Proof of Theorem infpnlem1
Step | Hyp | Ref
| Expression |
1 | | nnre 11910 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℝ) |
2 | | nnre 11910 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
3 | | lenlt 10984 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) |
4 | 1, 2, 3 | syl2anr 596 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) |
5 | 4 | adantr 480 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 <
𝑀) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) |
6 | | nnnn0 12170 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
7 | | facndiv 13930 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
∧ (1 < 𝑀 ∧ 𝑀 ≤ 𝑁)) → ¬ (((!‘𝑁) + 1) / 𝑀) ∈ ℤ) |
8 | | infpnlem.1 |
. . . . . . . . . . 11
⊢ 𝐾 = ((!‘𝑁) + 1) |
9 | 8 | oveq1i 7265 |
. . . . . . . . . 10
⊢ (𝐾 / 𝑀) = (((!‘𝑁) + 1) / 𝑀) |
10 | | nnz 12272 |
. . . . . . . . . 10
⊢ ((𝐾 / 𝑀) ∈ ℕ → (𝐾 / 𝑀) ∈ ℤ) |
11 | 9, 10 | eqeltrrid 2844 |
. . . . . . . . 9
⊢ ((𝐾 / 𝑀) ∈ ℕ → (((!‘𝑁) + 1) / 𝑀) ∈ ℤ) |
12 | 7, 11 | nsyl 140 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝑀 ∈ ℕ)
∧ (1 < 𝑀 ∧ 𝑀 ≤ 𝑁)) → ¬ (𝐾 / 𝑀) ∈ ℕ) |
13 | 6, 12 | sylanl1 676 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (1 <
𝑀 ∧ 𝑀 ≤ 𝑁)) → ¬ (𝐾 / 𝑀) ∈ ℕ) |
14 | 13 | expr 456 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 <
𝑀) → (𝑀 ≤ 𝑁 → ¬ (𝐾 / 𝑀) ∈ ℕ)) |
15 | 5, 14 | sylbird 259 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 <
𝑀) → (¬ 𝑁 < 𝑀 → ¬ (𝐾 / 𝑀) ∈ ℕ)) |
16 | 15 | con4d 115 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 1 <
𝑀) → ((𝐾 / 𝑀) ∈ ℕ → 𝑁 < 𝑀)) |
17 | 16 | expimpd 453 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((1 <
𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) → 𝑁 < 𝑀)) |
18 | 17 | adantrd 491 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1
< 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗)) → 𝑁 < 𝑀)) |
19 | 6 | faccld 13926 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ →
(!‘𝑁) ∈
ℕ) |
20 | 19 | peano2nnd 11920 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ →
((!‘𝑁) + 1) ∈
ℕ) |
21 | 8, 20 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ → 𝐾 ∈
ℕ) |
22 | 21 | nncnd 11919 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ → 𝐾 ∈
ℂ) |
23 | | nndivtr 11950 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐾 ∈ ℂ) ∧ ((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ)) → (𝐾 / 𝑗) ∈ ℕ) |
24 | 23 | ex 412 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐾 ∈ ℂ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ)) |
25 | 24 | 3com13 1122 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ)) |
26 | 25 | 3expa 1116 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ)) |
27 | 22, 26 | sylanl1 676 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ)) |
28 | 27 | adantrl 712 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗 ≤ 𝑀 ∧ 𝑗 ∈ ℕ)) → (((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ) → (𝐾 / 𝑗) ∈ ℕ)) |
29 | | nnre 11910 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℝ) |
30 | | letri3 10991 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑗 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑗 = 𝑀 ↔ (𝑗 ≤ 𝑀 ∧ 𝑀 ≤ 𝑗))) |
31 | 29, 1, 30 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑗 = 𝑀 ↔ (𝑗 ≤ 𝑀 ∧ 𝑀 ≤ 𝑗))) |
32 | 31 | biimprd 247 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑗 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝑗 ≤ 𝑀 ∧ 𝑀 ≤ 𝑗) → 𝑗 = 𝑀)) |
33 | 32 | exp4b 430 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ℕ → (𝑀 ∈ ℕ → (𝑗 ≤ 𝑀 → (𝑀 ≤ 𝑗 → 𝑗 = 𝑀)))) |
34 | 33 | com3l 89 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈ ℕ → (𝑗 ≤ 𝑀 → (𝑗 ∈ ℕ → (𝑀 ≤ 𝑗 → 𝑗 = 𝑀)))) |
35 | 34 | imp32 418 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ ℕ ∧ (𝑗 ≤ 𝑀 ∧ 𝑗 ∈ ℕ)) → (𝑀 ≤ 𝑗 → 𝑗 = 𝑀)) |
36 | 35 | adantll 710 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗 ≤ 𝑀 ∧ 𝑗 ∈ ℕ)) → (𝑀 ≤ 𝑗 → 𝑗 = 𝑀)) |
