MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnd Structured version   Visualization version   GIF version

Theorem mapsnd 8452
Description: The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
mapsnd.1 (𝜑𝐴𝑉)
mapsnd.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
mapsnd (𝜑 → (𝐴m {𝐵}) = {𝑓 ∣ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}})
Distinct variable groups:   𝐴,𝑓,𝑦   𝐵,𝑓,𝑦   𝜑,𝑓,𝑦
Allowed substitution hints:   𝑉(𝑦,𝑓)   𝑊(𝑦,𝑓)

Proof of Theorem mapsnd
StepHypRef Expression
1 mapsnd.1 . . . 4 (𝜑𝐴𝑉)
2 snex 5334 . . . . 5 {𝐵} ∈ V
32a1i 11 . . . 4 (𝜑 → {𝐵} ∈ V)
41, 3elmapd 8422 . . 3 (𝜑 → (𝑓 ∈ (𝐴m {𝐵}) ↔ 𝑓:{𝐵}⟶𝐴))
5 ffn 6516 . . . . . . . . 9 (𝑓:{𝐵}⟶𝐴𝑓 Fn {𝐵})
6 mapsnd.2 . . . . . . . . . 10 (𝜑𝐵𝑊)
7 snidg 4601 . . . . . . . . . 10 (𝐵𝑊𝐵 ∈ {𝐵})
86, 7syl 17 . . . . . . . . 9 (𝜑𝐵 ∈ {𝐵})
9 fneu 6463 . . . . . . . . 9 ((𝑓 Fn {𝐵} ∧ 𝐵 ∈ {𝐵}) → ∃!𝑦 𝐵𝑓𝑦)
105, 8, 9syl2anr 598 . . . . . . . 8 ((𝜑𝑓:{𝐵}⟶𝐴) → ∃!𝑦 𝐵𝑓𝑦)
11 euabsn 4664 . . . . . . . . . 10 (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦{𝑦𝐵𝑓𝑦} = {𝑦})
12 frel 6521 . . . . . . . . . . . . . 14 (𝑓:{𝐵}⟶𝐴 → Rel 𝑓)
13 relimasn 5954 . . . . . . . . . . . . . 14 (Rel 𝑓 → (𝑓 “ {𝐵}) = {𝑦𝐵𝑓𝑦})
1412, 13syl 17 . . . . . . . . . . . . 13 (𝑓:{𝐵}⟶𝐴 → (𝑓 “ {𝐵}) = {𝑦𝐵𝑓𝑦})
15 imadmrn 5941 . . . . . . . . . . . . . 14 (𝑓 “ dom 𝑓) = ran 𝑓
16 fdm 6524 . . . . . . . . . . . . . . 15 (𝑓:{𝐵}⟶𝐴 → dom 𝑓 = {𝐵})
1716imaeq2d 5931 . . . . . . . . . . . . . 14 (𝑓:{𝐵}⟶𝐴 → (𝑓 “ dom 𝑓) = (𝑓 “ {𝐵}))
1815, 17syl5reqr 2873 . . . . . . . . . . . . 13 (𝑓:{𝐵}⟶𝐴 → (𝑓 “ {𝐵}) = ran 𝑓)
1914, 18eqtr3d 2860 . . . . . . . . . . . 12 (𝑓:{𝐵}⟶𝐴 → {𝑦𝐵𝑓𝑦} = ran 𝑓)
2019eqeq1d 2825 . . . . . . . . . . 11 (𝑓:{𝐵}⟶𝐴 → ({𝑦𝐵𝑓𝑦} = {𝑦} ↔ ran 𝑓 = {𝑦}))
2120exbidv 1922 . . . . . . . . . 10 (𝑓:{𝐵}⟶𝐴 → (∃𝑦{𝑦𝐵𝑓𝑦} = {𝑦} ↔ ∃𝑦ran 𝑓 = {𝑦}))
2211, 21syl5bb 285 . . . . . . . . 9 (𝑓:{𝐵}⟶𝐴 → (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦ran 𝑓 = {𝑦}))
2322adantl 484 . . . . . . . 8 ((𝜑𝑓:{𝐵}⟶𝐴) → (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦ran 𝑓 = {𝑦}))
2410, 23mpbid 234 . . . . . . 7 ((𝜑𝑓:{𝐵}⟶𝐴) → ∃𝑦ran 𝑓 = {𝑦})
25 frn 6522 . . . . . . . . . . . . 13 (𝑓:{𝐵}⟶𝐴 → ran 𝑓𝐴)
2625sseld 3968 . . . . . . . . . . . 12 (𝑓:{𝐵}⟶𝐴 → (𝑦 ∈ ran 𝑓𝑦𝐴))
27 vsnid 4604 . . . . . . . . . . . . 13 𝑦 ∈ {𝑦}
28 eleq2 2903 . . . . . . . . . . . . 13 (ran 𝑓 = {𝑦} → (𝑦 ∈ ran 𝑓𝑦 ∈ {𝑦}))
2927, 28mpbiri 260 . . . . . . . . . . . 12 (ran 𝑓 = {𝑦} → 𝑦 ∈ ran 𝑓)
3026, 29impel 508 . . . . . . . . . . 11 ((𝑓:{𝐵}⟶𝐴 ∧ ran 𝑓 = {𝑦}) → 𝑦𝐴)
3130adantll 712 . . . . . . . . . 10 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝑦𝐴)
32 ffrn 6528 . . . . . . . . . . . . . 14 (𝑓:{𝐵}⟶𝐴𝑓:{𝐵}⟶ran 𝑓)
33 feq3 6499 . . . . . . . . . . . . . 14 (ran 𝑓 = {𝑦} → (𝑓:{𝐵}⟶ran 𝑓𝑓:{𝐵}⟶{𝑦}))
3432, 33syl5ibcom 247 . . . . . . . . . . . . 13 (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑓:{𝐵}⟶{𝑦}))
3534imp 409 . . . . . . . . . . . 12 ((𝑓:{𝐵}⟶𝐴 ∧ ran 𝑓 = {𝑦}) → 𝑓:{𝐵}⟶{𝑦})
3635adantll 712 . . . . . . . . . . 11 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝑓:{𝐵}⟶{𝑦})
376ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝐵𝑊)
38 vex 3499 . . . . . . . . . . . 12 𝑦 ∈ V
39 fsng 6901 . . . . . . . . . . . 12 ((𝐵𝑊𝑦 ∈ V) → (𝑓:{𝐵}⟶{𝑦} ↔ 𝑓 = {⟨𝐵, 𝑦⟩}))
