HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spansncvi Structured version   Visualization version   GIF version

Theorem spansncvi 31631
Description: Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of [Kalmbach] p. 153. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spansncv.1 𝐴C
spansncv.2 𝐵C
spansncv.3 𝐶 ∈ ℋ
Assertion
Ref Expression
spansncvi ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐵 = (𝐴 (span‘{𝐶})))

Proof of Theorem spansncvi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐵 ⊆ (𝐴 (span‘{𝐶})))
2 pssss 4057 . . . 4 (𝐴𝐵𝐴𝐵)
32adantr 480 . . 3 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐴𝐵)
4 pssnel 4430 . . . . . . 7 (𝐴𝐵 → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴))
5 ssel2 3938 . . . . . . . . . . . 12 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐴 (span‘{𝐶})))
6 spansncv.1 . . . . . . . . . . . . . . . 16 𝐴C
7 spansncv.3 . . . . . . . . . . . . . . . 16 𝐶 ∈ ℋ
86, 7spansnji 31625 . . . . . . . . . . . . . . 15 (𝐴 + (span‘{𝐶})) = (𝐴 (span‘{𝐶}))
98eleq2i 2820 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 + (span‘{𝐶})) ↔ 𝑥 ∈ (𝐴 (span‘{𝐶})))
107spansnchi 31541 . . . . . . . . . . . . . . 15 (span‘{𝐶}) ∈ C
116, 10chseli 31438 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴 + (span‘{𝐶})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{𝐶})𝑥 = (𝑦 + 𝑧))
129, 11bitr3i 277 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴 (span‘{𝐶})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{𝐶})𝑥 = (𝑦 + 𝑧))
13 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (𝑦 + 𝑧) → (𝑥𝐵 ↔ (𝑦 + 𝑧) ∈ 𝐵))
1413biimpac 478 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥𝐵𝑥 = (𝑦 + 𝑧)) → (𝑦 + 𝑧) ∈ 𝐵)
152sselda 3943 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴𝐵𝑦𝐴) → 𝑦𝐵)
16 spansncv.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐵C
1716chshii 31206 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐵S
18 shsubcl 31199 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵S ∧ (𝑦 + 𝑧) ∈ 𝐵𝑦𝐵) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
1917, 18mp3an1 1450 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦 + 𝑧) ∈ 𝐵𝑦𝐵) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
2014, 15, 19syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥𝐵𝑥 = (𝑦 + 𝑧)) ∧ (𝐴𝐵𝑦𝐴)) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
2120exp43 436 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝐵 → (𝑥 = (𝑦 + 𝑧) → (𝐴𝐵 → (𝑦𝐴 → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵))))
2221com14 96 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐴 → (𝑥 = (𝑦 + 𝑧) → (𝐴𝐵 → (𝑥𝐵 → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵))))
2322imp45 429 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐴 ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵))) → ((𝑦 + 𝑧) − 𝑦) ∈ 𝐵)
246cheli 31211 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝐴𝑦 ∈ ℋ)
2510cheli 31211 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ (span‘{𝐶}) → 𝑧 ∈ ℋ)
26 hvpncan2 31019 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑦 + 𝑧) − 𝑦) = 𝑧)
2724, 25, 26syl2an 596 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → ((𝑦 + 𝑧) − 𝑦) = 𝑧)
2827eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → (((𝑦 + 𝑧) − 𝑦) ∈ 𝐵𝑧𝐵))
