Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1ocof1ob | Structured version Visualization version GIF version |
Description: If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. (Contributed by GL and AV, 7-Oct-2024.) |
Ref | Expression |
---|---|
f1ocof1ob | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffrn 6528 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴⟶ran 𝐹) | |
2 | 1 | 3ad2ant1 1134 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴⟶ran 𝐹) |
3 | feq3 6497 | . . . . . . 7 ⊢ (ran 𝐹 = 𝐶 → (𝐹:𝐴⟶ran 𝐹 ↔ 𝐹:𝐴⟶𝐶)) | |
4 | 3 | 3ad2ant3 1136 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴⟶ran 𝐹 ↔ 𝐹:𝐴⟶𝐶)) |
5 | 2, 4 | mpbid 235 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴⟶𝐶) |
6 | f1cof1b 44148 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷))) | |
7 | 5, 6 | syld3an1 1411 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷))) |
8 | ffn 6514 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
9 | fnfocofob 44150 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ 𝐺:𝐶–onto→𝐷)) | |
10 | 8, 9 | syl3an1 1164 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ 𝐺:𝐶–onto→𝐷)) |
11 | 7, 10 | anbi12d 634 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝐴–onto→𝐷) ↔ ((𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷) ∧ 𝐺:𝐶–onto→𝐷))) |
12 | anass 472 | . . 3 ⊢ (((𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1→𝐷) ∧ 𝐺:𝐶–onto→𝐷) ↔ (𝐹:𝐴–1-1→𝐶 ∧ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷))) | |
13 | 11, 12 | bitrdi 290 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝐴–onto→𝐷) ↔ (𝐹:𝐴–1-1→𝐶 ∧ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷)))) |
14 | df-f1o 6356 | . 2 ⊢ ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ∧ (𝐺 ∘ 𝐹):𝐴–onto→𝐷)) | |
15 | df-f1o 6356 | . . 3 ⊢ (𝐺:𝐶–1-1-onto→𝐷 ↔ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷)) | |
16 | 15 | anbi2i 626 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷) ↔ (𝐹:𝐴–1-1→𝐶 ∧ (𝐺:𝐶–1-1→𝐷 ∧ 𝐺:𝐶–onto→𝐷))) |
17 | 13, 14, 16 | 3bitr4g 317 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ran crn 5536 ∘ ccom 5539 Fn wfn 6344 ⟶wf 6345 –1-1→wf1 6346 –onto→wfo 6347 –1-1-onto→wf1o 6348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 |
This theorem is referenced by: f1ocof1ob2 44153 |
Copyright terms: Public domain | W3C validator |