MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo2ndf Structured version   Visualization version   GIF version

Theorem fo2ndf 7933
Description: The 2nd (second component of an ordered pair) function restricted to a function 𝐹 is a function from 𝐹 onto the range of 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
Assertion
Ref Expression
fo2ndf (𝐹:𝐴𝐵 → (2nd𝐹):𝐹onto→ran 𝐹)

Proof of Theorem fo2ndf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffrn 6598 . . 3 (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)
2 f2ndf 7932 . . 3 (𝐹:𝐴⟶ran 𝐹 → (2nd𝐹):𝐹⟶ran 𝐹)
31, 2syl 17 . 2 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹⟶ran 𝐹)
4 ffn 6584 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 dffn3 6597 . . . . . 6 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
65, 2sylbi 216 . . . . 5 (𝐹 Fn 𝐴 → (2nd𝐹):𝐹⟶ran 𝐹)
74, 6syl 17 . . . 4 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹⟶ran 𝐹)
87frnd 6592 . . 3 (𝐹:𝐴𝐵 → ran (2nd𝐹) ⊆ ran 𝐹)
9 elrn2g 5788 . . . . . 6 (𝑦 ∈ ran 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐹))
109ibi 266 . . . . 5 (𝑦 ∈ ran 𝐹 → ∃𝑥𝑥, 𝑦⟩ ∈ 𝐹)
11 fvres 6775 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝑥, 𝑦⟩))
1211adantl 481 . . . . . . . . 9 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝑥, 𝑦⟩))
13 vex 3426 . . . . . . . . . 10 𝑥 ∈ V
14 vex 3426 . . . . . . . . . 10 𝑦 ∈ V
1513, 14op2nd 7813 . . . . . . . . 9 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
1612, 15eqtr2di 2796 . . . . . . . 8 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑦 = ((2nd𝐹)‘⟨𝑥, 𝑦⟩))
17 f2ndf 7932 . . . . . . . . . 10 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹𝐵)
1817ffnd 6585 . . . . . . . . 9 (𝐹:𝐴𝐵 → (2nd𝐹) Fn 𝐹)
19 fnfvelrn 6940 . . . . . . . . 9 (((2nd𝐹) Fn 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) ∈ ran (2nd𝐹))
2018, 19sylan 579 . . . . . . . 8 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ((2nd𝐹)‘⟨𝑥, 𝑦⟩) ∈ ran (2nd𝐹))
2116, 20eqeltrd 2839 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑦 ∈ ran (2nd𝐹))
2221ex 412 . . . . . 6 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦 ∈ ran (2nd𝐹)))
2322exlimdv 1937 . . . . 5 (𝐹:𝐴𝐵 → (∃𝑥𝑥, 𝑦⟩ ∈ 𝐹𝑦 ∈ ran (2nd𝐹)))
2410, 23syl5 34 . . . 4 (𝐹:𝐴𝐵 → (𝑦 ∈ ran 𝐹𝑦 ∈ ran (2nd𝐹)))
2524ssrdv 3923 . . 3 (𝐹:𝐴𝐵 → ran 𝐹 ⊆ ran (2nd𝐹))
268, 25eqssd 3934 . 2 (𝐹:𝐴𝐵 → ran (2nd𝐹) = ran 𝐹)
27 dffo2 6676 . 2 ((2nd𝐹):𝐹onto→ran 𝐹 ↔ ((2nd𝐹):𝐹⟶ran 𝐹 ∧ ran (2nd𝐹) = ran 𝐹))
283, 26, 27sylanbrc 582 1 (𝐹:𝐴𝐵 → (2nd𝐹):𝐹onto→ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  cop 4564  ran crn 5581  cres 5582   Fn wfn 6413  wf 6414  ontowfo 6416  cfv 6418  2nd c2nd 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-2nd 7805
This theorem is referenced by:  f1o2ndf1  7934
  Copyright terms: Public domain W3C validator