Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volicoff Structured version   Visualization version   GIF version

Theorem volicoff 41149
Description: ((vol ∘ [,)) ∘ 𝐹) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
volicoff.1 (𝜑𝐹:𝐴⟶(ℝ × ℝ*))
Assertion
Ref Expression
volicoff (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞))

Proof of Theorem volicoff
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 volf 23737 . . . 4 vol:dom vol⟶(0[,]+∞)
21a1i 11 . . 3 (𝜑 → vol:dom vol⟶(0[,]+∞))
3 icof 40342 . . . . . . 7 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
43a1i 11 . . . . . 6 (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
5 ressxr 10422 . . . . . . . 8 ℝ ⊆ ℝ*
6 xpss1 5376 . . . . . . . 8 (ℝ ⊆ ℝ* → (ℝ × ℝ*) ⊆ (ℝ* × ℝ*))
75, 6ax-mp 5 . . . . . . 7 (ℝ × ℝ*) ⊆ (ℝ* × ℝ*)
87a1i 11 . . . . . 6 (𝜑 → (ℝ × ℝ*) ⊆ (ℝ* × ℝ*))
9 volicoff.1 . . . . . 6 (𝜑𝐹:𝐴⟶(ℝ × ℝ*))
104, 8, 9fcoss 40333 . . . . 5 (𝜑 → ([,) ∘ 𝐹):𝐴⟶𝒫 ℝ*)
1110ffnd 6294 . . . 4 (𝜑 → ([,) ∘ 𝐹) Fn 𝐴)
129adantr 474 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐹:𝐴⟶(ℝ × ℝ*))
13 simpr 479 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
1412, 13fvovco 40314 . . . . . 6 ((𝜑𝑥𝐴) → (([,) ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥))))
159ffvelrnda 6625 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ (ℝ × ℝ*))
16 xp1st 7479 . . . . . . . 8 ((𝐹𝑥) ∈ (ℝ × ℝ*) → (1st ‘(𝐹𝑥)) ∈ ℝ)
1715, 16syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (1st ‘(𝐹𝑥)) ∈ ℝ)
18 xp2nd 7480 . . . . . . . 8 ((𝐹𝑥) ∈ (ℝ × ℝ*) → (2nd ‘(𝐹𝑥)) ∈ ℝ*)
1915, 18syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (2nd ‘(𝐹𝑥)) ∈ ℝ*)
20 icombl 23772 . . . . . . 7 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ*) → ((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥))) ∈ dom vol)
2117, 19, 20syl2anc 579 . . . . . 6 ((𝜑𝑥𝐴) → ((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥))) ∈ dom vol)
2214, 21eqeltrd 2859 . . . . 5 ((𝜑𝑥𝐴) → (([,) ∘ 𝐹)‘𝑥) ∈ dom vol)
2322ralrimiva 3148 . . . 4 (𝜑 → ∀𝑥𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol)
24 fnfvrnss 6656 . . . 4 ((([,) ∘ 𝐹) Fn 𝐴 ∧ ∀𝑥𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol) → ran ([,) ∘ 𝐹) ⊆ dom vol)
2511, 23, 24syl2anc 579 . . 3 (𝜑 → ran ([,) ∘ 𝐹) ⊆ dom vol)
26 ffrn 6305 . . . 4 (([,) ∘ 𝐹):𝐴⟶𝒫 ℝ* → ([,) ∘ 𝐹):𝐴⟶ran ([,) ∘ 𝐹))
2710, 26syl 17 . . 3 (𝜑 → ([,) ∘ 𝐹):𝐴⟶ran ([,) ∘ 𝐹))
282, 25, 27fcoss 40333 . 2 (𝜑 → (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞))
29 coass 5910 . . . 4 ((vol ∘ [,)) ∘ 𝐹) = (vol ∘ ([,) ∘ 𝐹))
3029feq1i 6284 . . 3 (((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞) ↔ (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞))
3130a1i 11 . 2 (𝜑 → (((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞) ↔ (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞)))
3228, 31mpbird 249 1 (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2107  wral 3090  wss 3792  𝒫 cpw 4379   × cxp 5355  dom cdm 5357  ran crn 5358  ccom 5361   Fn wfn 6132  wf 6133  cfv 6137  (class class class)co 6924  1st c1st 7445  2nd c2nd 7446  cr 10273  0cc0 10274  +∞cpnf 10410  *cxr 10412  [,)cico 12493  [,]cicc 12494  volcvol 23671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-n0 11647  df-z 11733  df-uz 11997  df-q 12100  df-rp 12142  df-xadd 12262  df-ioo 12495  df-ico 12497  df-icc 12498  df-fz 12648  df-fzo 12789  df-fl 12916  df-seq 13124  df-exp 13183  df-hash 13440  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-clim 14631  df-rlim 14632  df-sum 14829  df-xmet 20139  df-met 20140  df-ovol 23672  df-vol 23673
This theorem is referenced by:  volicofmpt  41151
  Copyright terms: Public domain W3C validator