37 | 36 | imim2d 57 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗 ≤ 𝑀 ∧ 𝑗 ∈ ℕ)) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗) → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀))) |
38 | 37 | com23 86 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗 ≤ 𝑀 ∧ 𝑗 ∈ ℕ)) → ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗) → 𝑗 = 𝑀))) |
39 | 28, 38 | sylan2d 604 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗 ≤ 𝑀 ∧ 𝑗 ∈ ℕ)) → ((1 < 𝑗 ∧ ((𝑀 / 𝑗) ∈ ℕ ∧ (𝐾 / 𝑀) ∈ ℕ)) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗) → 𝑗 = 𝑀))) |
40 | 39 | exp4d 433 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗 ≤ 𝑀 ∧ 𝑗 ∈ ℕ)) → (1 < 𝑗 → ((𝑀 / 𝑗) ∈ ℕ → ((𝐾 / 𝑀) ∈ ℕ → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗) → 𝑗 = 𝑀))))) |
41 | 40 | com24 95 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝑗 ≤ 𝑀 ∧ 𝑗 ∈ ℕ)) → ((𝐾 / 𝑀) ∈ ℕ → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗) → 𝑗 = 𝑀))))) |
42 | 41 | exp32 420 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑗 ≤ 𝑀 → (𝑗 ∈ ℕ → ((𝐾 / 𝑀) ∈ ℕ → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗) → 𝑗 = 𝑀))))))) |
43 | 42 | com24 95 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝐾 / 𝑀) ∈ ℕ → (𝑗 ∈ ℕ → (𝑗 ≤ 𝑀 → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗) → 𝑗 = 𝑀))))))) |
44 | 43 | imp31 417 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝑗 ≤ 𝑀 → ((𝑀 / 𝑗) ∈ ℕ → (1 < 𝑗 → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗) → 𝑗 = 𝑀))))) |
45 | 44 | com14 96 |
. . . . . . . . 9
⊢ (1 <
𝑗 → (𝑗 ≤ 𝑀 → ((𝑀 / 𝑗) ∈ ℕ → ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗) → 𝑗 = 𝑀))))) |
46 | 45 | 3imp 1109 |
. . . . . . . 8
⊢ ((1 <
𝑗 ∧ 𝑗 ≤ 𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗) → 𝑗 = 𝑀))) |
47 | 46 | com3l 89 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗) → ((1 < 𝑗 ∧ 𝑗 ≤ 𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀))) |
48 | 47 | ralimdva 3102 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ (𝐾 / 𝑀) ∈ ℕ) → (∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗) → ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ 𝑗 ≤ 𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀))) |
49 | 48 | ex 412 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((𝐾 / 𝑀) ∈ ℕ → (∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗) → ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ 𝑗 ≤ 𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))) |
50 | 49 | adantld 490 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((1 <
𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) → (∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗) → ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ 𝑗 ≤ 𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀)))) |
51 | 50 | impd 410 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1
< 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗)) → ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ 𝑗 ≤ 𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀))) |
52 | | prime 12331 |
. . . 4
⊢ (𝑀 ∈ ℕ →
(∀𝑗 ∈ ℕ
((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)) ↔ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ 𝑗 ≤ 𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀))) |
53 | 52 | adantl 481 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) →
(∀𝑗 ∈ ℕ
((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)) ↔ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ 𝑗 ≤ 𝑀 ∧ (𝑀 / 𝑗) ∈ ℕ) → 𝑗 = 𝑀))) |
54 | 51, 53 | sylibrd 258 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1
< 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗)) → ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀)))) |
55 | 18, 54 | jcad 512 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (((1
< 𝑀 ∧ (𝐾 / 𝑀) ∈ ℕ) ∧ ∀𝑗 ∈ ℕ ((1 < 𝑗 ∧ (𝐾 / 𝑗) ∈ ℕ) → 𝑀 ≤ 𝑗)) → (𝑁 < 𝑀 ∧ ∀𝑗 ∈ ℕ ((𝑀 / 𝑗) ∈ ℕ → (𝑗 = 1 ∨ 𝑗 = 𝑀))))) |