MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1val2 Structured version   Visualization version   GIF version

Theorem itg1val2 24287
Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
itg1val2 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → (∫1𝐹) = Σ𝑥𝐴 (𝑥 · (vol‘(𝐹 “ {𝑥}))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem itg1val2
StepHypRef Expression
1 itg1val 24286 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
21adantr 483 . 2 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
3 simpr2 1191 . . 3 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → (ran 𝐹 ∖ {0}) ⊆ 𝐴)
43sselda 3969 . . . 4 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 𝑥𝐴)
5 simpr3 1192 . . . . . . . 8 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → 𝐴 ⊆ (ℝ ∖ {0}))
65sselda 3969 . . . . . . 7 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → 𝑥 ∈ (ℝ ∖ {0}))
7 eldifi 4105 . . . . . . 7 (𝑥 ∈ (ℝ ∖ {0}) → 𝑥 ∈ ℝ)
86, 7syl 17 . . . . . 6 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
9 i1fima2sn 24283 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑥 ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
109adantlr 713 . . . . . . 7 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
116, 10syldan 593 . . . . . 6 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
128, 11remulcld 10673 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℝ)
1312recnd 10671 . . . 4 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℂ)
144, 13syldan 593 . . 3 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℂ)
15 i1ff 24279 . . . . . . . . . 10 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
1615ad2antrr 724 . . . . . . . . 9 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝐹:ℝ⟶ℝ)
17 ffrn 6528 . . . . . . . . 9 (𝐹:ℝ⟶ℝ → 𝐹:ℝ⟶ran 𝐹)
1816, 17syl 17 . . . . . . . 8 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝐹:ℝ⟶ran 𝐹)
19 eldifn 4106 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0})) → ¬ 𝑥 ∈ (ran 𝐹 ∖ {0}))
2019adantl 484 . . . . . . . . . 10 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → ¬ 𝑥 ∈ (ran 𝐹 ∖ {0}))
21 simplr3 1213 . . . . . . . . . . . . . . 15 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝐴 ⊆ (ℝ ∖ {0}))
2221ssdifssd 4121 . . . . . . . . . . . . . 14 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝐴 ∖ (ran 𝐹 ∖ {0})) ⊆ (ℝ ∖ {0}))
23 simpr 487 . . . . . . . . . . . . . 14 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0})))
2422, 23sseldd 3970 . . . . . . . . . . . . 13 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝑥 ∈ (ℝ ∖ {0}))
25 eldifn 4106 . . . . . . . . . . . . 13 (𝑥 ∈ (ℝ ∖ {0}) → ¬ 𝑥 ∈ {0})
2624, 25syl 17 . . . . . . . . . . . 12 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → ¬ 𝑥 ∈ {0})
2726biantrud 534 . . . . . . . . . . 11 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 ∈ ran 𝐹 ↔ (𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ {0})))
28 eldif 3948 . . . . . . . . . . 11 (𝑥 ∈ (ran 𝐹 ∖ {0}) ↔ (𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ {0}))
2927, 28syl6rbbr 292 . . . . . . . . . 10 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 ∈ (ran 𝐹 ∖ {0}) ↔ 𝑥 ∈ ran 𝐹))
3020, 29mtbid 326 . . . . . . . . 9 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → ¬ 𝑥 ∈ ran 𝐹)
31 disjsn 4649 . . . . . . . . 9 ((ran 𝐹 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ ran 𝐹)
3230, 31sylibr 236 . . . . . . . 8 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (ran 𝐹 ∩ {𝑥}) = ∅)
33 fimacnvdisj 6559 . . . . . . . 8 ((𝐹:ℝ⟶ran 𝐹 ∧ (ran 𝐹 ∩ {𝑥}) = ∅) → (𝐹 “ {𝑥}) = ∅)
3418, 32, 33syl2anc 586 . . . . . . 7 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝐹 “ {𝑥}) = ∅)
3534fveq2d 6676 . . . . . 6 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (vol‘(𝐹 “ {𝑥})) = (vol‘∅))
36 0mbl 24142 . . . . . . . 8 ∅ ∈ dom vol
37 mblvol 24133 . . . . . . . 8 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
3836, 37ax-mp 5 . . . . . . 7 (vol‘∅) = (vol*‘∅)
39 ovol0 24096 . . . . . . 7 (vol*‘∅) = 0
4038, 39eqtri 2846 . . . . . 6 (vol‘∅) = 0
4135, 40syl6eq 2874 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (vol‘(𝐹 “ {𝑥})) = 0)
4241oveq2d 7174 . . . 4 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) = (𝑥 · 0))
43 eldifi 4105 . . . . . . 7 (𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0})) → 𝑥𝐴)
4443, 8sylan2 594 . . . . . 6 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝑥 ∈ ℝ)
4544recnd 10671 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝑥 ∈ ℂ)
4645mul01d 10841 . . . 4 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 · 0) = 0)
4742, 46eqtrd 2858 . . 3 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) = 0)
48 simpr1 1190 . . 3 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → 𝐴 ∈ Fin)
493, 14, 47, 48fsumss 15084 . 2 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))) = Σ𝑥𝐴 (𝑥 · (vol‘(𝐹 “ {𝑥}))))
502, 49eqtrd 2858 1 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → (∫1𝐹) = Σ𝑥𝐴 (𝑥 · (vol‘(𝐹 “ {𝑥}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cdif 3935  cin 3937  wss 3938  c0 4293  {csn 4569  ccnv 5556  dom cdm 5557  ran crn 5558  cima 5560  wf 6353  cfv 6357  (class class class)co 7158  Fincfn 8511  cc 10537  cr 10538  0cc0 10539   · cmul 10544  Σcsu 15044  vol*covol 24065  volcvol 24066  1citg1 24218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xadd 12511  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-xmet 20540  df-met 20541  df-ovol 24067  df-vol 24068  df-mbf 24222  df-itg1 24223
This theorem is referenced by:  itg1addlem4  24302  itg1climres  24317
  Copyright terms: Public domain W3C validator