Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1ocof1ob Structured version   Visualization version   GIF version

Theorem f1ocof1ob 46089
Description: If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. (Contributed by GL and AV, 7-Oct-2024.)
Assertion
Ref Expression
f1ocof1ob ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1→𝐢 ∧ 𝐺:𝐢–1-1-onto→𝐷)))

Proof of Theorem f1ocof1ob
StepHypRef Expression
1 ffrn 6732 . . . . . . 7 (𝐹:𝐴⟢𝐡 β†’ 𝐹:𝐴⟢ran 𝐹)
213ad2ant1 1132 . . . . . 6 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ 𝐹:𝐴⟢ran 𝐹)
3 feq3 6701 . . . . . . 7 (ran 𝐹 = 𝐢 β†’ (𝐹:𝐴⟢ran 𝐹 ↔ 𝐹:𝐴⟢𝐢))
433ad2ant3 1134 . . . . . 6 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ (𝐹:𝐴⟢ran 𝐹 ↔ 𝐹:𝐴⟢𝐢))
52, 4mpbid 231 . . . . 5 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ 𝐹:𝐴⟢𝐢)
6 f1cof1b 46085 . . . . 5 ((𝐹:𝐴⟢𝐢 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ↔ (𝐹:𝐴–1-1→𝐢 ∧ 𝐺:𝐢–1-1→𝐷)))
75, 6syld3an1 1409 . . . 4 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ↔ (𝐹:𝐴–1-1→𝐢 ∧ 𝐺:𝐢–1-1→𝐷)))
8 ffn 6718 . . . . 5 (𝐹:𝐴⟢𝐡 β†’ 𝐹 Fn 𝐴)
9 fnfocofob 46087 . . . . 5 ((𝐹 Fn 𝐴 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ 𝐺:𝐢–onto→𝐷))
108, 9syl3an1 1162 . . . 4 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ 𝐺:𝐢–onto→𝐷))
117, 10anbi12d 630 . . 3 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ (((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝐴–onto→𝐷) ↔ ((𝐹:𝐴–1-1→𝐢 ∧ 𝐺:𝐢–1-1→𝐷) ∧ 𝐺:𝐢–onto→𝐷)))
12 anass 468 . . 3 (((𝐹:𝐴–1-1→𝐢 ∧ 𝐺:𝐢–1-1→𝐷) ∧ 𝐺:𝐢–onto→𝐷) ↔ (𝐹:𝐴–1-1→𝐢 ∧ (𝐺:𝐢–1-1→𝐷 ∧ 𝐺:𝐢–onto→𝐷)))
1311, 12bitrdi 286 . 2 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ (((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝐴–onto→𝐷) ↔ (𝐹:𝐴–1-1→𝐢 ∧ (𝐺:𝐢–1-1→𝐷 ∧ 𝐺:𝐢–onto→𝐷))))
14 df-f1o 6551 . 2 ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝐴–onto→𝐷))
15 df-f1o 6551 . . 3 (𝐺:𝐢–1-1-onto→𝐷 ↔ (𝐺:𝐢–1-1→𝐷 ∧ 𝐺:𝐢–onto→𝐷))
1615anbi2i 622 . 2 ((𝐹:𝐴–1-1→𝐢 ∧ 𝐺:𝐢–1-1-onto→𝐷) ↔ (𝐹:𝐴–1-1→𝐢 ∧ (𝐺:𝐢–1-1→𝐷 ∧ 𝐺:𝐢–onto→𝐷)))
1713, 14, 163bitr4g 313 1 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1→𝐢 ∧ 𝐺:𝐢–1-1-onto→𝐷)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540  ran crn 5678   ∘ ccom 5681   Fn wfn 6539  βŸΆwf 6540  β€“1-1β†’wf1 6541  β€“ontoβ†’wfo 6542  β€“1-1-ontoβ†’wf1o 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552
This theorem is referenced by:  f1ocof1ob2  46090
  Copyright terms: Public domain W3C validator