Proof of Theorem cardinfima
Step | Hyp | Ref
| Expression |
1 | | elex 3450 |
. 2
⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
2 | | isinfcard 9848 |
. . . . . . . . . . . . 13
⊢ ((ω
⊆ (𝐹‘𝑥) ∧ (card‘(𝐹‘𝑥)) = (𝐹‘𝑥)) ↔ (𝐹‘𝑥) ∈ ran ℵ) |
3 | 2 | bicomi 223 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑥) ∈ ran ℵ ↔ (ω ⊆
(𝐹‘𝑥) ∧ (card‘(𝐹‘𝑥)) = (𝐹‘𝑥))) |
4 | 3 | simplbi 498 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑥) ∈ ran ℵ → ω ⊆
(𝐹‘𝑥)) |
5 | | ffn 6600 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴⟶(ω ∪ ran ℵ) →
𝐹 Fn 𝐴) |
6 | | fnfvelrn 6958 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ran 𝐹) |
7 | 6 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ ran 𝐹)) |
8 | | fnima 6563 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
9 | 8 | eleq2d 2824 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 Fn 𝐴 → ((𝐹‘𝑥) ∈ (𝐹 “ 𝐴) ↔ (𝐹‘𝑥) ∈ ran 𝐹)) |
10 | 7, 9 | sylibrd 258 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ (𝐹 “ 𝐴))) |
11 | | elssuni 4871 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑥) ∈ (𝐹 “ 𝐴) → (𝐹‘𝑥) ⊆ ∪ (𝐹 “ 𝐴)) |
12 | 10, 11 | syl6 35 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ⊆ ∪ (𝐹 “ 𝐴))) |
13 | 12 | imp 407 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ⊆ ∪ (𝐹 “ 𝐴)) |
14 | 5, 13 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧
𝑥 ∈ 𝐴) → (𝐹‘𝑥) ⊆ ∪ (𝐹 “ 𝐴)) |
15 | 4, 14 | sylan9ssr 3935 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧
𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ ran ℵ) → ω ⊆
∪ (𝐹 “ 𝐴)) |
16 | 15 | anasss 467 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧
(𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ ran ℵ)) → ω ⊆
∪ (𝐹 “ 𝐴)) |
17 | 16 | a1i 11 |
. . . . . . . 8
⊢ (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧
(𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ ran ℵ)) → ω ⊆
∪ (𝐹 “ 𝐴))) |
18 | | carduniima 9852 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) →
∪ (𝐹 “ 𝐴) ∈ (ω ∪ ran
ℵ))) |
19 | | iscard3 9849 |
. . . . . . . . . 10
⊢
((card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴) ↔ ∪ (𝐹 “ 𝐴) ∈ (ω ∪ ran
ℵ)) |
20 | 18, 19 | syl6ibr 251 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) →
(card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴))) |
21 | 20 | adantrd 492 |
. . . . . . . 8
⊢ (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧
(𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ ran ℵ)) →
(card‘∪ (𝐹 “ 𝐴)) = ∪ (𝐹 “ 𝐴))) |
22 | 17, 21 | jcad 513 |
. . . . . . 7
⊢ (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧
(𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ ran ℵ)) → (ω
⊆ ∪ (𝐹 “ 𝐴) ∧ (card‘∪ (𝐹
“ 𝐴)) = ∪ (𝐹
“ 𝐴)))) |
23 | | isinfcard 9848 |
. . . . . . 7
⊢ ((ω
⊆ ∪ (𝐹 “ 𝐴) ∧ (card‘∪ (𝐹
“ 𝐴)) = ∪ (𝐹
“ 𝐴)) ↔ ∪ (𝐹
“ 𝐴) ∈ ran
ℵ) |
24 | 22, 23 | syl6ib 250 |
. . . . . 6
⊢ (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧
(𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ ran ℵ)) → ∪ (𝐹
“ 𝐴) ∈ ran
ℵ)) |
25 | 24 | exp4d 434 |
. . . . 5
⊢ (𝐴 ∈ V → (𝐹:𝐴⟶(ω ∪ ran ℵ) →
(𝑥 ∈ 𝐴 → ((𝐹‘𝑥) ∈ ran ℵ → ∪ (𝐹
“ 𝐴) ∈ ran
ℵ)))) |
26 | 25 | imp 407 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐹:𝐴⟶(ω ∪ ran ℵ)) →
(𝑥 ∈ 𝐴 → ((𝐹‘𝑥) ∈ ran ℵ → ∪ (𝐹
“ 𝐴) ∈ ran
ℵ))) |
27 | 26 | rexlimdv 3212 |
. . 3
⊢ ((𝐴 ∈ V ∧ 𝐹:𝐴⟶(ω ∪ ran ℵ)) →
(∃𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ ran ℵ → ∪ (𝐹
“ 𝐴) ∈ ran
ℵ)) |
28 | 27 | expimpd 454 |
. 2
⊢ (𝐴 ∈ V → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧
∃𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ ran ℵ) → ∪ (𝐹
“ 𝐴) ∈ ran
ℵ)) |
29 | 1, 28 | syl 17 |
1
⊢ (𝐴 ∈ 𝐵 → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧
∃𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ ran ℵ) → ∪ (𝐹
“ 𝐴) ∈ ran
ℵ)) |