Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1ocof1ob | Structured version Visualization version GIF version |
Description: If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. (Contributed by GL and AV, 7-Oct-2024.) |
Ref | Expression |
---|---|
f1ocof1ob | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffrn 6598 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴⟶ran 𝐹) | |
2 | 1 | 3ad2ant1 1131 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴⟶ran 𝐹) |
3 | feq3 6567 | . . . . . . 7 ⊢ (ran 𝐹 = 𝐶 → (𝐹:𝐴⟶ran 𝐹 ↔ 𝐹:𝐴⟶𝐶)) | |
4 | 3 | 3ad2ant3 1133 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴⟶ran 𝐹 ↔ 𝐹:𝐴⟶𝐶)) |
5 | 2, 4 | mpbid 231 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴⟶𝐶) |
6 | f1cof1b 44456 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷))) | |
7 | 5, 6 | syld3an1 1408 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷))) |
8 | ffn 6584 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
9 | fnfocofob 44458 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ 𝐺:𝐶–onto→𝐷)) | |
10 | 8, 9 | syl3an1 1161 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ 𝐺:𝐶–onto→𝐷)) |
11 | 7, 10 | anbi12d 630 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝐴–onto→𝐷) ↔ ((𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷) ∧ 𝐺:𝐶–onto→𝐷))) |
12 | anass 468 | . . 3 ⊢ (((𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷) ∧ 𝐺:𝐶–onto→𝐷) ↔ (𝐹:𝐴–1-1→𝐶 ∧ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷))) | |
13 | 11, 12 | bitrdi 286 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝐴–onto→𝐷) ↔ (𝐹:𝐴–1-1→𝐶 ∧ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷)))) |
14 | df-f1o 6425 | . 2 ⊢ ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝐴–onto→𝐷)) | |
15 | df-f1o 6425 | . . 3 ⊢ (𝐺:𝐶–1-1-onto→𝐷 ↔ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷)) | |
16 | 15 | anbi2i 622 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷) ↔ (𝐹:𝐴–1-1→𝐶 ∧ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷))) |
17 | 13, 14, 16 | 3bitr4g 313 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ran crn 5581 ∘ ccom 5584 Fn wfn 6413 ⟶wf 6414 –1-1→wf1 6415 –onto→wfo 6416 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: f1ocof1ob2 44461 |
Copyright terms: Public domain | W3C validator |