MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardinfima Structured version   Visualization version   GIF version

Theorem cardinfima 10137
Description: If a mapping to cardinals has an infinite value, then the union of its image is an infinite cardinal. Corollary 11.17 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
cardinfima (𝐴𝐵 → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ ∃𝑥𝐴 (𝐹𝑥) ∈ ran ℵ) → (𝐹𝐴) ∈ ran ℵ))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cardinfima
StepHypRef Expression
1 elex 3501 . 2 (𝐴𝐵𝐴 ∈ V)
2 isinfcard 10132 . . . . . . . . . . . . 13 ((ω ⊆ (𝐹𝑥) ∧ (card‘(𝐹𝑥)) = (𝐹𝑥)) ↔ (𝐹𝑥) ∈ ran ℵ)
32bicomi 224 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ ran ℵ ↔ (ω ⊆ (𝐹𝑥) ∧ (card‘(𝐹𝑥)) = (𝐹𝑥)))
43simplbi 497 . . . . . . . . . . 11 ((𝐹𝑥) ∈ ran ℵ → ω ⊆ (𝐹𝑥))
5 ffn 6736 . . . . . . . . . . . 12 (𝐹:𝐴⟶(ω ∪ ran ℵ) → 𝐹 Fn 𝐴)
6 fnfvelrn 7100 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ ran 𝐹)
76ex 412 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝐴 → (𝑥𝐴 → (𝐹𝑥) ∈ ran 𝐹))
8 fnima 6698 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
98eleq2d 2827 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝐴 → ((𝐹𝑥) ∈ (𝐹𝐴) ↔ (𝐹𝑥) ∈ ran 𝐹))
107, 9sylibrd 259 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → (𝑥𝐴 → (𝐹𝑥) ∈ (𝐹𝐴)))
11 elssuni 4937 . . . . . . . . . . . . . 14 ((𝐹𝑥) ∈ (𝐹𝐴) → (𝐹𝑥) ⊆ (𝐹𝐴))
1210, 11syl6 35 . . . . . . . . . . . . 13 (𝐹 Fn 𝐴 → (𝑥𝐴 → (𝐹𝑥) ⊆ (𝐹𝐴)))
1312imp 406 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ⊆ (𝐹𝐴))
145, 13sylan 580 . . . . . . . . . . 11 ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ 𝑥𝐴) → (𝐹𝑥) ⊆ (𝐹𝐴))
154, 14sylan9ssr 3998 . . . . . . . . . 10 (((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ 𝑥𝐴) ∧ (𝐹𝑥) ∈ ran ℵ) → ω ⊆ (𝐹𝐴))
1615anasss 466 . . . . . . . . 9 ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → ω ⊆ (𝐹𝐴))
1716a1i 11 . . . . . . . 8 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → ω ⊆ (𝐹𝐴)))
18 carduniima 10136 . . . . . . . . . 10 (𝐴 ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝐹𝐴) ∈ (ω ∪ ran ℵ)))
19 iscard3 10133 . . . . . . . . . 10 ((card‘ (𝐹𝐴)) = (𝐹𝐴) ↔ (𝐹𝐴) ∈ (ω ∪ ran ℵ))
2018, 19imbitrrdi 252 . . . . . . . . 9 (𝐴 ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (card‘ (𝐹𝐴)) = (𝐹𝐴)))
2120adantrd 491 . . . . . . . 8 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → (card‘ (𝐹𝐴)) = (𝐹𝐴)))
2217, 21jcad 512 . . . . . . 7 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → (ω ⊆ (𝐹𝐴) ∧ (card‘ (𝐹𝐴)) = (𝐹𝐴))))
23 isinfcard 10132 . . . . . . 7 ((ω ⊆ (𝐹𝐴) ∧ (card‘ (𝐹𝐴)) = (𝐹𝐴)) ↔ (𝐹𝐴) ∈ ran ℵ)
2422, 23imbitrdi 251 . . . . . 6 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ (𝑥𝐴 ∧ (𝐹𝑥) ∈ ran ℵ)) → (𝐹𝐴) ∈ ran ℵ))
2524exp4d 433 . . . . 5 (𝐴 ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) → (𝑥𝐴 → ((𝐹𝑥) ∈ ran ℵ → (𝐹𝐴) ∈ ran ℵ))))
2625imp 406 . . . 4 ((𝐴 ∈ V ∧ 𝐹:𝐴⟶(ω ∪ ran ℵ)) → (𝑥𝐴 → ((𝐹𝑥) ∈ ran ℵ → (𝐹𝐴) ∈ ran ℵ)))
2726rexlimdv 3153 . . 3 ((𝐴 ∈ V ∧ 𝐹:𝐴⟶(ω ∪ ran ℵ)) → (∃𝑥𝐴 (𝐹𝑥) ∈ ran ℵ → (𝐹𝐴) ∈ ran ℵ))
2827expimpd 453 . 2 (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ ∃𝑥𝐴 (𝐹𝑥) ∈ ran ℵ) → (𝐹𝐴) ∈ ran ℵ))
291, 28syl 17 1 (𝐴𝐵 → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ ∃𝑥𝐴 (𝐹𝑥) ∈ ran ℵ) → (𝐹𝐴) ∈ ran ℵ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3070  Vcvv 3480  cun 3949  wss 3951   cuni 4907  ran crn 5686  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  ωcom 7887  cardccrd 9975  cale 9976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-oi 9550  df-har 9597  df-card 9979  df-aleph 9980
This theorem is referenced by:  alephfplem4  10147
  Copyright terms: Public domain W3C validator