MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnd Structured version   Visualization version   GIF version

Theorem mapsnd 8876
Description: The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
mapsnd.1 (πœ‘ β†’ 𝐴 ∈ 𝑉)
mapsnd.2 (πœ‘ β†’ 𝐡 ∈ π‘Š)
Assertion
Ref Expression
mapsnd (πœ‘ β†’ (𝐴 ↑m {𝐡}) = {𝑓 ∣ βˆƒπ‘¦ ∈ 𝐴 𝑓 = {⟨𝐡, π‘¦βŸ©}})
Distinct variable groups:   𝐴,𝑓,𝑦   𝐡,𝑓,𝑦   πœ‘,𝑓,𝑦
Allowed substitution hints:   𝑉(𝑦,𝑓)   π‘Š(𝑦,𝑓)

Proof of Theorem mapsnd
StepHypRef Expression
1 mapsnd.1 . . . 4 (πœ‘ β†’ 𝐴 ∈ 𝑉)
2 snex 5430 . . . . 5 {𝐡} ∈ V
32a1i 11 . . . 4 (πœ‘ β†’ {𝐡} ∈ V)
41, 3elmapd 8830 . . 3 (πœ‘ β†’ (𝑓 ∈ (𝐴 ↑m {𝐡}) ↔ 𝑓:{𝐡}⟢𝐴))
5 ffn 6714 . . . . . . . . 9 (𝑓:{𝐡}⟢𝐴 β†’ 𝑓 Fn {𝐡})
6 mapsnd.2 . . . . . . . . . 10 (πœ‘ β†’ 𝐡 ∈ π‘Š)
7 snidg 4661 . . . . . . . . . 10 (𝐡 ∈ π‘Š β†’ 𝐡 ∈ {𝐡})
86, 7syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝐡 ∈ {𝐡})
9 fneu 6656 . . . . . . . . 9 ((𝑓 Fn {𝐡} ∧ 𝐡 ∈ {𝐡}) β†’ βˆƒ!𝑦 𝐡𝑓𝑦)
105, 8, 9syl2anr 597 . . . . . . . 8 ((πœ‘ ∧ 𝑓:{𝐡}⟢𝐴) β†’ βˆƒ!𝑦 𝐡𝑓𝑦)
11 euabsn 4729 . . . . . . . . . 10 (βˆƒ!𝑦 𝐡𝑓𝑦 ↔ βˆƒπ‘¦{𝑦 ∣ 𝐡𝑓𝑦} = {𝑦})
12 frel 6719 . . . . . . . . . . . . . 14 (𝑓:{𝐡}⟢𝐴 β†’ Rel 𝑓)
13 relimasn 6080 . . . . . . . . . . . . . 14 (Rel 𝑓 β†’ (𝑓 β€œ {𝐡}) = {𝑦 ∣ 𝐡𝑓𝑦})
1412, 13syl 17 . . . . . . . . . . . . 13 (𝑓:{𝐡}⟢𝐴 β†’ (𝑓 β€œ {𝐡}) = {𝑦 ∣ 𝐡𝑓𝑦})
15 fdm 6723 . . . . . . . . . . . . . . 15 (𝑓:{𝐡}⟢𝐴 β†’ dom 𝑓 = {𝐡})
1615imaeq2d 6057 . . . . . . . . . . . . . 14 (𝑓:{𝐡}⟢𝐴 β†’ (𝑓 β€œ dom 𝑓) = (𝑓 β€œ {𝐡}))
17 imadmrn 6067 . . . . . . . . . . . . . 14 (𝑓 β€œ dom 𝑓) = ran 𝑓
