MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1val2 Structured version   Visualization version   GIF version

Theorem itg1val2 23742
Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
itg1val2 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → (∫1𝐹) = Σ𝑥𝐴 (𝑥 · (vol‘(𝐹 “ {𝑥}))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem itg1val2
StepHypRef Expression
1 itg1val 23741 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
21adantr 472 . 2 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
3 simpr2 1250 . . 3 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → (ran 𝐹 ∖ {0}) ⊆ 𝐴)
43sselda 3761 . . . 4 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 𝑥𝐴)
5 simpr3 1252 . . . . . . . 8 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → 𝐴 ⊆ (ℝ ∖ {0}))
65sselda 3761 . . . . . . 7 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → 𝑥 ∈ (ℝ ∖ {0}))
7 eldifi 3894 . . . . . . 7 (𝑥 ∈ (ℝ ∖ {0}) → 𝑥 ∈ ℝ)
86, 7syl 17 . . . . . 6 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
9 i1fima2sn 23738 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑥 ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
109adantlr 706 . . . . . . 7 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
116, 10syldan 585 . . . . . 6 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
128, 11remulcld 10324 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℝ)
1312recnd 10322 . . . 4 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℂ)
144, 13syldan 585 . . 3 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℂ)
15 i1ff 23734 . . . . . . . . . 10 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
1615ad2antrr 717 . . . . . . . . 9 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝐹:ℝ⟶ℝ)
17 ffn 6223 . . . . . . . . . 10 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
18 dffn3 6234 . . . . . . . . . 10 (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹)
1917, 18sylib 209 . . . . . . . . 9 (𝐹:ℝ⟶ℝ → 𝐹:ℝ⟶ran 𝐹)
2016, 19syl 17 . . . . . . . 8 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝐹:ℝ⟶ran 𝐹)
21 eldifn 3895 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0})) → ¬ 𝑥 ∈ (ran 𝐹 ∖ {0}))
2221adantl 473 . . . . . . . . . 10 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → ¬ 𝑥 ∈ (ran 𝐹 ∖ {0}))
23 simplr3 1279 . . . . . . . . . . . . . . 15 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝐴 ⊆ (ℝ ∖ {0}))
2423ssdifssd 3910 . . . . . . . . . . . . . 14 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝐴 ∖ (ran 𝐹 ∖ {0})) ⊆ (ℝ ∖ {0}))
25 simpr 477 . . . . . . . . . . . . . 14 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0})))
2624, 25sseldd 3762 . . . . . . . . . . . . 13 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝑥 ∈ (ℝ ∖ {0}))
27 eldifn 3895 . . . . . . . . . . . . 13 (𝑥 ∈ (ℝ ∖ {0}) → ¬ 𝑥 ∈ {0})
2826, 27syl 17 . . . . . . . . . . . 12 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → ¬ 𝑥 ∈ {0})
2928biantrud 527 . . . . . . . . . . 11 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 ∈ ran 𝐹 ↔ (𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ {0})))
30 eldif 3742 . . . . . . . . . . 11 (𝑥 ∈ (ran 𝐹 ∖ {0}) ↔ (𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ {0}))
3129, 30syl6rbbr 281 . . . . . . . . . 10 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 ∈ (ran 𝐹 ∖ {0}) ↔ 𝑥 ∈ ran 𝐹))
3222, 31mtbid 315 . . . . . . . . 9 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → ¬ 𝑥 ∈ ran 𝐹)
33 disjsn 4402 . . . . . . . . 9 ((ran 𝐹 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ ran 𝐹)
3432, 33sylibr 225 . . . . . . . 8 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (ran 𝐹 ∩ {𝑥}) = ∅)
35 fimacnvdisj 6265 . . . . . . . 8 ((𝐹:ℝ⟶ran 𝐹 ∧ (ran 𝐹 ∩ {𝑥}) = ∅) → (𝐹 “ {𝑥}) = ∅)
3620, 34, 35syl2anc 579 . . . . . . 7 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝐹 “ {𝑥}) = ∅)
3736fveq2d 6379 . . . . . 6 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (vol‘(𝐹 “ {𝑥})) = (vol‘∅))
38 0mbl 23597 . . . . . . . 8 ∅ ∈ dom vol
39 mblvol 23588 . . . . . . . 8 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
4038, 39ax-mp 5 . . . . . . 7 (vol‘∅) = (vol*‘∅)
41 ovol0 23551 . . . . . . 7 (vol*‘∅) = 0
4240, 41eqtri 2787 . . . . . 6 (vol‘∅) = 0
4337, 42syl6eq 2815 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (vol‘(𝐹 “ {𝑥})) = 0)
4443oveq2d 6858 . . . 4 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) = (𝑥 · 0))
45 eldifi 3894 . . . . . . 7 (𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0})) → 𝑥𝐴)
4645, 8sylan2 586 . . . . . 6 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝑥 ∈ ℝ)
4746recnd 10322 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝑥 ∈ ℂ)
4847mul01d 10489 . . . 4 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 · 0) = 0)
4944, 48eqtrd 2799 . . 3 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) = 0)
50 simpr1 1248 . . 3 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → 𝐴 ∈ Fin)
513, 14, 49, 50fsumss 14743 . 2 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))) = Σ𝑥𝐴 (𝑥 · (vol‘(𝐹 “ {𝑥}))))
522, 51eqtrd 2799 1 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → (∫1𝐹) = Σ𝑥𝐴 (𝑥 · (vol‘(𝐹 “ {𝑥}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  cdif 3729  cin 3731  wss 3732  c0 4079  {csn 4334  ccnv 5276  dom cdm 5277  ran crn 5278  cima 5280   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  Fincfn 8160  cc 10187  cr 10188  0cc0 10189   · cmul 10194  Σcsu 14703  vol*covol 23520  volcvol 23521  1citg1 23673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-q 11990  df-rp 12029  df-xadd 12147  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-clim 14506  df-sum 14704  df-xmet 20012  df-met 20013  df-ovol 23522  df-vol 23523  df-mbf 23677  df-itg1 23678
This theorem is referenced by:  itg1addlem4  23757  itg1climres  23772
  Copyright terms: Public domain W3C validator