MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo2ndf Structured version   Visualization version   GIF version

Theorem fo2ndf 8146
Description: The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
Assertion
Ref Expression
fo2ndf (𝐹:𝐴𝐵 → (2nd𝐹):𝐹onto→ran 𝐹)

Proof of Theorem fo2ndf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffrn 6749 . . 3 (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)
2 f2ndf 8145 . . 3 (𝐹:𝐴⟶ran 𝐹 → (2nd𝐹):𝐹⟶ran 𝐹)
31, 2syl 17 . 2 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹⟶ran 𝐹)
4 ffn 6736 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 dffn3 6748 . . . . . 6 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
65, 2sylbi 217 . . . . 5 (𝐹 Fn 𝐴 → (2nd𝐹):𝐹⟶ran 𝐹)
74, 6syl 17 . . . 4 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹⟶ran 𝐹)
87frnd 6744 . . 3 (𝐹:𝐴𝐵 → ran (2nd𝐹) ⊆ ran 𝐹)
9 elrn2g 5901 . . . . . 6 (𝑦 ∈ ran 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐹))
109ibi 267 . . . . 5 (𝑦 ∈ ran 𝐹 → ∃𝑥𝑥, 𝑦⟩ ∈ 𝐹)
11 fvres 6925 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝑥, 𝑦⟩))
1211adantl 481 . . . . . . . . 9 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝑥, 𝑦⟩))
13 vex 3484 . . . . . . . . . 10 𝑥 ∈ V
14 vex 3484 . . . . . . . . . 10 𝑦 ∈ V
1513, 14op2nd 8023 . . . . . . . . 9 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
1612, 15eqtr2di 2794 . . . . . . . 8 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑦 = ((2nd𝐹)‘⟨𝑥, 𝑦⟩))
17 f2ndf 8145 . . . . . . . . . 10 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹𝐵)
1817ffnd 6737 . . . . . . . . 9 (𝐹:𝐴𝐵 → (2nd𝐹) Fn 𝐹)
19 fnfvelrn 7100 . . . . . . . . 9 (((2nd𝐹) Fn 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) ∈ ran (2nd𝐹))
2018, 19sylan 580 . . . . . . . 8 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) ∈ ran (2nd𝐹))
2116, 20eqeltrd 2841 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑦 ∈ ran (2nd𝐹))
2221ex 412 . . . . . 6 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦 ∈ ran (2nd𝐹)))
2322exlimdv 1933 . . . . 5 (𝐹:𝐴𝐵 → (∃𝑥𝑥, 𝑦⟩ ∈ 𝐹𝑦 ∈ ran (2nd𝐹)))
2410, 23syl5 34 . . . 4 (𝐹:𝐴𝐵 → (𝑦 ∈ ran 𝐹𝑦 ∈ ran (2nd𝐹)))
2524ssrdv 3989 . . 3 (𝐹:𝐴𝐵 → ran 𝐹 ⊆ ran (2nd𝐹))
268, 25eqssd 4001 . 2 (𝐹:𝐴𝐵 → ran (2nd𝐹) = ran 𝐹)
27 dffo2 6824 . 2 ((2nd𝐹):𝐹onto→ran 𝐹 ↔ ((2nd𝐹):𝐹⟶ran 𝐹 ∧ ran (2nd𝐹) = ran 𝐹))
283, 26, 27sylanbrc 583 1 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹onto→ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  cop 4632  ran crn 5686  cres 5687   Fn wfn 6556  wf 6557  ontowfo 6559  cfv 6561  2nd c2nd 8013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fo 6567  df-fv 6569  df-2nd 8015
This theorem is referenced by:  f1o2ndf1  8147
  Copyright terms: Public domain W3C validator