1816, 17eqtr3di 2787 . . . . . . . . . . . . 13 (𝑓:{𝐡}⟢𝐴 β†’ (𝑓 β€œ {𝐡}) = ran 𝑓)
1914, 18eqtr3d 2774 . . . . . . . . . . . 12 (𝑓:{𝐡}⟢𝐴 β†’ {𝑦 ∣ 𝐡𝑓𝑦} = ran 𝑓)
2019eqeq1d 2734 . . . . . . . . . . 11 (𝑓:{𝐡}⟢𝐴 β†’ ({𝑦 ∣ 𝐡𝑓𝑦} = {𝑦} ↔ ran 𝑓 = {𝑦}))
2120exbidv 1924 . . . . . . . . . 10 (𝑓:{𝐡}⟢𝐴 β†’ (βˆƒπ‘¦{𝑦 ∣ 𝐡𝑓𝑦} = {𝑦} ↔ βˆƒπ‘¦ran 𝑓 = {𝑦}))
2211, 21bitrid 282 . . . . . . . . 9 (𝑓:{𝐡}⟢𝐴 β†’ (βˆƒ!𝑦 𝐡𝑓𝑦 ↔ βˆƒπ‘¦ran 𝑓 = {𝑦}))
2322adantl 482 . . . . . . . 8 ((πœ‘ ∧ 𝑓:{𝐡}⟢𝐴) β†’ (βˆƒ!𝑦 𝐡𝑓𝑦 ↔ βˆƒπ‘¦ran 𝑓 = {𝑦}))
2410, 23mpbid 231 . . . . . . 7 ((πœ‘ ∧ 𝑓:{𝐡}⟢𝐴) β†’ βˆƒπ‘¦ran 𝑓 = {𝑦})
25 frn 6721 . . . . . . . . . . . . 13 (𝑓:{𝐡}⟢𝐴 β†’ ran 𝑓 βŠ† 𝐴)
2625sseld 3980 . . . . . . . . . . . 12 (𝑓:{𝐡}⟢𝐴 β†’ (𝑦 ∈ ran 𝑓 β†’ 𝑦 ∈ 𝐴))
27 vsnid 4664 . . . . . . . . . . . . 13 𝑦 ∈ {𝑦}
28 eleq2 2822 . . . . . . . . . . . . 13 (ran 𝑓 = {𝑦} β†’ (𝑦 ∈ ran 𝑓 ↔ 𝑦 ∈ {𝑦}))
2927, 28mpbiri 257 . . . . . . . . . . . 12 (ran 𝑓 = {𝑦} β†’ 𝑦 ∈ ran 𝑓)
3026, 29impel 506 . . . . . . . . . . 11 ((𝑓:{𝐡}⟢𝐴 ∧ ran 𝑓 = {𝑦}) β†’ 𝑦 ∈ 𝐴)
3130adantll 712 . . . . . . . . . 10 (((πœ‘ ∧ 𝑓:{𝐡}⟢𝐴) ∧ ran 𝑓 = {𝑦}) β†’ 𝑦 ∈ 𝐴)
32 ffrn 6728 . . . . . . . . . . . . . 14 (𝑓:{𝐡}⟢𝐴 β†’ 𝑓:{𝐡}⟢ran 𝑓)
33 feq3 6697 . . . . . . . . . . . . . 14 (ran 𝑓 = {𝑦} β†’ (𝑓:{𝐡}⟢ran 𝑓 ↔ 𝑓:{𝐡}⟢{𝑦}))
3432, 33syl5ibcom 244 . . . . . . . . . . . . 13 (𝑓:{𝐡}⟢𝐴 β†’ (ran 𝑓 = {𝑦} β†’ 𝑓:{𝐡}⟢{𝑦}))
3534imp 407 . . . . . . . . . . . 12 ((𝑓:{𝐡}⟢𝐴 ∧ ran 𝑓 = {𝑦}) β†’ 𝑓:{𝐡}⟢{𝑦})
3635adantll 712 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑓:{𝐡}⟢𝐴) ∧ ran 𝑓 = {𝑦}) β†’ 𝑓:{𝐡}⟢{𝑦})
