Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp4d | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp4d.1 | ⊢ (𝜑 → ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏)) |
Ref | Expression |
---|---|
exp4d | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp4d.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏)) | |
2 | 1 | expd 419 | . 2 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
3 | 2 | exp4a 435 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: tfrlem9 8121 omass 8308 pssnn 8846 pssnnOLD 8895 cardinfima 9711 ltexprlem7 10656 facdiv 13853 infpnlem1 16463 atcvatlem 30466 mdsymlem5 30488 mdsymlem7 30490 btwnconn1lem11 34136 exp5k 34230 |
Copyright terms: Public domain | W3C validator |