| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1ocof1ob | Structured version Visualization version GIF version | ||
| Description: If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. (Contributed by GL and AV, 7-Oct-2024.) |
| Ref | Expression |
|---|---|
| f1ocof1ob | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffrn 6664 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴⟶ran 𝐹) | |
| 2 | 1 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴⟶ran 𝐹) |
| 3 | feq3 6631 | . . . . . . 7 ⊢ (ran 𝐹 = 𝐶 → (𝐹:𝐴⟶ran 𝐹 ↔ 𝐹:𝐴⟶𝐶)) | |
| 4 | 3 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴⟶ran 𝐹 ↔ 𝐹:𝐴⟶𝐶)) |
| 5 | 2, 4 | mpbid 232 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴⟶𝐶) |
| 6 | f1cof1b 47116 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷))) | |
| 7 | 5, 6 | syld3an1 1412 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷))) |
| 8 | ffn 6651 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 9 | fnfocofob 47118 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ 𝐺:𝐶–onto→𝐷)) | |
| 10 | 8, 9 | syl3an1 1163 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ 𝐺:𝐶–onto→𝐷)) |
| 11 | 7, 10 | anbi12d 632 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝐴–onto→𝐷) ↔ ((𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷) ∧ 𝐺:𝐶–onto→𝐷))) |
| 12 | anass 468 | . . 3 ⊢ (((𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷) ∧ 𝐺:𝐶–onto→𝐷) ↔ (𝐹:𝐴–1-1→𝐶 ∧ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷))) | |
| 13 | 11, 12 | bitrdi 287 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝐴–onto→𝐷) ↔ (𝐹:𝐴–1-1→𝐶 ∧ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷)))) |
| 14 | df-f1o 6488 | . 2 ⊢ ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝐴–onto→𝐷)) | |
| 15 | df-f1o 6488 | . . 3 ⊢ (𝐺:𝐶–1-1-onto→𝐷 ↔ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷)) | |
| 16 | 15 | anbi2i 623 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷) ↔ (𝐹:𝐴–1-1→𝐶 ∧ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷))) |
| 17 | 13, 14, 16 | 3bitr4g 314 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ran crn 5615 ∘ ccom 5618 Fn wfn 6476 ⟶wf 6477 –1-1→wf1 6478 –onto→wfo 6479 –1-1-onto→wf1o 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: f1ocof1ob2 47121 |
| Copyright terms: Public domain | W3C validator |