MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpnlem1 Structured version   Visualization version   GIF version

Theorem infpnlem1 16957
Description: Lemma for infpn 16959. The smallest divisor (greater than 1) 𝑀 of 𝑁! + 1 is a prime greater than 𝑁. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpnlem.1 𝐾 = ((!‘𝑁) + 1)
Assertion
Ref Expression
infpnlem1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → (𝑁 < 𝑀 ∧ ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)))))
Distinct variable groups:   𝑗,𝑁   𝑗,𝑀   𝑗,𝐾

Proof of Theorem infpnlem1
StepHypRef Expression
1 nnre 12300 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
2 nnre 12300 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3 lenlt 11368 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
41, 2, 3syl2anr 596 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
54adantr 480 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
6 nnnn0 12560 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
7 facndiv 14337 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ (1 < 𝑀𝑀𝑁)) → ¬ (((!‘𝑁) + 1) / 𝑀) ∈ ℤ)
8 infpnlem.1 . . . . . . . . . . 11 𝐾 = ((!‘𝑁) + 1)
98oveq1i 7458 . . . . . . . . . 10 (𝐾 / 𝑀) = (((!‘𝑁) + 1) / 𝑀)
10 nnz 12660 . . . . . . . . . 10 ((𝐾 / 𝑀) ∈ ℕ → (𝐾 / 𝑀) ∈ ℤ)
119, 10eqeltrrid 2849 . . . . . . . . 9 ((𝐾 / 𝑀) ∈ ℕ → (((!‘𝑁) + 1) / 𝑀) ∈ ℤ)
127, 11nsyl 140 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ (1 < 𝑀𝑀𝑁)) → ¬ (𝐾 / 𝑀) ∈ ℕ)
136, 12sylanl1 679 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (1 < 𝑀𝑀𝑁)) → ¬ (𝐾 / 𝑀) ∈ ℕ)
1413expr 456 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → (𝑀𝑁 → ¬ (𝐾 / 𝑀) ∈ ℕ))
155, 14sylbird 260 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → (¬ 𝑁 < 𝑀 → ¬ (𝐾 / 𝑀) ∈ ℕ))
1615con4d 115 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → ((𝐾 / 𝑀) ∈ ℕ → 𝑁 < 𝑀))
1716expimpd 453 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) → 𝑁 < 𝑀))
1817adantrd 491 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → 𝑁 < 𝑀))
196faccld 14333 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
2019peano2nnd 12310 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((!‘𝑁) + 1) ∈ ℕ)
218, 20eqeltrid 2848 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝐾 ∈ ℕ)
2221nncnd 12309 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝐾 ∈ ℂ)
23 nndivtr 12340 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐾 ∈ ℂ) ∧ ((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ)) → (𝐾 / 𝑗) ∈ ℕ)
2423ex 412 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐾 ∈ ℂ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
25243com13 1124 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
26253expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
2722, 26sylanl1 679 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
2827adantrl 715 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
29 nnre 12300 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
30 letri3 11375 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑗 = 𝑀 ↔ (𝑗𝑀𝑀𝑗)))
3129, 1, 30syl2an 595 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑗 = 𝑀 ↔ (𝑗𝑀𝑀𝑗)))
3231biimprd 248 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝑗𝑀𝑀𝑗) → 𝑗 = 𝑀))
3332exp4b 430 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → (𝑀 ∈ ℕ → (𝑗𝑀 → (𝑀𝑗𝑗 = 𝑀))))
3433com3l 89 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → (𝑗𝑀 → (𝑗 ∈ ℕ → (𝑀𝑗𝑗 = 𝑀))))
3534imp32 418 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (𝑀𝑗𝑗 = 𝑀))
3635adantll 713 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (𝑀𝑗𝑗 = 𝑀))
3736imim2d 57 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
3837com23 86 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))
3928, 38sylan2d 604 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → ((1 < 𝑗 ∧ ((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ)) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))
4039exp4d 433 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (1 < 𝑗 → ((𝑀 / 𝑗) ∈ ℕ → ((𝐾 / 𝑀) ∈ ℕ → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
4140com24 95 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → ((𝐾 / 𝑀) ∈ ℕ → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
4241exp32 420 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑗𝑀 → (𝑗 ∈ ℕ → ((𝐾 / 𝑀) ∈ ℕ → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))))
4342com24 95 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝐾 / 𝑀) ∈ ℕ → (𝑗 ∈ ℕ → (𝑗𝑀 → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))))
4443imp31 417 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝑗𝑀 → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
4544com14 96 . . . . . . . . 9 (1 < 𝑗 → (𝑗𝑀 → ((𝑀 / 𝑗) ∈ ℕ → ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
46453imp 1111 . . . . . . . 8 ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))
4746com3l 89 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
4847ralimdva 3173 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) → (∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
4948ex 412 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝐾 / 𝑀) ∈ ℕ → (∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀))))
5049adantld 490 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) → (∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀))))
5150impd 410 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
52 prime 12724 . . . 4 (𝑀 ∈ ℕ → (∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)) ↔ ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
5352adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)) ↔ ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
5451, 53sylibrd 259 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀))))
5518, 54jcad 512 1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → (𝑁 < 𝑀 ∧ ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  1c1 11185   + caddc 11187   < clt 11324  cle 11325   / cdiv 11947  cn 12293  0cn0 12553  cz 12639  !cfa 14322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-fac 14323
This theorem is referenced by:  infpnlem2  16958
  Copyright terms: Public domain W3C validator