MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnd Structured version   Visualization version   GIF version

Theorem mapsnd 8632
Description: The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
mapsnd.1 (𝜑𝐴𝑉)
mapsnd.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
mapsnd (𝜑 → (𝐴m {𝐵}) = {𝑓 ∣ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}})
Distinct variable groups:   𝐴,𝑓,𝑦   𝐵,𝑓,𝑦   𝜑,𝑓,𝑦
Allowed substitution hints:   𝑉(𝑦,𝑓)   𝑊(𝑦,𝑓)

Proof of Theorem mapsnd
StepHypRef Expression
1 mapsnd.1 . . . 4 (𝜑𝐴𝑉)
2 snex 5349 . . . . 5 {𝐵} ∈ V
32a1i 11 . . . 4 (𝜑 → {𝐵} ∈ V)
41, 3elmapd 8587 . . 3 (𝜑 → (𝑓 ∈ (𝐴m {𝐵}) ↔ 𝑓:{𝐵}⟶𝐴))
5 ffn 6584 . . . . . . . . 9 (𝑓:{𝐵}⟶𝐴𝑓 Fn {𝐵})
6 mapsnd.2 . . . . . . . . . 10 (𝜑𝐵𝑊)
7 snidg 4592 . . . . . . . . . 10 (𝐵𝑊𝐵 ∈ {𝐵})
86, 7syl 17 . . . . . . . . 9 (𝜑𝐵 ∈ {𝐵})
9 fneu 6527 . . . . . . . . 9 ((𝑓 Fn {𝐵} ∧ 𝐵 ∈ {𝐵}) → ∃!𝑦 𝐵𝑓𝑦)
105, 8, 9syl2anr 596 . . . . . . . 8 ((𝜑𝑓:{𝐵}⟶𝐴) → ∃!𝑦 𝐵𝑓𝑦)
11 euabsn 4659 . . . . . . . . . 10 (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦{𝑦𝐵𝑓𝑦} = {𝑦})
12 frel 6589 . . . . . . . . . . . . . 14 (𝑓:{𝐵}⟶𝐴 → Rel 𝑓)
13 relimasn 5981 . . . . . . . . . . . . . 14 (Rel 𝑓 → (𝑓 “ {𝐵}) = {𝑦𝐵𝑓𝑦})
1412, 13syl 17 . . . . . . . . . . . . 13 (𝑓:{𝐵}⟶𝐴 → (𝑓 “ {𝐵}) = {𝑦𝐵𝑓𝑦})
15 fdm 6593 . . . . . . . . . . . . . . 15 (𝑓:{𝐵}⟶𝐴 → dom 𝑓 = {𝐵})
1615imaeq2d 5958 . . . . . . . . . . . . . 14 (𝑓:{𝐵}⟶𝐴 → (𝑓 “ dom 𝑓) = (𝑓 “ {𝐵}))
17 imadmrn 5968 . . . . . . . . . . . . . 14 (𝑓 “ dom 𝑓) = ran 𝑓
1816, 17eqtr3di 2794 . . . . . . . . . . . . 13 (𝑓:{𝐵}⟶𝐴 → (𝑓 “ {𝐵}) = ran 𝑓)
1914, 18eqtr3d 2780 . . . . . . . . . . . 12 (𝑓:{𝐵}⟶𝐴 → {𝑦𝐵𝑓𝑦} = ran 𝑓)
2019eqeq1d 2740 . . . . . . . . . . 11 (𝑓:{𝐵}⟶𝐴 → ({𝑦𝐵𝑓𝑦} = {𝑦} ↔ ran 𝑓 = {𝑦}))
2120exbidv 1925 . . . . . . . . . 10 (𝑓:{𝐵}⟶𝐴 → (∃𝑦{𝑦𝐵𝑓𝑦} = {𝑦} ↔ ∃𝑦ran 𝑓 = {𝑦}))
2211, 21syl5bb 282 . . . . . . . . 9 (𝑓:{𝐵}⟶𝐴 → (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦ran 𝑓 = {𝑦}))
2322adantl 481 . . . . . . . 8 ((𝜑𝑓:{𝐵}⟶𝐴) → (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦ran 𝑓 = {𝑦}))
2410, 23mpbid 231 . . . . . . 7 ((𝜑𝑓:{𝐵}⟶𝐴) → ∃𝑦ran 𝑓 = {𝑦})
25 frn 6591 . . . . . . . . . . . . 13 (𝑓:{𝐵}⟶𝐴 → ran 𝑓𝐴)
2625sseld 3916 . . . . . . . . . . . 12 (𝑓:{𝐵}⟶𝐴 → (𝑦 ∈ ran 𝑓𝑦𝐴))
27 vsnid 4595 . . . . . . . . . . . . 13 𝑦 ∈ {𝑦}
28 eleq2 2827 . . . . . . . . . . . . 13 (ran 𝑓 = {𝑦} → (𝑦 ∈ ran 𝑓𝑦 ∈ {𝑦}))
2927, 28mpbiri 257 . . . . . . . . . . . 12 (ran 𝑓 = {𝑦} → 𝑦 ∈ ran 𝑓)
3026, 29impel 505 . . . . . . . . . . 11 ((𝑓:{𝐵}⟶𝐴 ∧ ran 𝑓 = {𝑦}) → 𝑦𝐴)
3130adantll 710 . . . . . . . . . 10 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝑦𝐴)
32 ffrn 6598 . . . . . . . . . . . . . 14 (𝑓:{𝐵}⟶𝐴𝑓:{𝐵}⟶ran 𝑓)
33 feq3 6567 . . . . . . . . . . . . . 14 (ran 𝑓 = {𝑦} → (𝑓:{𝐵}⟶ran 𝑓𝑓:{𝐵}⟶{𝑦}))
3432, 33syl5ibcom 244 . . . . . . . . . . . . 13 (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑓:{𝐵}⟶{𝑦}))
3534imp 406 . . . . . . . . . . . 12 ((𝑓:{𝐵}⟶𝐴 ∧ ran 𝑓 = {𝑦}) → 𝑓:{𝐵}⟶{𝑦})
3635adantll 710 . . . . . . . . . . 11 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝑓:{𝐵}⟶{𝑦})
376ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝐵𝑊)
38 vex 3426 . . . . . . . . . . . 12 𝑦 ∈ V
