Proof of Theorem mapsnd
| Step | Hyp | Ref
| Expression |
| 1 | | mapsnd.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 2 | | snex 5406 |
. . . . 5
⊢ {𝐵} ∈ V |
| 3 | 2 | a1i 11 |
. . . 4
⊢ (𝜑 → {𝐵} ∈ V) |
| 4 | 1, 3 | elmapd 8854 |
. . 3
⊢ (𝜑 → (𝑓 ∈ (𝐴 ↑m {𝐵}) ↔ 𝑓:{𝐵}⟶𝐴)) |
| 5 | | ffn 6706 |
. . . . . . . . 9
⊢ (𝑓:{𝐵}⟶𝐴 → 𝑓 Fn {𝐵}) |
| 6 | | mapsnd.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 7 | | snidg 4636 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐵}) |
| 8 | 6, 7 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ {𝐵}) |
| 9 | | fneu 6648 |
. . . . . . . . 9
⊢ ((𝑓 Fn {𝐵} ∧ 𝐵 ∈ {𝐵}) → ∃!𝑦 𝐵𝑓𝑦) |
| 10 | 5, 8, 9 | syl2anr 597 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) → ∃!𝑦 𝐵𝑓𝑦) |
| 11 | | euabsn 4702 |
. . . . . . . . . 10
⊢
(∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦{𝑦 ∣ 𝐵𝑓𝑦} = {𝑦}) |
| 12 | | frel 6711 |
. . . . . . . . . . . . . 14
⊢ (𝑓:{𝐵}⟶𝐴 → Rel 𝑓) |
| 13 | | relimasn 6072 |
. . . . . . . . . . . . . 14
⊢ (Rel
𝑓 → (𝑓 “ {𝐵}) = {𝑦 ∣ 𝐵𝑓𝑦}) |
| 14 | 12, 13 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑓:{𝐵}⟶𝐴 → (𝑓 “ {𝐵}) = {𝑦 ∣ 𝐵𝑓𝑦}) |
| 15 | | fdm 6715 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:{𝐵}⟶𝐴 → dom 𝑓 = {𝐵}) |
| 16 | 15 | imaeq2d 6047 |
. . . . . . . . . . . . . 14
⊢ (𝑓:{𝐵}⟶𝐴 → (𝑓 “ dom 𝑓) = (𝑓 “ {𝐵})) |
| 17 | | imadmrn 6057 |
. . . . . . . . . . . . . 14
⊢ (𝑓 “ dom 𝑓) = ran 𝑓 |
| 18 | 16, 17 | eqtr3di 2785 |
. . . . . . . . . . . . 13
⊢ (𝑓:{𝐵}⟶𝐴 → (𝑓 “ {𝐵}) = ran 𝑓) |
| 19 | 14, 18 | eqtr3d 2772 |
. . . . . . . . . . . 12
⊢ (𝑓:{𝐵}⟶𝐴 → {𝑦 ∣ 𝐵𝑓𝑦} = ran 𝑓) |
| 20 | 19 | eqeq1d 2737 |
. . . . . . . . . . 11
⊢ (𝑓:{𝐵}⟶𝐴 → ({𝑦 ∣ 𝐵𝑓𝑦} = {𝑦} ↔ ran 𝑓 = {𝑦})) |
| 21 | 20 | exbidv 1921 |
. . . . . . . . . 10
⊢ (𝑓:{𝐵}⟶𝐴 → (∃𝑦{𝑦 ∣ 𝐵𝑓𝑦} = {𝑦} ↔ ∃𝑦ran 𝑓 = {𝑦})) |
| 22 | 11, 21 | bitrid 283 |
. . . . . . . . 9
⊢ (𝑓:{𝐵}⟶𝐴 → (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦ran 𝑓 = {𝑦})) |
| 23 | 22 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) → (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦ran 𝑓 = {𝑦})) |
| 24 | 10, 23 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) → ∃𝑦ran 𝑓 = {𝑦}) |
| 25 | | frn 6713 |
. . . . . . . . . . . . 13
⊢ (𝑓:{𝐵}⟶𝐴 → ran 𝑓 ⊆ 𝐴) |
| 26 | 25 | sseld 3957 |
. . . . . . . . . . . 12
⊢ (𝑓:{𝐵}⟶𝐴 → (𝑦 ∈ ran 𝑓 → 𝑦 ∈ 𝐴)) |
| 27 | | vsnid 4639 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ {𝑦} |
| 28 | | eleq2 2823 |
. . . . . . . . . . . . 13
⊢ (ran
𝑓 = {𝑦} → (𝑦 ∈ ran 𝑓 ↔ 𝑦 ∈ {𝑦})) |
| 29 | 27, 28 | mpbiri 258 |
. . . . . . . . . . . 12
⊢ (ran
𝑓 = {𝑦} → 𝑦 ∈ ran 𝑓) |
| 30 | 26, 29 | impel 505 |
. . . . . . . . . . 11
⊢ ((𝑓:{𝐵}⟶𝐴 ∧ ran 𝑓 = {𝑦}) → 𝑦 ∈ 𝐴) |
| 31 | 30 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝑦 ∈ 𝐴) |
| 32 | | ffrn 6719 |
. . . . . . . . . . . . . 14
⊢ (𝑓:{𝐵}⟶𝐴 → 𝑓:{𝐵}⟶ran 𝑓) |
| 33 | | feq3 6688 |
. . . . . . . . . . . . . 14
⊢ (ran
𝑓 = {𝑦} → (𝑓:{𝐵}⟶ran 𝑓 ↔ 𝑓:{𝐵}⟶{𝑦})) |
| 34 | 32, 33 | syl5ibcom 245 |
. . . . . . . . . . . . 13
⊢ (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑓:{𝐵}⟶{𝑦})) |
| 35 | 34 | imp 406 |
. . . . . . . . . . . 12
⊢ ((𝑓:{𝐵}⟶𝐴 ∧ ran 𝑓 = {𝑦}) → 𝑓:{𝐵}⟶{𝑦}) |
| 36 | 35 | adantll 714 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝑓:{𝐵}⟶{𝑦}) |
| 37 | 6 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝐵 ∈ 𝑊) |
