| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1ocof1ob | Structured version Visualization version GIF version | ||
| Description: If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. (Contributed by GL and AV, 7-Oct-2024.) |
| Ref | Expression |
|---|---|
| f1ocof1ob | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffrn 6701 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴⟶ran 𝐹) | |
| 2 | 1 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴⟶ran 𝐹) |
| 3 | feq3 6668 | . . . . . . 7 ⊢ (ran 𝐹 = 𝐶 → (𝐹:𝐴⟶ran 𝐹 ↔ 𝐹:𝐴⟶𝐶)) | |
| 4 | 3 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴⟶ran 𝐹 ↔ 𝐹:𝐴⟶𝐶)) |
| 5 | 2, 4 | mpbid 232 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴⟶𝐶) |
| 6 | f1cof1b 47078 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷))) | |
| 7 | 5, 6 | syld3an1 1412 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷))) |
| 8 | ffn 6688 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 9 | fnfocofob 47080 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ 𝐺:𝐶–onto→𝐷)) | |
| 10 | 8, 9 | syl3an1 1163 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ 𝐺:𝐶–onto→𝐷)) |
| 11 | 7, 10 | anbi12d 632 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝐴–onto→𝐷) ↔ ((𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷) ∧ 𝐺:𝐶–onto→𝐷))) |
| 12 | anass 468 | . . 3 ⊢ (((𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷) ∧ 𝐺:𝐶–onto→𝐷) ↔ (𝐹:𝐴–1-1→𝐶 ∧ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷))) | |
| 13 | 11, 12 | bitrdi 287 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝐴–onto→𝐷) ↔ (𝐹:𝐴–1-1→𝐶 ∧ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷)))) |
| 14 | df-f1o 6518 | . 2 ⊢ ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝐴–onto→𝐷)) | |
| 15 | df-f1o 6518 | . . 3 ⊢ (𝐺:𝐶–1-1-onto→𝐷 ↔ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷)) | |
| 16 | 15 | anbi2i 623 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷) ↔ (𝐹:𝐴–1-1→𝐶 ∧ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷))) |
| 17 | 13, 14, 16 | 3bitr4g 314 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ran crn 5639 ∘ ccom 5642 Fn wfn 6506 ⟶wf 6507 –1-1→wf1 6508 –onto→wfo 6509 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 |
| This theorem is referenced by: f1ocof1ob2 47083 |
| Copyright terms: Public domain | W3C validator |