Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1ocof1ob Structured version   Visualization version   GIF version

Theorem f1ocof1ob 47086
Description: If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. (Contributed by GL and AV, 7-Oct-2024.)
Assertion
Ref Expression
f1ocof1ob ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1-onto𝐷)))

Proof of Theorem f1ocof1ob
StepHypRef Expression
1 ffrn 6704 . . . . . . 7 (𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)
213ad2ant1 1133 . . . . . 6 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴⟶ran 𝐹)
3 feq3 6671 . . . . . . 7 (ran 𝐹 = 𝐶 → (𝐹:𝐴⟶ran 𝐹𝐹:𝐴𝐶))
433ad2ant3 1135 . . . . . 6 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴⟶ran 𝐹𝐹:𝐴𝐶))
52, 4mpbid 232 . . . . 5 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → 𝐹:𝐴𝐶)
6 f1cof1b 47082 . . . . 5 ((𝐹:𝐴𝐶𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1𝐷)))
75, 6syld3an1 1412 . . . 4 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1𝐷)))
8 ffn 6691 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
9 fnfocofob 47084 . . . . 5 ((𝐹 Fn 𝐴𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴onto𝐷𝐺:𝐶onto𝐷))
108, 9syl3an1 1163 . . . 4 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴onto𝐷𝐺:𝐶onto𝐷))
117, 10anbi12d 632 . . 3 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐺𝐹):𝐴1-1𝐷 ∧ (𝐺𝐹):𝐴onto𝐷) ↔ ((𝐹:𝐴1-1𝐶𝐺:𝐶1-1𝐷) ∧ 𝐺:𝐶onto𝐷)))
12 anass 468 . . 3 (((𝐹:𝐴1-1𝐶𝐺:𝐶1-1𝐷) ∧ 𝐺:𝐶onto𝐷) ↔ (𝐹:𝐴1-1𝐶 ∧ (𝐺:𝐶1-1𝐷𝐺:𝐶onto𝐷)))
1311, 12bitrdi 287 . 2 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (((𝐺𝐹):𝐴1-1𝐷 ∧ (𝐺𝐹):𝐴onto𝐷) ↔ (𝐹:𝐴1-1𝐶 ∧ (𝐺:𝐶1-1𝐷𝐺:𝐶onto𝐷))))
14 df-f1o 6521 . 2 ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ ((𝐺𝐹):𝐴1-1𝐷 ∧ (𝐺𝐹):𝐴onto𝐷))
15 df-f1o 6521 . . 3 (𝐺:𝐶1-1-onto𝐷 ↔ (𝐺:𝐶1-1𝐷𝐺:𝐶onto𝐷))
1615anbi2i 623 . 2 ((𝐹:𝐴1-1𝐶𝐺:𝐶1-1-onto𝐷) ↔ (𝐹:𝐴1-1𝐶 ∧ (𝐺:𝐶1-1𝐷𝐺:𝐶onto𝐷)))
1713, 14, 163bitr4g 314 1 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1-onto𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  ran crn 5642  ccom 5645   Fn wfn 6509  wf 6510  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522
This theorem is referenced by:  f1ocof1ob2  47087
  Copyright terms: Public domain W3C validator