Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volicoff Structured version   Visualization version   GIF version

Theorem volicoff 41149
 Description: ((vol ∘ [,)) ∘ 𝐹) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
volicoff.1 (𝜑𝐹:𝐴⟶(ℝ × ℝ*))
Assertion
Ref Expression
volicoff (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞))

Proof of Theorem volicoff
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 volf 23737 . . . 4 vol:dom vol⟶(0[,]+∞)
21a1i 11 . . 3 (𝜑 → vol:dom vol⟶(0[,]+∞))
3 icof 40342 . . . . . . 7 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
43a1i 11 . . . . . 6 (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
5 ressxr 10422 . . . . . . . 8 ℝ ⊆ ℝ*
6 xpss1 5376 . . . . . . . 8 (ℝ ⊆ ℝ* → (ℝ × ℝ*) ⊆ (ℝ* × ℝ*))
75, 6ax-mp 5 . . . . . . 7 (ℝ × ℝ*) ⊆ (ℝ* × ℝ*)
87a1i 11 . . . . . 6 (𝜑 → (ℝ × ℝ*) ⊆ (ℝ* × ℝ*))
9 volicoff.1 . . . . . 6 (𝜑𝐹:𝐴⟶(ℝ × ℝ*))
104, 8, 9fcoss 40333 . . . . 5 (𝜑 → ([,) ∘ 𝐹):𝐴⟶𝒫 ℝ*)
1110ffnd 6294 . . . 4 (𝜑 → ([,) ∘ 𝐹) Fn 𝐴)
129adantr 474 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐹:𝐴⟶(ℝ × ℝ*))
13 simpr 479 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
1412, 13fvovco 40314 . . . . . 6 ((𝜑𝑥𝐴) → (([,) ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥))))
159ffvelrnda 6625 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ (ℝ × ℝ*))
16 xp1st 7479 . . . . . . . 8 ((𝐹𝑥) ∈ (ℝ × ℝ*) → (1st ‘(𝐹𝑥)) ∈ ℝ)
1715, 16syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (1st ‘(𝐹𝑥)) ∈ ℝ)
18 xp2nd 7480 . . . . . . . 8 ((𝐹𝑥) ∈ (ℝ × ℝ*) → (2nd ‘(𝐹𝑥)) ∈ ℝ*)
1915, 18syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (2nd ‘(𝐹𝑥)) ∈ ℝ*)
20 icombl 23772 . . . . . . 7 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ*) → ((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥))) ∈ dom vol)
2117, 19, 20syl2anc 579 . . . . . 6 ((𝜑𝑥𝐴) → ((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥))) ∈ dom vol)
2214, 21eqeltrd 2859 . . . . 5 ((𝜑𝑥𝐴) → (([,) ∘ 𝐹)‘𝑥) ∈ dom vol)
2322ralrimiva 3148 . . . 4 (𝜑 → ∀𝑥𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol)
24 fnfvrnss 6656 . . . 4 ((([,) ∘ 𝐹) Fn 𝐴 ∧ ∀𝑥𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol) → ran ([,) ∘ 𝐹) ⊆ dom vol)
2511, 23, 24syl2anc 579 . . 3 (𝜑 → ran ([,) ∘ 𝐹) ⊆ dom vol)
26 ffrn 6305 . . . 4 (([,) ∘ 𝐹):𝐴⟶𝒫 ℝ* → ([,) ∘ 𝐹):𝐴⟶ran ([,) ∘ 𝐹))
2710, 26syl 17 . . 3 (𝜑 → ([,) ∘ 𝐹):𝐴⟶ran ([,) ∘ 𝐹))
282, 25, 27fcoss 40333 . 2 (𝜑 → (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞))
29 coass 5910 . . . 4 ((vol ∘ [,)) ∘ 𝐹) = (vol ∘ ([,) ∘ 𝐹))
3029feq1i 6284 . . 3 (((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞) ↔ (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞))
3130a1i 11 . 2 (𝜑 → (((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞) ↔ (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞)))
3228, 31mpbird 249 1 (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∈ wcel 2107  ∀wral 3090   ⊆ wss 3792  𝒫 cpw 4379   × cxp 5355  dom cdm 5357  ran crn 5358   ∘ ccom 5361   Fn wfn 6132  ⟶wf 6133  ‘cfv 6137  (class class class)co 6924  1st c1st 7445  2nd c2nd 7446  ℝcr 10273  0cc0 10274  +∞cpnf 10410  ℝ*cxr 10412  [,)cico 12493  [,]cicc 12494  volcvol 23671 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-n0 11647  df-z 11733  df-uz 11997  df-q 12100  df-rp 12142  df-xadd 12262  df-ioo 12495  df-ico 12497  df-icc 12498  df-fz 12648  df-fzo 12789  df-fl 12916  df-seq 13124  df-exp 13183  df-hash 13440  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-clim 14631  df-rlim 14632  df-sum 14829  df-xmet 20139  df-met 20140  df-ovol 23672  df-vol 23673 This theorem is referenced by:  volicofmpt  41151
 Copyright terms: Public domain W3C validator