| 38 | | vex 3463 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
| 39 | | fsng 7127 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ 𝑊 ∧ 𝑦 ∈ V) → (𝑓:{𝐵}⟶{𝑦} ↔ 𝑓 = {〈𝐵, 𝑦〉})) |
| 40 | 37, 38, 39 | sylancl 586 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → (𝑓:{𝐵}⟶{𝑦} ↔ 𝑓 = {〈𝐵, 𝑦〉})) |
| 41 | 36, 40 | mpbid 232 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝑓 = {〈𝐵, 𝑦〉}) |
| 42 | 31, 41 | jca 511 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → (𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉})) |
| 43 | 42 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) → (ran 𝑓 = {𝑦} → (𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉}))) |
| 44 | 43 | eximdv 1917 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) → (∃𝑦ran 𝑓 = {𝑦} → ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉}))) |
| 45 | 24, 44 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) → ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉})) |
| 46 | | df-rex 3061 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐴 𝑓 = {〈𝐵, 𝑦〉} ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉})) |
| 47 | 45, 46 | sylibr 234 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) → ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉}) |
| 48 | 47 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑓:{𝐵}⟶𝐴 → ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉})) |
| 49 | | f1osng 6859 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ 𝑊 ∧ 𝑦 ∈ V) → {〈𝐵, 𝑦〉}:{𝐵}–1-1-onto→{𝑦}) |
| 50 | 6, 38, 49 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → {〈𝐵, 𝑦〉}:{𝐵}–1-1-onto→{𝑦}) |
| 51 | 50 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 = {〈𝐵, 𝑦〉}) → {〈𝐵, 𝑦〉}:{𝐵}–1-1-onto→{𝑦}) |
| 52 | | f1oeq1 6806 |
. . . . . . . . . . 11
⊢ (𝑓 = {〈𝐵, 𝑦〉} → (𝑓:{𝐵}–1-1-onto→{𝑦} ↔ {〈𝐵, 𝑦〉}:{𝐵}–1-1-onto→{𝑦})) |
| 53 | 52 | bicomd 223 |
. . . . . . . . . 10
⊢ (𝑓 = {〈𝐵, 𝑦〉} → ({〈𝐵, 𝑦〉}:{𝐵}–1-1-onto→{𝑦} ↔ 𝑓:{𝐵}–1-1-onto→{𝑦})) |
| 54 | 53 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 = {〈𝐵, 𝑦〉}) → ({〈𝐵, 𝑦〉}:{𝐵}–1-1-onto→{𝑦} ↔ 𝑓:{𝐵}–1-1-onto→{𝑦})) |
| 55 | 51, 54 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 = {〈𝐵, 𝑦〉}) → 𝑓:{𝐵}–1-1-onto→{𝑦}) |
| 56 | | f1of 6818 |
. . . . . . . 8
⊢ (𝑓:{𝐵}–1-1-onto→{𝑦} → 𝑓:{𝐵}⟶{𝑦}) |
| 57 | 55, 56 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 = {〈𝐵, 𝑦〉}) → 𝑓:{𝐵}⟶{𝑦}) |
| 58 | 57 | 3adant2 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉}) → 𝑓:{𝐵}⟶{𝑦}) |
| 59 | | snssi 4784 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐴 → {𝑦} ⊆ 𝐴) |
| 60 | 59 | 3ad2ant2 1134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉}) → {𝑦} ⊆ 𝐴) |
| 61 | 58, 60 | fssd 6723 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉}) → 𝑓:{𝐵}⟶𝐴) |
| 62 | 61 | rexlimdv3a 3145 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉} → 𝑓:{𝐵}⟶𝐴)) |
| 63 | 48, 62 | impbid 212 |
. . 3
⊢ (𝜑 → (𝑓:{𝐵}⟶𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉})) |
| 64 | 4, 63 | bitrd 279 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝐴 ↑m {𝐵}) ↔ ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉})) |
| 65 | 64 | eqabdv 2868 |
1
⊢ (𝜑 → (𝐴 ↑m {𝐵}) = {𝑓 ∣ ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉}}) |