![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > volicoff | Structured version Visualization version GIF version |
Description: ((vol β [,)) β πΉ) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
volicoff.1 | β’ (π β πΉ:π΄βΆ(β Γ β*)) |
Ref | Expression |
---|---|
volicoff | β’ (π β ((vol β [,)) β πΉ):π΄βΆ(0[,]+β)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | volf 25045 | . . . 4 β’ vol:dom volβΆ(0[,]+β) | |
2 | 1 | a1i 11 | . . 3 β’ (π β vol:dom volβΆ(0[,]+β)) |
3 | icof 43908 | . . . . . . 7 β’ [,):(β* Γ β*)βΆπ« β* | |
4 | 3 | a1i 11 | . . . . . 6 β’ (π β [,):(β* Γ β*)βΆπ« β*) |
5 | ressxr 11257 | . . . . . . . 8 β’ β β β* | |
6 | xpss1 5695 | . . . . . . . 8 β’ (β β β* β (β Γ β*) β (β* Γ β*)) | |
7 | 5, 6 | ax-mp 5 | . . . . . . 7 β’ (β Γ β*) β (β* Γ β*) |
8 | 7 | a1i 11 | . . . . . 6 β’ (π β (β Γ β*) β (β* Γ β*)) |
9 | volicoff.1 | . . . . . 6 β’ (π β πΉ:π΄βΆ(β Γ β*)) | |
10 | 4, 8, 9 | fcoss 43899 | . . . . 5 β’ (π β ([,) β πΉ):π΄βΆπ« β*) |
11 | 10 | ffnd 6718 | . . . 4 β’ (π β ([,) β πΉ) Fn π΄) |
12 | 9 | adantr 481 | . . . . . . 7 β’ ((π β§ π₯ β π΄) β πΉ:π΄βΆ(β Γ β*)) |
13 | simpr 485 | . . . . . . 7 β’ ((π β§ π₯ β π΄) β π₯ β π΄) | |
14 | 12, 13 | fvovco 43882 | . . . . . 6 β’ ((π β§ π₯ β π΄) β (([,) β πΉ)βπ₯) = ((1st β(πΉβπ₯))[,)(2nd β(πΉβπ₯)))) |
15 | 9 | ffvelcdmda 7086 | . . . . . . . 8 β’ ((π β§ π₯ β π΄) β (πΉβπ₯) β (β Γ β*)) |
16 | xp1st 8006 | . . . . . . . 8 β’ ((πΉβπ₯) β (β Γ β*) β (1st β(πΉβπ₯)) β β) | |
17 | 15, 16 | syl 17 | . . . . . . 7 β’ ((π β§ π₯ β π΄) β (1st β(πΉβπ₯)) β β) |
18 | xp2nd 8007 | . . . . . . . 8 β’ ((πΉβπ₯) β (β Γ β*) β (2nd β(πΉβπ₯)) β β*) | |
19 | 15, 18 | syl 17 | . . . . . . 7 β’ ((π β§ π₯ β π΄) β (2nd β(πΉβπ₯)) β β*) |
20 | icombl 25080 | . . . . . . 7 β’ (((1st β(πΉβπ₯)) β β β§ (2nd β(πΉβπ₯)) β β*) β ((1st β(πΉβπ₯))[,)(2nd β(πΉβπ₯))) β dom vol) | |
21 | 17, 19, 20 | syl2anc 584 | . . . . . 6 β’ ((π β§ π₯ β π΄) β ((1st β(πΉβπ₯))[,)(2nd β(πΉβπ₯))) β dom vol) |
22 | 14, 21 | eqeltrd 2833 | . . . . 5 β’ ((π β§ π₯ β π΄) β (([,) β πΉ)βπ₯) β dom vol) |
23 | 22 | ralrimiva 3146 | . . . 4 β’ (π β βπ₯ β π΄ (([,) β πΉ)βπ₯) β dom vol) |
24 | fnfvrnss 7119 | . . . 4 β’ ((([,) β πΉ) Fn π΄ β§ βπ₯ β π΄ (([,) β πΉ)βπ₯) β dom vol) β ran ([,) β πΉ) β dom vol) | |
25 | 11, 23, 24 | syl2anc 584 | . . 3 β’ (π β ran ([,) β πΉ) β dom vol) |
26 | ffrn 6731 | . . . 4 β’ (([,) β πΉ):π΄βΆπ« β* β ([,) β πΉ):π΄βΆran ([,) β πΉ)) | |
27 | 10, 26 | syl 17 | . . 3 β’ (π β ([,) β πΉ):π΄βΆran ([,) β πΉ)) |
28 | 2, 25, 27 | fcoss 43899 | . 2 β’ (π β (vol β ([,) β πΉ)):π΄βΆ(0[,]+β)) |
29 | coass 6264 | . . . 4 β’ ((vol β [,)) β πΉ) = (vol β ([,) β πΉ)) | |
30 | 29 | feq1i 6708 | . . 3 β’ (((vol β [,)) β πΉ):π΄βΆ(0[,]+β) β (vol β ([,) β πΉ)):π΄βΆ(0[,]+β)) |
31 | 30 | a1i 11 | . 2 β’ (π β (((vol β [,)) β πΉ):π΄βΆ(0[,]+β) β (vol β ([,) β πΉ)):π΄βΆ(0[,]+β))) |
32 | 28, 31 | mpbird 256 | 1 β’ (π β ((vol β [,)) β πΉ):π΄βΆ(0[,]+β)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β wcel 2106 βwral 3061 β wss 3948 π« cpw 4602 Γ cxp 5674 dom cdm 5676 ran crn 5677 β ccom 5680 Fn wfn 6538 βΆwf 6539 βcfv 6543 (class class class)co 7408 1st c1st 7972 2nd c2nd 7973 βcr 11108 0cc0 11109 +βcpnf 11244 β*cxr 11246 [,)cico 13325 [,]cicc 13326 volcvol 24979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-map 8821 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-oi 9504 df-dju 9895 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-q 12932 df-rp 12974 df-xadd 13092 df-ioo 13327 df-ico 13329 df-icc 13330 df-fz 13484 df-fzo 13627 df-fl 13756 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-rlim 15432 df-sum 15632 df-xmet 20936 df-met 20937 df-ovol 24980 df-vol 24981 |
This theorem is referenced by: volicofmpt 44703 |
Copyright terms: Public domain | W3C validator |