4037, 38, 39sylancl 588 . . . . . . . . . . 11 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → (𝑓:{𝐵}⟶{𝑦} ↔ 𝑓 = {⟨𝐵, 𝑦⟩}))
4136, 40mpbid 234 . . . . . . . . . 10 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝑓 = {⟨𝐵, 𝑦⟩})
4231, 41jca 514 . . . . . . . . 9 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → (𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}))
4342ex 415 . . . . . . . 8 ((𝜑𝑓:{𝐵}⟶𝐴) → (ran 𝑓 = {𝑦} → (𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩})))
4443eximdv 1918 . . . . . . 7 ((𝜑𝑓:{𝐵}⟶𝐴) → (∃𝑦ran 𝑓 = {𝑦} → ∃𝑦(𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩})))
4524, 44mpd 15 . . . . . 6 ((𝜑𝑓:{𝐵}⟶𝐴) → ∃𝑦(𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}))
46 df-rex 3146 . . . . . 6 (∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩} ↔ ∃𝑦(𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}))
4745, 46sylibr 236 . . . . 5 ((𝜑𝑓:{𝐵}⟶𝐴) → ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩})
4847ex 415 . . . 4 (𝜑 → (𝑓:{𝐵}⟶𝐴 → ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}))
49 f1osng 6657 . . . . . . . . . . 11 ((𝐵𝑊𝑦 ∈ V) → {⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦})
506, 38, 49sylancl 588 . . . . . . . . . 10 (𝜑 → {⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦})
5150adantr 483 . . . . . . . . 9 ((𝜑𝑓 = {⟨𝐵, 𝑦⟩}) → {⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦})
52 f1oeq1 6606 . . . . . . . . . . 11 (𝑓 = {⟨𝐵, 𝑦⟩} → (𝑓:{𝐵}–1-1-onto→{𝑦} ↔ {⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦}))
5352bicomd 225 . . . . . . . . . 10 (𝑓 = {⟨𝐵, 𝑦⟩} → ({⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦} ↔ 𝑓:{𝐵}–1-1-onto→{𝑦}))
5453adantl 484 . . . . . . . . 9 ((𝜑𝑓 = {⟨𝐵, 𝑦⟩}) → ({⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦} ↔ 𝑓:{𝐵}–1-1-onto→{𝑦}))
5551, 54mpbid 234 . . . . . . . 8 ((𝜑𝑓 = {⟨𝐵, 𝑦⟩}) → 𝑓:{𝐵}–1-1-onto→{𝑦})
56 f1of 6617 . . . . . . . 8 (𝑓:{𝐵}–1-1-onto→{𝑦} → 𝑓:{𝐵}⟶{𝑦})
5755, 56syl 17 . . . . . . 7 ((𝜑𝑓 = {⟨𝐵, 𝑦⟩}) → 𝑓:{𝐵}⟶{𝑦})
58573adant2 1127 . . . . . 6 ((𝜑𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}) → 𝑓:{𝐵}⟶{𝑦})
59 snssi 4743 . . . . . . 7 (𝑦𝐴 → {𝑦} ⊆ 𝐴)
60593ad2ant2 1130 . . . . . 6 ((𝜑𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}) → {𝑦} ⊆ 𝐴)
6158, 60fssd 6530 . . . . 5 ((𝜑𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}) → 𝑓:{𝐵}⟶𝐴)
6261rexlimdv3a 3288 . . . 4 (𝜑 → (∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩} → 𝑓:{𝐵}⟶𝐴))
6348, 62impbid 214 . . 3 (𝜑 → (𝑓:{𝐵}⟶𝐴 ↔ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}))
644, 63bitrd 281 . 2 (𝜑 → (𝑓 ∈ (𝐴m {𝐵}) ↔ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}))
6564abbi2dv 2952 1 (𝜑 → (𝐴m {𝐵}) = {𝑓 ∣ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  ∃!weu 2653  {cab 2801  wrex 3141  Vcvv 3496  wss 3938  {csn 4569  cop 4575   class class class wbr 5068  dom cdm 5557  ran crn 5558  cima 5560  Rel wrel 5562   Fn wfn 6352  wf 6353  1-1-ontowf1o 6356  (class class class)co 7158  m cmap 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410
This theorem is referenced by:  mapsn  8454  mapsnend  8590  iunmapsn  41487
  Copyright terms: Public domain W3C validator