Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1ocof1ob Structured version   Visualization version   GIF version

Theorem f1ocof1ob 46996
Description: If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. (Contributed by GL and AV, 7-Oct-2024.)
Assertion
Ref Expression
f1ocof1ob ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1-onto𝐷)))

Proof of Theorem f1ocof1ob
StepHypRef Expression
1 ffrn 6760 . . . . . . 7 (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)
213ad2ant1 1133 . . . . . 6 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴⟶ran 𝐹)
3 feq3 6730 . . . . . . 7 (ran 𝐹 = 𝐶 → (𝐹:𝐴⟶ran 𝐹𝐹:𝐴𝐶))
433ad2ant3 1135 . . . . . 6 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴⟶ran 𝐹𝐹:𝐴𝐶))
52, 4mpbid 232 . . . . 5 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴𝐶)
6 f1cof1b 46992 . . . . 5 ((𝐹:𝐴𝐶𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1𝐷)))
75, 6syld3an1 1410 . . . 4 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1𝐷)))
8 ffn 6747 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
9 fnfocofob 46994 . . . . 5 ((𝐹 Fn 𝐴𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴onto𝐷𝐺:𝐶onto𝐷))
108, 9syl3an1 1163 . . . 4 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴onto𝐷𝐺:𝐶onto𝐷))
117, 10anbi12d 631 . . 3 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐺𝐹):𝐴1-1𝐷 ∧ (𝐺𝐹):𝐴onto𝐷) ↔ ((𝐹:𝐴1-1𝐶𝐺:𝐶1-1𝐷) ∧ 𝐺:𝐶onto𝐷)))
12 anass 468 . . 3 (((𝐹:𝐴1-1𝐶𝐺:𝐶1-1𝐷) ∧ 𝐺:𝐶onto𝐷) ↔ (𝐹:𝐴1-1𝐶 ∧ (𝐺:𝐶1-1𝐷𝐺:𝐶onto𝐷)))
1311, 12bitrdi 287 . 2 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐺𝐹):𝐴1-1𝐷 ∧ (𝐺𝐹):𝐴onto𝐷) ↔ (𝐹:𝐴1-1𝐶 ∧ (𝐺:𝐶1-1𝐷𝐺:𝐶onto𝐷))))
14 df-f1o 6580 . 2 ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ ((𝐺𝐹):𝐴1-1𝐷 ∧ (𝐺𝐹):𝐴onto𝐷))
15 df-f1o 6580 . . 3 (𝐺:𝐶1-1-onto𝐷 ↔ (𝐺:𝐶1-1𝐷𝐺:𝐶onto𝐷))
1615anbi2i 622 . 2 ((𝐹:𝐴1-1𝐶𝐺:𝐶1-1-onto𝐷) ↔ (𝐹:𝐴1-1𝐶 ∧ (𝐺:𝐶1-1𝐷𝐺:𝐶onto𝐷)))
1713, 14, 163bitr4g 314 1 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1-onto𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  ran crn 5701  ccom 5704   Fn wfn 6568  wf 6569  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by:  f1ocof1ob2  46997
  Copyright terms: Public domain W3C validator