376ad2antrr 724 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑓:{𝐡}⟢𝐴) ∧ ran 𝑓 = {𝑦}) β†’ 𝐡 ∈ π‘Š)
38 vex 3478 . . . . . . . . . . . 12 𝑦 ∈ V
39 fsng 7131 . . . . . . . . . . . 12 ((𝐡 ∈ π‘Š ∧ 𝑦 ∈ V) β†’ (𝑓:{𝐡}⟢{𝑦} ↔ 𝑓 = {⟨𝐡, π‘¦βŸ©}))
4037, 38, 39sylancl 586 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑓:{𝐡}⟢𝐴) ∧ ran 𝑓 = {𝑦}) β†’ (𝑓:{𝐡}⟢{𝑦} ↔ 𝑓 = {⟨𝐡, π‘¦βŸ©}))
4136, 40mpbid 231 . . . . . . . . . 10 (((πœ‘ ∧ 𝑓:{𝐡}⟢𝐴) ∧ ran 𝑓 = {𝑦}) β†’ 𝑓 = {⟨𝐡, π‘¦βŸ©})
4231, 41jca 512 . . . . . . . . 9 (((πœ‘ ∧ 𝑓:{𝐡}⟢𝐴) ∧ ran 𝑓 = {𝑦}) β†’ (𝑦 ∈ 𝐴 ∧ 𝑓 = {⟨𝐡, π‘¦βŸ©}))
4342ex 413 . . . . . . . 8 ((πœ‘ ∧ 𝑓:{𝐡}⟢𝐴) β†’ (ran 𝑓 = {𝑦} β†’ (𝑦 ∈ 𝐴 ∧ 𝑓 = {⟨𝐡, π‘¦βŸ©})))
4443eximdv 1920 . . . . . . 7 ((πœ‘ ∧ 𝑓:{𝐡}⟢𝐴) β†’ (βˆƒπ‘¦ran 𝑓 = {𝑦} β†’ βˆƒπ‘¦(𝑦 ∈ 𝐴 ∧ 𝑓 = {⟨𝐡, π‘¦βŸ©})))
4524, 44mpd 15 . . . . . 6 ((πœ‘ ∧ 𝑓:{𝐡}⟢𝐴) β†’ βˆƒπ‘¦(𝑦 ∈ 𝐴 ∧ 𝑓 = {⟨𝐡, π‘¦βŸ©}))
46 df-rex 3071 . . . . . 6 (βˆƒπ‘¦ ∈ 𝐴 𝑓 = {⟨𝐡, π‘¦βŸ©} ↔ βˆƒπ‘¦(𝑦 ∈ 𝐴 ∧ 𝑓 = {⟨𝐡, π‘¦βŸ©}))
4745, 46sylibr 233 . . . . 5 ((πœ‘ ∧ 𝑓:{𝐡}⟢𝐴) β†’ βˆƒπ‘¦ ∈ 𝐴 𝑓 = {⟨𝐡, π‘¦βŸ©})
4847ex 413 . . . 4 (πœ‘ β†’ (𝑓:{𝐡}⟢𝐴 β†’ βˆƒπ‘¦ ∈ 𝐴 𝑓 = {⟨𝐡, π‘¦βŸ©}))
49 f1osng 6871 . . . . . . . . . . 11 ((𝐡 ∈ π‘Š ∧ 𝑦 ∈ V) β†’ {⟨𝐡, π‘¦βŸ©}:{𝐡}–1-1-ontoβ†’{𝑦})
506, 38, 49sylancl 586 . . . . . . . . . 10 (πœ‘ β†’ {⟨𝐡, π‘¦βŸ©}:{𝐡}–1-1-ontoβ†’{𝑦})
5150adantr 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑓 = {⟨𝐡, π‘¦βŸ©}) β†’ {⟨𝐡, π‘¦βŸ©}:{𝐡}–1-1-ontoβ†’{𝑦})
52 f1oeq1 6818 . . . . . . . . . . 11 (𝑓 = {⟨𝐡, π‘¦βŸ©} β†’ (𝑓:{𝐡}–1-1-ontoβ†’{𝑦} ↔ {⟨𝐡, π‘¦βŸ©}:{𝐡}–1-1-ontoβ†’{𝑦}))
