Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1ocof1ob Structured version   Visualization version   GIF version

Theorem f1ocof1ob 47065
Description: If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. (Contributed by GL and AV, 7-Oct-2024.)
Assertion
Ref Expression
f1ocof1ob ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1-onto𝐷)))

Proof of Theorem f1ocof1ob
StepHypRef Expression
1 ffrn 6665 . . . . . . 7 (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)
213ad2ant1 1133 . . . . . 6 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴⟶ran 𝐹)
3 feq3 6632 . . . . . . 7 (ran 𝐹 = 𝐶 → (𝐹:𝐴⟶ran 𝐹𝐹:𝐴𝐶))
433ad2ant3 1135 . . . . . 6 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴⟶ran 𝐹𝐹:𝐴𝐶))
52, 4mpbid 232 . . . . 5 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴𝐶)
6 f1cof1b 47061 . . . . 5 ((𝐹:𝐴𝐶𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1𝐷)))
75, 6syld3an1 1412 . . . 4 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1𝐷)))
8 ffn 6652 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
9 fnfocofob 47063 . . . . 5 ((𝐹 Fn 𝐴𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴onto𝐷𝐺:𝐶onto𝐷))
108, 9syl3an1 1163 . . . 4 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴onto𝐷𝐺:𝐶onto𝐷))
117, 10anbi12d 632 . . 3 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐺𝐹):𝐴1-1𝐷 ∧ (𝐺𝐹):𝐴onto𝐷) ↔ ((𝐹:𝐴1-1𝐶𝐺:𝐶1-1𝐷) ∧ 𝐺:𝐶onto𝐷)))
12 anass 468 . . 3 (((𝐹:𝐴1-1𝐶𝐺:𝐶1-1𝐷) ∧ 𝐺:𝐶onto𝐷) ↔ (𝐹:𝐴1-1𝐶 ∧ (𝐺:𝐶1-1𝐷𝐺:𝐶onto𝐷)))
1311, 12bitrdi 287 . 2 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐺𝐹):𝐴1-1𝐷 ∧ (𝐺𝐹):𝐴onto𝐷) ↔ (𝐹:𝐴1-1𝐶 ∧ (𝐺:𝐶1-1𝐷𝐺:𝐶onto𝐷))))
14 df-f1o 6489 . 2 ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ ((𝐺𝐹):𝐴1-1𝐷 ∧ (𝐺𝐹):𝐴onto𝐷))
15 df-f1o 6489 . . 3 (𝐺:𝐶1-1-onto𝐷 ↔ (𝐺:𝐶1-1𝐷𝐺:𝐶onto𝐷))
1615anbi2i 623 . 2 ((𝐹:𝐴1-1𝐶𝐺:𝐶1-1-onto𝐷) ↔ (𝐹:𝐴1-1𝐶 ∧ (𝐺:𝐶1-1𝐷𝐺:𝐶onto𝐷)))
1713, 14, 163bitr4g 314 1 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1-onto𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  ran crn 5620  ccom 5623   Fn wfn 6477  wf 6478  1-1wf1 6479  ontowfo 6480  1-1-ontowf1o 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490
This theorem is referenced by:  f1ocof1ob2  47066
  Copyright terms: Public domain W3C validator