → 𝑧𝐵))))
3332imp41 425 . . . . . . . . . . . . . . . . 17 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ (𝐴𝐵𝑥𝐵)) → 𝑧𝐵)
3433adantrr 713 . . . . . . . . . . . . . . . 16 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ((𝐴𝐵𝑥𝐵) ∧ ¬ 𝑥𝐴)) → 𝑧𝐵)
35 oveq2 7263 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 0 → (𝑦 + 𝑧) = (𝑦 + 0))
36 ax-hvaddid 29267 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℋ → (𝑦 + 0) = 𝑦)
3724, 36syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝐴 → (𝑦 + 0) = 𝑦)
3835, 37sylan9eqr 2801 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦𝐴𝑧 = 0) → (𝑦 + 𝑧) = 𝑦)
3938eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑧 = 0) → (𝑥 = (𝑦 + 𝑧) ↔ 𝑥 = 𝑦))
40 eleq1a 2834 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦𝐴 → (𝑥 = 𝑦𝑥𝐴))
4140adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑧 = 0) → (𝑥 = 𝑦𝑥𝐴))
4239, 41sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝐴𝑧 = 0) → (𝑥 = (𝑦 + 𝑧) → 𝑥𝐴))
4342impancom 451 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝐴𝑥 = (𝑦 + 𝑧)) → (𝑧 = 0𝑥𝐴))
4443necon3bd 2956 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐴𝑥 = (𝑦 + 𝑧)) → (¬ 𝑥𝐴𝑧 ≠ 0))
4544imp 406 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦𝐴𝑥 = (𝑦 + 𝑧)) ∧ ¬ 𝑥𝐴) → 𝑧 ≠ 0)
46 spansnss 29834 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵S𝑧𝐵) → (span‘{𝑧}) ⊆ 𝐵)
4717, 46mpan 686 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝐵 → (span‘{𝑧}) ⊆ 𝐵)
48 spansneleq 29833 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐶 ∈ ℋ ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝐶}) → (span‘{𝑧}) = (span‘{𝐶})))
497, 48mpan 686 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ≠ 0 → (𝑧 ∈ (span‘{𝐶}) → (span‘{𝑧}) = (span‘{𝐶})))
5049imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ≠ 0𝑧 ∈ (span‘{𝐶})) → (span‘{𝑧}) = (span‘{𝐶}))
5150sseq1d 3948 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ≠ 0𝑧 ∈ (span‘{𝐶})) → ((span‘{𝑧}) ⊆ 𝐵 ↔ (span‘{𝐶}) ⊆ 𝐵))
5247, 51syl5ib 243 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ≠ 0𝑧 ∈ (span‘{𝐶})) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5352ancoms 458 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ (span‘{𝐶}) ∧ 𝑧 ≠ 0) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5445, 53sylan2 592 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ (span‘{𝐶}) ∧ ((𝑦𝐴𝑥 = (𝑦 + 𝑧)) ∧ ¬ 𝑥𝐴)) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5554exp44 437 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (span‘{𝐶}) → (𝑦𝐴 → (𝑥 = (𝑦 + 𝑧) → (¬ 𝑥𝐴 → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵)))))
5655com12 32 . . . . . . . . . . . . . . . . . 18 (𝑦𝐴 → (𝑧 ∈ (span‘{𝐶}) → (𝑥 = (𝑦 + 𝑧) → (¬ 𝑥𝐴 → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵)))))
5756imp41 425 . . . . . . . . . . . . . . . . 17 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ¬ 𝑥𝐴) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5857adantrl 712 . . . . . . . . . . . . . . . 16 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ((𝐴𝐵𝑥𝐵) ∧ ¬ 𝑥𝐴)) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5934, 58mpd 15 . . . . . . . . . . . . . . 15 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ((𝐴𝐵𝑥𝐵) ∧ ¬ 𝑥𝐴)) → (span‘{𝐶}) ⊆ 𝐵)
6059exp43 436 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → (𝑥 = (𝑦 + 𝑧) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵))))
6160rexlimivv 3220 . . . . . . . . . . . . 13 (∃𝑦𝐴𝑧 ∈ (span‘{𝐶})𝑥 = (𝑦 + 𝑧) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵)))
6212, 61sylbi 216 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 (span‘{𝐶})) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵)))
635, 62syl 17 . . . . . . . . . . 11 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝑥𝐵) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵)))
6463imp 406 . . . . . . . . . 10 (((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝑥𝐵) ∧ (𝐴𝐵𝑥𝐵)) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵))
6564anandirs 675 . . . . . . . . 9 (((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) ∧ 𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵))
6665expimpd 453 . . . . . . . 8 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) → ((𝑥𝐵 ∧ ¬ 𝑥𝐴) → (span‘{𝐶}) ⊆ 𝐵))
6766exlimdv 1937 . . . . . . 7 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) → (∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴) → (span‘{𝐶}) ⊆ 𝐵))
684, 67syl5 34 . . . . . 6 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) → (𝐴𝐵 → (span‘{𝐶}) ⊆ 𝐵))
6968ex 412 . . . . 5 (𝐵 ⊆ (𝐴 (span‘{𝐶})) → (𝐴𝐵 → (𝐴𝐵 → (span‘{𝐶}) ⊆ 𝐵)))
7069pm2.43d 53 . . . 4 (𝐵 ⊆ (𝐴 (span‘{𝐶})) → (𝐴𝐵 → (span‘{𝐶}) ⊆ 𝐵))
7170impcom 407 . . 3 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → (span‘{𝐶}) ⊆ 𝐵)
726, 10, 16chlubii 29735 . . 3 ((𝐴𝐵 ∧ (span‘{𝐶}) ⊆ 𝐵) → (𝐴 (span‘{𝐶})) ⊆ 𝐵)
733, 71, 72syl2anc 583 . 2 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → (𝐴 (span‘{𝐶})) ⊆ 𝐵)
741, 73eqssd 3934 1 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐵 = (𝐴 (span‘{𝐶})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  wrex 3064  wss 3883  wpss 3884  {csn 4558  cfv 6418  (class class class)co 7255  chba 29182   + cva 29183  0c0v 29187   cmv 29188   S csh 29191   C cch 29192   + cph 29194  spancspn 29195   chj 29196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348  ax-hcompl 29465
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-lm 22288  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cfil 24324  df-cau 24325  df-cmet 24326  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-ims 28864  df-dip 28964  df-ssp 28985  df-ph 29076  df-cbn 29126  df-hnorm 29231  df-hba 29232  df-hvsub 29234  df-hlim 29235  df-hcau 29236  df-sh 29470  df-ch 29484  df-oc 29515  df-ch0 29516  df-shs 29571  df-span 29572  df-chj 29573  df-pjh 29658
This theorem is referenced by:  spansncv  29916
  Copyright terms: Public domain W3C validator