| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > volicoff | Structured version Visualization version GIF version | ||
| Description: ((vol ∘ [,)) ∘ 𝐹) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| volicoff.1 | ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ*)) |
| Ref | Expression |
|---|---|
| volicoff | ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | volf 25437 | . . . 4 ⊢ vol:dom vol⟶(0[,]+∞) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → vol:dom vol⟶(0[,]+∞)) |
| 3 | icof 45220 | . . . . . . 7 ⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*) |
| 5 | ressxr 11225 | . . . . . . . 8 ⊢ ℝ ⊆ ℝ* | |
| 6 | xpss1 5660 | . . . . . . . 8 ⊢ (ℝ ⊆ ℝ* → (ℝ × ℝ*) ⊆ (ℝ* × ℝ*)) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ (ℝ × ℝ*) ⊆ (ℝ* × ℝ*) |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ × ℝ*) ⊆ (ℝ* × ℝ*)) |
| 9 | volicoff.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ*)) | |
| 10 | 4, 8, 9 | fcoss 45211 | . . . . 5 ⊢ (𝜑 → ([,) ∘ 𝐹):𝐴⟶𝒫 ℝ*) |
| 11 | 10 | ffnd 6692 | . . . 4 ⊢ (𝜑 → ([,) ∘ 𝐹) Fn 𝐴) |
| 12 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐴⟶(ℝ × ℝ*)) |
| 13 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 14 | 12, 13 | fvovco 45194 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (([,) ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥)))) |
| 15 | 9 | ffvelcdmda 7059 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (ℝ × ℝ*)) |
| 16 | xp1st 8003 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) ∈ (ℝ × ℝ*) → (1st ‘(𝐹‘𝑥)) ∈ ℝ) | |
| 17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1st ‘(𝐹‘𝑥)) ∈ ℝ) |
| 18 | xp2nd 8004 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) ∈ (ℝ × ℝ*) → (2nd ‘(𝐹‘𝑥)) ∈ ℝ*) | |
| 19 | 15, 18 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (2nd ‘(𝐹‘𝑥)) ∈ ℝ*) |
| 20 | icombl 25472 | . . . . . . 7 ⊢ (((1st ‘(𝐹‘𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑥)) ∈ ℝ*) → ((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥))) ∈ dom vol) | |
| 21 | 17, 19, 20 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥))) ∈ dom vol) |
| 22 | 14, 21 | eqeltrd 2829 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (([,) ∘ 𝐹)‘𝑥) ∈ dom vol) |
| 23 | 22 | ralrimiva 3126 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol) |
| 24 | fnfvrnss 7096 | . . . 4 ⊢ ((([,) ∘ 𝐹) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol) → ran ([,) ∘ 𝐹) ⊆ dom vol) | |
| 25 | 11, 23, 24 | syl2anc 584 | . . 3 ⊢ (𝜑 → ran ([,) ∘ 𝐹) ⊆ dom vol) |
| 26 | ffrn 6704 | . . . 4 ⊢ (([,) ∘ 𝐹):𝐴⟶𝒫 ℝ* → ([,) ∘ 𝐹):𝐴⟶ran ([,) ∘ 𝐹)) | |
| 27 | 10, 26 | syl 17 | . . 3 ⊢ (𝜑 → ([,) ∘ 𝐹):𝐴⟶ran ([,) ∘ 𝐹)) |
| 28 | 2, 25, 27 | fcoss 45211 | . 2 ⊢ (𝜑 → (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞)) |
| 29 | coass 6241 | . . . 4 ⊢ ((vol ∘ [,)) ∘ 𝐹) = (vol ∘ ([,) ∘ 𝐹)) | |
| 30 | 29 | feq1i 6682 | . . 3 ⊢ (((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞) ↔ (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞)) |
| 31 | 30 | a1i 11 | . 2 ⊢ (𝜑 → (((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞) ↔ (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞))) |
| 32 | 28, 31 | mpbird 257 | 1 ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 𝒫 cpw 4566 × cxp 5639 dom cdm 5641 ran crn 5642 ∘ ccom 5645 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 ℝcr 11074 0cc0 11075 +∞cpnf 11212 ℝ*cxr 11214 [,)cico 13315 [,]cicc 13316 volcvol 25371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xadd 13080 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-rlim 15462 df-sum 15660 df-xmet 21264 df-met 21265 df-ovol 25372 df-vol 25373 |
| This theorem is referenced by: volicofmpt 46002 |
| Copyright terms: Public domain | W3C validator |