39 fsng 6991 . . . . . . . . . . . 12 ((𝐵𝑊𝑦 ∈ V) → (𝑓:{𝐵}⟶{𝑦} ↔ 𝑓 = {⟨𝐵, 𝑦⟩}))
4037, 38, 39sylancl 585 . . . . . . . . . . 11 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → (𝑓:{𝐵}⟶{𝑦} ↔ 𝑓 = {⟨𝐵, 𝑦⟩}))
4136, 40mpbid 231 . . . . . . . . . 10 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝑓 = {⟨𝐵, 𝑦⟩})
4231, 41jca 511 . . . . . . . . 9 (((𝜑𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → (𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}))
4342ex 412 . . . . . . . 8 ((𝜑𝑓:{𝐵}⟶𝐴) → (ran 𝑓 = {𝑦} → (𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩})))
4443eximdv 1921 . . . . . . 7 ((𝜑𝑓:{𝐵}⟶𝐴) → (∃𝑦ran 𝑓 = {𝑦} → ∃𝑦(𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩})))
4524, 44mpd 15 . . . . . 6 ((𝜑𝑓:{𝐵}⟶𝐴) → ∃𝑦(𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}))
46 df-rex 3069 . . . . . 6 (∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩} ↔ ∃𝑦(𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}))
4745, 46sylibr 233 . . . . 5 ((𝜑𝑓:{𝐵}⟶𝐴) → ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩})
4847ex 412 . . . 4 (𝜑 → (𝑓:{𝐵}⟶𝐴 → ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}))
49 f1osng 6740 . . . . . . . . . . 11 ((𝐵𝑊𝑦 ∈ V) → {⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦})
506, 38, 49sylancl 585 . . . . . . . . . 10 (𝜑 → {⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦})
5150adantr 480 . . . . . . . . 9 ((𝜑𝑓 = {⟨𝐵, 𝑦⟩}) → {⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦})
52 f1oeq1 6688 . . . . . . . . . . 11 (𝑓 = {⟨𝐵, 𝑦⟩} → (𝑓:{𝐵}–1-1-onto→{𝑦} ↔ {⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦}))
5352bicomd 222 . . . . . . . . . 10 (𝑓 = {⟨𝐵, 𝑦⟩} → ({⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦} ↔ 𝑓:{𝐵}–1-1-onto→{𝑦}))
5453adantl 481 . . . . . . . . 9 ((𝜑𝑓 = {⟨𝐵, 𝑦⟩}) → ({⟨𝐵, 𝑦⟩}:{𝐵}–1-1-onto→{𝑦} ↔ 𝑓:{𝐵}–1-1-onto→{𝑦}))
5551, 54mpbid 231 . . . . . . . 8 ((𝜑𝑓 = {⟨𝐵, 𝑦⟩}) → 𝑓:{𝐵}–1-1-onto→{𝑦})
56 f1of 6700 . . . . . . . 8 (𝑓:{𝐵}–1-1-onto→{𝑦} → 𝑓:{𝐵}⟶{𝑦})
5755, 56syl 17 . . . . . . 7 ((𝜑𝑓 = {⟨𝐵, 𝑦⟩}) → 𝑓:{𝐵}⟶{𝑦})
58573adant2 1129 . . . . . 6 ((𝜑𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}) → 𝑓:{𝐵}⟶{𝑦})
59 snssi 4738 . . . . . . 7 (𝑦𝐴 → {𝑦} ⊆ 𝐴)
60593ad2ant2 1132 . . . . . 6 ((𝜑𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}) → {𝑦} ⊆ 𝐴)
6158, 60fssd 6602 . . . . 5 ((𝜑𝑦𝐴𝑓 = {⟨𝐵, 𝑦⟩}) → 𝑓:{𝐵}⟶𝐴)
6261rexlimdv3a 3214 . . . 4 (𝜑 → (∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩} → 𝑓:{𝐵}⟶𝐴))
6348, 62impbid 211 . . 3 (𝜑 → (𝑓:{𝐵}⟶𝐴 ↔ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}))
644, 63bitrd 278 . 2 (𝜑 → (𝑓 ∈ (𝐴m {𝐵}) ↔ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}))
6564abbi2dv 2876 1 (𝜑 → (𝐴m {𝐵}) = {𝑓 ∣ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  ∃!weu 2568  {cab 2715  wrex 3064  Vcvv 3422  wss 3883  {csn 4558  cop 4564   class class class wbr 5070  dom cdm 5580  ran crn 5581  cima 5583  Rel wrel 5585   Fn wfn 6413  wf 6414  1-1-ontowf1o 6417  (class class class)co 7255  m cmap 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575
This theorem is referenced by:  mapsn  8634  mapsnend  8780  iunmapsn  42646
  Copyright terms: Public domain W3C validator