MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpnlem1 Structured version   Visualization version   GIF version

Theorem infpnlem1 16315
Description: Lemma for infpn 16317. The smallest divisor (greater than 1) 𝑀 of 𝑁! + 1 is a prime greater than 𝑁. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpnlem.1 𝐾 = ((!‘𝑁) + 1)
Assertion
Ref Expression
infpnlem1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → (𝑁 < 𝑀 ∧ ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)))))
Distinct variable groups:   𝑗,𝑁   𝑗,𝑀   𝑗,𝐾

Proof of Theorem infpnlem1
StepHypRef Expression
1 nnre 11694 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
2 nnre 11694 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3 lenlt 10770 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
41, 2, 3syl2anr 599 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
54adantr 484 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
6 nnnn0 11954 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
7 facndiv 13711 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ (1 < 𝑀𝑀𝑁)) → ¬ (((!‘𝑁) + 1) / 𝑀) ∈ ℤ)
8 infpnlem.1 . . . . . . . . . . 11 𝐾 = ((!‘𝑁) + 1)
98oveq1i 7166 . . . . . . . . . 10 (𝐾 / 𝑀) = (((!‘𝑁) + 1) / 𝑀)
10 nnz 12056 . . . . . . . . . 10 ((𝐾 / 𝑀) ∈ ℕ → (𝐾 / 𝑀) ∈ ℤ)
119, 10eqeltrrid 2857 . . . . . . . . 9 ((𝐾 / 𝑀) ∈ ℕ → (((!‘𝑁) + 1) / 𝑀) ∈ ℤ)
127, 11nsyl 142 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ (1 < 𝑀𝑀𝑁)) → ¬ (𝐾 / 𝑀) ∈ ℕ)
136, 12sylanl1 679 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (1 < 𝑀𝑀𝑁)) → ¬ (𝐾 / 𝑀) ∈ ℕ)
1413expr 460 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → (𝑀𝑁 → ¬ (𝐾 / 𝑀) ∈ ℕ))
155, 14sylbird 263 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → (¬ 𝑁 < 𝑀 → ¬ (𝐾 / 𝑀) ∈ ℕ))
1615con4d 115 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 < 𝑀) → ((𝐾 / 𝑀) ∈ ℕ → 𝑁 < 𝑀))
1716expimpd 457 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) → 𝑁 < 𝑀))
1817adantrd 495 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → 𝑁 < 𝑀))
196faccld 13707 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
2019peano2nnd 11704 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → ((!‘𝑁) + 1) ∈ ℕ)
218, 20eqeltrid 2856 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝐾 ∈ ℕ)
2221nncnd 11703 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝐾 ∈ ℂ)
23 nndivtr 11734 . . . . . . . . . . . . . . . . . . . . 21 (((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐾 ∈ ℂ) ∧ ((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ)) → (𝐾 / 𝑗) ∈ ℕ)
2423ex 416 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐾 ∈ ℂ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
25243com13 1121 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
26253expa 1115 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
2722, 26sylanl1 679 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
2827adantrl 715 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ))
29 nnre 11694 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
30 letri3 10777 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑗 = 𝑀 ↔ (𝑗𝑀𝑀𝑗)))
3129, 1, 30syl2an 598 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑗 = 𝑀 ↔ (𝑗𝑀𝑀𝑗)))
3231biimprd 251 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝑗𝑀𝑀𝑗) → 𝑗 = 𝑀))
3332exp4b 434 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → (𝑀 ∈ ℕ → (𝑗𝑀 → (𝑀𝑗𝑗 = 𝑀))))
3433com3l 89 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → (𝑗𝑀 → (𝑗 ∈ ℕ → (𝑀𝑗𝑗 = 𝑀))))
3534imp32 422 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (𝑀𝑗𝑗 = 𝑀))
3635adantll 713 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (𝑀𝑗𝑗 = 𝑀))
3736imim2d 57 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
3837com23 86 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))
3928, 38sylan2d 607 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → ((1 < 𝑗 ∧ ((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ)) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))
4039exp4d 437 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → (1 < 𝑗 → ((𝑀 / 𝑗) ∈ ℕ → ((𝐾 / 𝑀) ∈ ℕ → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
4140com24 95 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗𝑀𝑗 ∈ ℕ)) → ((𝐾 / 𝑀) ∈ ℕ → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
4241exp32 424 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑗𝑀 → (𝑗 ∈ ℕ → ((𝐾 / 𝑀) ∈ ℕ → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))))
4342com24 95 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝐾 / 𝑀) ∈ ℕ → (𝑗 ∈ ℕ → (𝑗𝑀 → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))))
4443imp31 421 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝑗𝑀 → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
4544com14 96 . . . . . . . . 9 (1 < 𝑗 → (𝑗𝑀 → ((𝑀 / 𝑗) ∈ ℕ → ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))))
46453imp 1108 . . . . . . . 8 ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → 𝑗 = 𝑀)))
4746com3l 89 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
4847ralimdva 3108 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) → (∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
4948ex 416 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝐾 / 𝑀) ∈ ℕ → (∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀))))
5049adantld 494 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) → (∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀))))
5150impd 414 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
52 prime 12115 . . . 4 (𝑀 ∈ ℕ → (∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)) ↔ ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
5352adantl 485 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)) ↔ ∀𝑗 ∈ ℕ ((1 < 𝑗𝑗𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))
5451, 53sylibrd 262 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀))))
5518, 54jcad 516 1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1 < 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀𝑗)) → (𝑁 < 𝑀 ∧ ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wral 3070   class class class wbr 5036  cfv 6340  (class class class)co 7156  cc 10586  cr 10587  1c1 10589   + caddc 10591   < clt 10726  cle 10727   / cdiv 11348  cn 11687  0cn0 11947  cz 12033  !cfa 13696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-n0 11948  df-z 12034  df-uz 12296  df-seq 13432  df-fac 13697
This theorem is referenced by:  infpnlem2  16316
  Copyright terms: Public domain W3C validator