5352bicomd 222 . . . . . . . . . 10 (𝑓 = {⟨𝐡, π‘¦βŸ©} β†’ ({⟨𝐡, π‘¦βŸ©}:{𝐡}–1-1-ontoβ†’{𝑦} ↔ 𝑓:{𝐡}–1-1-ontoβ†’{𝑦}))
5453adantl 482 . . . . . . . . 9 ((πœ‘ ∧ 𝑓 = {⟨𝐡, π‘¦βŸ©}) β†’ ({⟨𝐡, π‘¦βŸ©}:{𝐡}–1-1-ontoβ†’{𝑦} ↔ 𝑓:{𝐡}–1-1-ontoβ†’{𝑦}))
5551, 54mpbid 231 . . . . . . . 8 ((πœ‘ ∧ 𝑓 = {⟨𝐡, π‘¦βŸ©}) β†’ 𝑓:{𝐡}–1-1-ontoβ†’{𝑦})
56 f1of 6830 . . . . . . . 8 (𝑓:{𝐡}–1-1-ontoβ†’{𝑦} β†’ 𝑓:{𝐡}⟢{𝑦})
5755, 56syl 17 . . . . . . 7 ((πœ‘ ∧ 𝑓 = {⟨𝐡, π‘¦βŸ©}) β†’ 𝑓:{𝐡}⟢{𝑦})
58573adant2 1131 . . . . . 6 ((πœ‘ ∧ 𝑦 ∈ 𝐴 ∧ 𝑓 = {⟨𝐡, π‘¦βŸ©}) β†’ 𝑓:{𝐡}⟢{𝑦})
59 snssi 4810 . . . . . . 7 (𝑦 ∈ 𝐴 β†’ {𝑦} βŠ† 𝐴)
60593ad2ant2 1134 . . . . . 6 ((πœ‘ ∧ 𝑦 ∈ 𝐴 ∧ 𝑓 = {⟨𝐡, π‘¦βŸ©}) β†’ {𝑦} βŠ† 𝐴)
6158, 60fssd 6732 . . . . 5 ((πœ‘ ∧ 𝑦 ∈ 𝐴 ∧ 𝑓 = {⟨𝐡, π‘¦βŸ©}) β†’ 𝑓:{𝐡}⟢𝐴)
6261rexlimdv3a 3159 . . . 4 (πœ‘ β†’ (βˆƒπ‘¦ ∈ 𝐴 𝑓 = {⟨𝐡, π‘¦βŸ©} β†’ 𝑓:{𝐡}⟢𝐴))
6348, 62impbid 211 . . 3 (πœ‘ β†’ (𝑓:{𝐡}⟢𝐴 ↔ βˆƒπ‘¦ ∈ 𝐴 𝑓 = {⟨𝐡, π‘¦βŸ©}))
644, 63bitrd 278 . 2 (πœ‘ β†’ (𝑓 ∈ (𝐴 ↑m {𝐡}) ↔ βˆƒπ‘¦ ∈ 𝐴 𝑓 = {⟨𝐡, π‘¦βŸ©}))
6564eqabdv 2867 1 (πœ‘ β†’ (𝐴 ↑m {𝐡}) = {𝑓 ∣ βˆƒπ‘¦ ∈ 𝐴 𝑓 = {⟨𝐡, π‘¦βŸ©}})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆƒ!weu 2562  {cab 2709  βˆƒwrex 3070  Vcvv 3474   βŠ† wss 3947  {csn 4627  βŸ¨cop 4633   class class class wbr 5147  dom cdm 5675  ran crn 5676   β€œ cima 5678  Rel wrel 5680   Fn wfn 6535  βŸΆwf 6536  β€“1-1-ontoβ†’wf1o 6539  (class class class)co 7405   ↑m cmap 8816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818
This theorem is referenced by:  mapsn  8878  mapsnend  9032  iunmapsn  43901
  Copyright terms: Public domain W3C validator