Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1ocof1ob | Structured version Visualization version GIF version |
Description: If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. (Contributed by GL and AV, 7-Oct-2024.) |
Ref | Expression |
---|---|
f1ocof1ob | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffrn 6614 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴⟶ran 𝐹) | |
2 | 1 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴⟶ran 𝐹) |
3 | feq3 6583 | . . . . . . 7 ⊢ (ran 𝐹 = 𝐶 → (𝐹:𝐴⟶ran 𝐹 ↔ 𝐹:𝐴⟶𝐶)) | |
4 | 3 | 3ad2ant3 1134 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴⟶ran 𝐹 ↔ 𝐹:𝐴⟶𝐶)) |
5 | 2, 4 | mpbid 231 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴⟶𝐶) |
6 | f1cof1b 44569 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷))) | |
7 | 5, 6 | syld3an1 1409 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷))) |
8 | ffn 6600 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
9 | fnfocofob 44571 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ 𝐺:𝐶–onto→𝐷)) | |
10 | 8, 9 | syl3an1 1162 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ 𝐺:𝐶–onto→𝐷)) |
11 | 7, 10 | anbi12d 631 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝐴–onto→𝐷) ↔ ((𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷) ∧ 𝐺:𝐶–onto→𝐷))) |
12 | anass 469 | . . 3 ⊢ (((𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷) ∧ 𝐺:𝐶–onto→𝐷) ↔ (𝐹:𝐴–1-1→𝐶 ∧ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷))) | |
13 | 11, 12 | bitrdi 287 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝐴–onto→𝐷) ↔ (𝐹:𝐴–1-1→𝐶 ∧ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷)))) |
14 | df-f1o 6440 | . 2 ⊢ ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝐴–onto→𝐷)) | |
15 | df-f1o 6440 | . . 3 ⊢ (𝐺:𝐶–1-1-onto→𝐷 ↔ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷)) | |
16 | 15 | anbi2i 623 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷) ↔ (𝐹:𝐴–1-1→𝐶 ∧ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷))) |
17 | 13, 14, 16 | 3bitr4g 314 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ran crn 5590 ∘ ccom 5593 Fn wfn 6428 ⟶wf 6429 –1-1→wf1 6430 –onto→wfo 6431 –1-1-onto→wf1o 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 |
This theorem is referenced by: f1ocof1ob2 44574 |
Copyright terms: Public domain | W3C validator |