MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardinfima Structured version   Visualization version   GIF version

Theorem cardinfima 10166
Description: If a mapping to cardinals has an infinite value, then the union of its image is an infinite cardinal. Corollary 11.17 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
cardinfima (𝐴𝐵 → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ ∃𝑥𝐴 (𝐹𝑥) ∈ ran ℵ) → (𝐹𝐴) ∈ ran ℵ))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cardinfima
StepHypRef Expression
1 elex 3509 . 2 (𝐴𝐵𝐴 ∈ V)
2 isinfcard 10161 . . . . . . . . . . . . 13 ((ω ⊆ (𝐹𝑥) ∧ (card‘(𝐹𝑥)) = (𝐹𝑥)) ↔ (𝐹𝑥) ∈ ran ℵ)
32bicomi 224 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ ran ℵ ↔ (ω ⊆ (𝐹𝑥) ∧ (card‘(𝐹𝑥)) = (𝐹𝑥)))
43simplbi 497 . . . . . . . . . . 11 ((𝐹𝑥) ∈ ran ℵ → ω ⊆ (𝐹𝑥))
5 ffn 6747 . . . . . . . . . . . 12 (𝐹:𝐴⟶(ω ∪ ran ℵ) → 𝐹 Fn 𝐴)
6 fnfvelrn 7114 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ ran 𝐹)
76ex 412 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝐴 → (𝑥𝐴 → (𝐹𝑥) ∈ ran 𝐹))
8 fnima 6710 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
98eleq2d 2830 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝐴 → ((𝐹𝑥) ∈ (𝐹𝐴) ↔ (𝐹𝑥) ∈ ran 𝐹))
107, 9sylibrd 259 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → (𝑥𝐴 → (𝐹𝑥) ∈ (𝐹𝐴)))
11 elssuni 4961 . . . . . . . . . . . . . 14 ((𝐹𝑥) ∈ (𝐹𝐴) → (𝐹𝑥) ⊆ (𝐹𝐴))
1210, 11syl6 35 . . . . . . . . . . . . 13 (𝐹 Fn 𝐴 → (𝑥𝐴 → (𝐹𝑥) ⊆ (𝐹𝐴)))
1312imp 406 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ⊆ (𝐹𝐴))
145, 13sylan 579 . . . . . . . . . . 11 ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ 𝑥𝐴) → (𝐹𝑥) ⊆ (𝐹𝐴))
154, 14sylan9ssr 4023 . . . . . . . . . 10 (((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ 𝑥𝐴) ∧ (𝐹𝑥) ∈ ran ℵ) → ω ⊆ (𝐹𝐴))
1615anasss 466 . . . . . . . . 9 ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → ω ⊆ (𝐹𝐴))
1716a1i 11 . . . . . . . 8 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → ω ⊆ (𝐹𝐴)))
18 carduniima 10165 . . . . . . . . . 10 (𝐴 ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹𝐴) ∈ (ω ∪ ran ℵ)))
19 iscard3 10162 . . . . . . . . . 10 ((card‘ (𝐹𝐴)) = (𝐹𝐴) ↔ (𝐹𝐴) ∈ (ω ∪ ran ℵ))
2018, 19imbitrrdi 252 . . . . . . . . 9 (𝐴 ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (card‘ (𝐹𝐴)) = (𝐹𝐴)))
2120adantrd 491 . . . . . . . 8 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → (card‘ (𝐹𝐴)) = (𝐹𝐴)))
2217, 21jcad 512 . . . . . . 7 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → (ω ⊆ (𝐹𝐴) ∧ (card‘ (𝐹𝐴)) = (𝐹𝐴))))
23 isinfcard 10161 . . . . . . 7 ((ω ⊆ (𝐹𝐴) ∧ (card‘ (𝐹𝐴)) = (𝐹𝐴)) ↔ (𝐹𝐴) ∈ ran ℵ)
2422, 23imbitrdi 251 . . . . . 6 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → (𝐹𝐴) ∈ ran ℵ))
2524exp4d 433 . . . . 5 (𝐴 ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝑥𝐴 → ((𝐹𝑥) ∈ ran ℵ → (𝐹𝐴) ∈ ran ℵ))))
2625imp 406 . . . 4 ((𝐴 ∈ V ∧ 𝐹:𝐴⟶(ω ∪ ran ℵ)) → (𝑥𝐴 → ((𝐹𝑥) ∈ ran ℵ → (𝐹𝐴) ∈ ran ℵ)))
2726rexlimdv 3159 . . 3 ((𝐴 ∈ V ∧ 𝐹:𝐴⟶(ω ∪ ran ℵ)) → (∃𝑥𝐴 (𝐹𝑥) ∈ ran ℵ → (𝐹𝐴) ∈ ran ℵ))
2827expimpd 453 . 2 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ ∃𝑥𝐴 (𝐹𝑥) ∈ ran ℵ) → (𝐹𝐴) ∈ ran ℵ))
291, 28syl 17 1 (𝐴𝐵 → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ ∃𝑥𝐴 (𝐹𝑥) ∈ ran ℵ) → (𝐹𝐴) ∈ ran ℵ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  cun 3974  wss 3976   cuni 4931  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  ωcom 7903  cardccrd 10004  cale 10005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-har 9626  df-card 10008  df-aleph 10009
This theorem is referenced by:  alephfplem4  10176
  Copyright terms: Public domain W3C validator