MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardinfima Structured version   Visualization version   GIF version

Theorem cardinfima 9508
Description: If a mapping to cardinals has an infinite value, then the union of its image is an infinite cardinal. Corollary 11.17 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
cardinfima (𝐴𝐵 → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ ∃𝑥𝐴 (𝐹𝑥) ∈ ran ℵ) → (𝐹𝐴) ∈ ran ℵ))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cardinfima
StepHypRef Expression
1 elex 3459 . 2 (𝐴𝐵𝐴 ∈ V)
2 isinfcard 9503 . . . . . . . . . . . . 13 ((ω ⊆ (𝐹𝑥) ∧ (card‘(𝐹𝑥)) = (𝐹𝑥)) ↔ (𝐹𝑥) ∈ ran ℵ)
32bicomi 227 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ ran ℵ ↔ (ω ⊆ (𝐹𝑥) ∧ (card‘(𝐹𝑥)) = (𝐹𝑥)))
43simplbi 501 . . . . . . . . . . 11 ((𝐹𝑥) ∈ ran ℵ → ω ⊆ (𝐹𝑥))
5 ffn 6487 . . . . . . . . . . . 12 (𝐹:𝐴⟶(ω ∪ ran ℵ) → 𝐹 Fn 𝐴)
6 fnfvelrn 6825 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ ran 𝐹)
76ex 416 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝐴 → (𝑥𝐴 → (𝐹𝑥) ∈ ran 𝐹))
8 fnima 6450 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
98eleq2d 2875 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝐴 → ((𝐹𝑥) ∈ (𝐹𝐴) ↔ (𝐹𝑥) ∈ ran 𝐹))
107, 9sylibrd 262 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → (𝑥𝐴 → (𝐹𝑥) ∈ (𝐹𝐴)))
11 elssuni 4830 . . . . . . . . . . . . . 14 ((𝐹𝑥) ∈ (𝐹𝐴) → (𝐹𝑥) ⊆ (𝐹𝐴))
1210, 11syl6 35 . . . . . . . . . . . . 13 (𝐹 Fn 𝐴 → (𝑥𝐴 → (𝐹𝑥) ⊆ (𝐹𝐴)))
1312imp 410 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ⊆ (𝐹𝐴))
145, 13sylan 583 . . . . . . . . . . 11 ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ 𝑥𝐴) → (𝐹𝑥) ⊆ (𝐹𝐴))
154, 14sylan9ssr 3929 . . . . . . . . . 10 (((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ 𝑥𝐴) ∧ (𝐹𝑥) ∈ ran ℵ) → ω ⊆ (𝐹𝐴))
1615anasss 470 . . . . . . . . 9 ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → ω ⊆ (𝐹𝐴))
1716a1i 11 . . . . . . . 8 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → ω ⊆ (𝐹𝐴)))
18 carduniima 9507 . . . . . . . . . 10 (𝐴 ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹𝐴) ∈ (ω ∪ ran ℵ)))
19 iscard3 9504 . . . . . . . . . 10 ((card‘ (𝐹𝐴)) = (𝐹𝐴) ↔ (𝐹𝐴) ∈ (ω ∪ ran ℵ))
2018, 19syl6ibr 255 . . . . . . . . 9 (𝐴 ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (card‘ (𝐹𝐴)) = (𝐹𝐴)))
2120adantrd 495 . . . . . . . 8 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → (card‘ (𝐹𝐴)) = (𝐹𝐴)))
2217, 21jcad 516 . . . . . . 7 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → (ω ⊆ (𝐹𝐴) ∧ (card‘ (𝐹𝐴)) = (𝐹𝐴))))
23 isinfcard 9503 . . . . . . 7 ((ω ⊆ (𝐹𝐴) ∧ (card‘ (𝐹𝐴)) = (𝐹𝐴)) ↔ (𝐹𝐴) ∈ ran ℵ)
2422, 23syl6ib 254 . . . . . 6 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → (𝐹𝐴) ∈ ran ℵ))
2524exp4d 437 . . . . 5 (𝐴 ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝑥𝐴 → ((𝐹𝑥) ∈ ran ℵ → (𝐹𝐴) ∈ ran ℵ))))
2625imp 410 . . . 4 ((𝐴 ∈ V ∧ 𝐹:𝐴⟶(ω ∪ ran ℵ)) → (𝑥𝐴 → ((𝐹𝑥) ∈ ran ℵ → (𝐹𝐴) ∈ ran ℵ)))
2726rexlimdv 3242 . . 3 ((𝐴 ∈ V ∧ 𝐹:𝐴⟶(ω ∪ ran ℵ)) → (∃𝑥𝐴 (𝐹𝑥) ∈ ran ℵ → (𝐹𝐴) ∈ ran ℵ))
2827expimpd 457 . 2 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ ∃𝑥𝐴 (𝐹𝑥) ∈ ran ℵ) → (𝐹𝐴) ∈ ran ℵ))
291, 28syl 17 1 (𝐴𝐵 → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ ∃𝑥𝐴 (𝐹𝑥) ∈ ran ℵ) → (𝐹𝐴) ∈ ran ℵ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wrex 3107  Vcvv 3441  cun 3879  wss 3881   cuni 4800  ran crn 5520  cima 5522   Fn wfn 6319  wf 6320  cfv 6324  ωcom 7560  cardccrd 9348  cale 9349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-oi 8958  df-har 9005  df-card 9352  df-aleph 9353
This theorem is referenced by:  alephfplem4  9518
  Copyright terms: Public domain W3C validator