Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1ocof1ob Structured version   Visualization version   GIF version

Theorem f1ocof1ob 44573
Description: If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. (Contributed by GL and AV, 7-Oct-2024.)
Assertion
Ref Expression
f1ocof1ob ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1-onto𝐷)))

Proof of Theorem f1ocof1ob
StepHypRef Expression
1 ffrn 6614 . . . . . . 7 (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)
213ad2ant1 1132 . . . . . 6 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴⟶ran 𝐹)
3 feq3 6583 . . . . . . 7 (ran 𝐹 = 𝐶 → (𝐹:𝐴⟶ran 𝐹𝐹:𝐴𝐶))
433ad2ant3 1134 . . . . . 6 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴⟶ran 𝐹𝐹:𝐴𝐶))
52, 4mpbid 231 . . . . 5 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴𝐶)
6 f1cof1b 44569 . . . . 5 ((𝐹:𝐴𝐶𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1𝐷)))
75, 6syld3an1 1409 . . . 4 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1𝐷)))
8 ffn 6600 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
9 fnfocofob 44571 . . . . 5 ((𝐹 Fn 𝐴𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴onto𝐷𝐺:𝐶onto𝐷))
108, 9syl3an1 1162 . . . 4 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴onto𝐷𝐺:𝐶onto𝐷))
117, 10anbi12d 631 . . 3 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐺𝐹):𝐴1-1𝐷 ∧ (𝐺𝐹):𝐴onto𝐷) ↔ ((𝐹:𝐴1-1𝐶𝐺:𝐶1-1𝐷) ∧ 𝐺:𝐶onto𝐷)))
12 anass 469 . . 3 (((𝐹:𝐴1-1𝐶𝐺:𝐶1-1𝐷) ∧ 𝐺:𝐶onto𝐷) ↔ (𝐹:𝐴1-1𝐶 ∧ (𝐺:𝐶1-1𝐷𝐺:𝐶onto𝐷)))
1311, 12bitrdi 287 . 2 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐺𝐹):𝐴1-1𝐷 ∧ (𝐺𝐹):𝐴onto𝐷) ↔ (𝐹:𝐴1-1𝐶 ∧ (𝐺:𝐶1-1𝐷𝐺:𝐶onto𝐷))))
14 df-f1o 6440 . 2 ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ ((𝐺𝐹):𝐴1-1𝐷 ∧ (𝐺𝐹):𝐴onto𝐷))
15 df-f1o 6440 . . 3 (𝐺:𝐶1-1-onto𝐷 ↔ (𝐺:𝐶1-1𝐷𝐺:𝐶onto𝐷))
1615anbi2i 623 . 2 ((𝐹:𝐴1-1𝐶𝐺:𝐶1-1-onto𝐷) ↔ (𝐹:𝐴1-1𝐶 ∧ (𝐺:𝐶1-1𝐷𝐺:𝐶onto𝐷)))
1713, 14, 163bitr4g 314 1 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1-onto𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  ran crn 5590  ccom 5593   Fn wfn 6428  wf 6429  1-1wf1 6430  ontowfo 6431  1-1-ontowf1o 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  f1ocof1ob2  44574
  Copyright terms: Public domain W3C validator