2923, 28imbitrid 244 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → ((𝑦𝐴 ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵))) → 𝑧𝐵))
3029imp 406 . . . . . . . . . . . . . . . . . . . 20 (((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ (𝑦𝐴 ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵)))) → 𝑧𝐵)
3130anandis 678 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝐴 ∧ (𝑧 ∈ (span‘{𝐶}) ∧ (𝑥 = (𝑦 + 𝑧) ∧ (𝐴𝐵𝑥𝐵)))) → 𝑧𝐵)
3231exp45 438 . . . . . . . . . . . . . . . . . 18 (𝑦𝐴 → (𝑧 ∈ (span‘{𝐶}) → (𝑥 = (𝑦 + 𝑧) → ((𝐴𝐵𝑥𝐵) → 𝑧𝐵))))
3332imp41 425 . . . . . . . . . . . . . . . . 17 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ (𝐴𝐵𝑥𝐵)) → 𝑧𝐵)
3433adantrr 717 . . . . . . . . . . . . . . . 16 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ((𝐴𝐵𝑥𝐵) ∧ ¬ 𝑥𝐴)) → 𝑧𝐵)
35 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 0 → (𝑦 + 𝑧) = (𝑦 + 0))
36 ax-hvaddid 30983 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℋ → (𝑦 + 0) = 𝑦)
3724, 36syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝐴 → (𝑦 + 0) = 𝑦)
3835, 37sylan9eqr 2786 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦𝐴𝑧 = 0) → (𝑦 + 𝑧) = 𝑦)
3938eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑧 = 0) → (𝑥 = (𝑦 + 𝑧) ↔ 𝑥 = 𝑦))
40 eleq1a 2823 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦𝐴 → (𝑥 = 𝑦𝑥𝐴))
4140adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝐴𝑧 = 0) → (𝑥 = 𝑦𝑥𝐴))
4239, 41sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝐴𝑧 = 0) → (𝑥 = (𝑦 + 𝑧) → 𝑥𝐴))
4342impancom 451 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝐴𝑥 = (𝑦 + 𝑧)) → (𝑧 = 0𝑥𝐴))
4443necon3bd 2939 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐴𝑥 = (𝑦 + 𝑧)) → (¬ 𝑥𝐴𝑧 ≠ 0))
4544imp 406 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦𝐴𝑥 = (𝑦 + 𝑧)) ∧ ¬ 𝑥𝐴) → 𝑧 ≠ 0)
46 spansnss 31550 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵S𝑧𝐵) → (span‘{𝑧}) ⊆ 𝐵)
4717, 46mpan 690 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝐵 → (span‘{𝑧}) ⊆ 𝐵)
48 spansneleq 31549 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐶 ∈ ℋ ∧ 𝑧 ≠ 0) → (𝑧 ∈ (span‘{𝐶}) → (span‘{𝑧}) = (span‘{𝐶})))
497, 48mpan 690 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ≠ 0 → (𝑧 ∈ (span‘{𝐶}) → (span‘{𝑧}) = (span‘{𝐶})))
5049imp 406 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ≠ 0𝑧 ∈ (span‘{𝐶})) → (span‘{𝑧}) = (span‘{𝐶}))
5150sseq1d 3975 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ≠ 0𝑧 ∈ (span‘{𝐶})) → ((span‘{𝑧}) ⊆ 𝐵 ↔ (span‘{𝐶}) ⊆ 𝐵))
5247, 51imbitrid 244 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ≠ 0𝑧 ∈ (span‘{𝐶})) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5352ancoms 458 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ (span‘{𝐶}) ∧ 𝑧 ≠ 0) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5445, 53sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ (span‘{𝐶}) ∧ ((𝑦𝐴𝑥 = (𝑦 + 𝑧)) ∧ ¬ 𝑥𝐴)) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5554exp44 437 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (span‘{𝐶}) → (𝑦𝐴 → (𝑥 = (𝑦 + 𝑧) → (¬ 𝑥𝐴 → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵)))))
5655com12 32 . . . . . . . . . . . . . . . . . 18 (𝑦𝐴 → (𝑧 ∈ (span‘{𝐶}) → (𝑥 = (𝑦 + 𝑧) → (¬ 𝑥𝐴 → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵)))))
5756imp41 425 . . . . . . . . . . . . . . . . 17 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ¬ 𝑥𝐴) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5857adantrl 716 . . . . . . . . . . . . . . . 16 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ((𝐴𝐵𝑥𝐵) ∧ ¬ 𝑥𝐴)) → (𝑧𝐵 → (span‘{𝐶}) ⊆ 𝐵))
5934, 58mpd 15 . . . . . . . . . . . . . . 15 ((((𝑦𝐴𝑧 ∈ (span‘{𝐶})) ∧ 𝑥 = (𝑦 + 𝑧)) ∧ ((𝐴𝐵𝑥𝐵) ∧ ¬ 𝑥𝐴)) → (span‘{𝐶}) ⊆ 𝐵)
6059exp43 436 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑧 ∈ (span‘{𝐶})) → (𝑥 = (𝑦 + 𝑧) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵))))
6160rexlimivv 3177 . . . . . . . . . . . . 13 (∃𝑦𝐴𝑧 ∈ (span‘{𝐶})𝑥 = (𝑦 + 𝑧) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵)))
6212, 61sylbi 217 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴 (span‘{𝐶})) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵)))
635, 62syl 17 . . . . . . . . . . 11 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝑥𝐵) → ((𝐴𝐵𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵)))
6463imp 406 . . . . . . . . . 10 (((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝑥𝐵) ∧ (𝐴𝐵𝑥𝐵)) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵))
6564anandirs 679 . . . . . . . . 9 (((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) ∧ 𝑥𝐵) → (¬ 𝑥𝐴 → (span‘{𝐶}) ⊆ 𝐵))
6665expimpd 453 . . . . . . . 8 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) → ((𝑥𝐵 ∧ ¬ 𝑥𝐴) → (span‘{𝐶}) ⊆ 𝐵))
6766exlimdv 1933 . . . . . . 7 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) → (∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐴) → (span‘{𝐶}) ⊆ 𝐵))
684, 67syl5 34 . . . . . 6 ((𝐵 ⊆ (𝐴 (span‘{𝐶})) ∧ 𝐴𝐵) → (𝐴𝐵 → (span‘{𝐶}) ⊆ 𝐵))
6968ex 412 . . . . 5 (𝐵 ⊆ (𝐴 (span‘{𝐶})) → (𝐴𝐵 → (𝐴𝐵 → (span‘{𝐶}) ⊆ 𝐵)))
7069pm2.43d 53 . . . 4 (𝐵 ⊆ (𝐴 (span‘{𝐶})) → (𝐴𝐵 → (span‘{𝐶}) ⊆ 𝐵))
7170impcom 407 . . 3 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → (span‘{𝐶}) ⊆ 𝐵)
726, 10, 16chlubii 31451 . . 3 ((𝐴𝐵 ∧ (span‘{𝐶}) ⊆ 𝐵) → (𝐴 (span‘{𝐶})) ⊆ 𝐵)
733, 71, 72syl2anc 584 . 2 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → (𝐴 (span‘{𝐶})) ⊆ 𝐵)
741, 73eqssd 3961 1 ((𝐴𝐵𝐵 ⊆ (𝐴 (span‘{𝐶}))) → 𝐵 = (𝐴 (span‘{𝐶})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  wss 3911  wpss 3912  {csn 4585  cfv 6499  (class class class)co 7369  chba 30898   + cva 30899  0c0v 30903   cmv 30904   S csh 30907   C cch 30908   + cph 30910  spancspn 30911   chj 30912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124  ax-hilex 30978  ax-hfvadd 30979  ax-hvcom 30980  ax-hvass 30981  ax-hv0cl 30982  ax-hvaddid 30983  ax-hfvmul 30984  ax-hvmulid 30985  ax-hvmulass 30986  ax-hvdistr1 30987  ax-hvdistr2 30988  ax-hvmul0 30989  ax-hfi 31058  ax-his1 31061  ax-his2 31062  ax-his3 31063  ax-his4 31064  ax-hcompl 31181
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-cn 23147  df-cnp 23148  df-lm 23149  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cfil 25188  df-cau 25189  df-cmet 25190  df-grpo 30472  df-gid 30473  df-ginv 30474  df-gdiv 30475  df-ablo 30524  df-vc 30538  df-nv 30571  df-va 30574  df-ba 30575  df-sm 30576  df-0v 30577  df-vs 30578  df-nmcv 30579  df-ims 30580  df-dip 30680  df-ssp 30701  df-ph 30792  df-cbn 30842  df-hnorm 30947  df-hba 30948  df-hvsub 30950  df-hlim 30951  df-hcau 30952  df-sh 31186  df-ch 31200  df-oc 31231  df-ch0 31232  df-shs 31287  df-span 31288  df-chj 31289  df-pjh 31374
This theorem is referenced by:  spansncv  31632
  Copyright terms: Public domain W3C validator