Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffix2 Structured version   Visualization version   GIF version

Theorem dffix2 34344
Description: The fixpoints of a class in terms of its range. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
dffix2 Fix 𝐴 = ran (𝐴 ∩ I )

Proof of Theorem dffix2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3446 . . . 4 𝑥 ∈ V
21elfix 34342 . . 3 (𝑥 Fix 𝐴𝑥𝐴𝑥)
31elrn 5839 . . . 4 (𝑥 ∈ ran (𝐴 ∩ I ) ↔ ∃𝑦 𝑦(𝐴 ∩ I )𝑥)
4 brin 5148 . . . . . 6 (𝑦(𝐴 ∩ I )𝑥 ↔ (𝑦𝐴𝑥𝑦 I 𝑥))
5 ancom 462 . . . . . 6 ((𝑦𝐴𝑥𝑦 I 𝑥) ↔ (𝑦 I 𝑥𝑦𝐴𝑥))
61ideq 5798 . . . . . . 7 (𝑦 I 𝑥𝑦 = 𝑥)
76anbi1i 625 . . . . . 6 ((𝑦 I 𝑥𝑦𝐴𝑥) ↔ (𝑦 = 𝑥𝑦𝐴𝑥))
84, 5, 73bitri 297 . . . . 5 (𝑦(𝐴 ∩ I )𝑥 ↔ (𝑦 = 𝑥𝑦𝐴𝑥))
98exbii 1850 . . . 4 (∃𝑦 𝑦(𝐴 ∩ I )𝑥 ↔ ∃𝑦(𝑦 = 𝑥𝑦𝐴𝑥))
10 breq1 5099 . . . . 5 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝑥𝐴𝑥))
1110equsexvw 2008 . . . 4 (∃𝑦(𝑦 = 𝑥𝑦𝐴𝑥) ↔ 𝑥𝐴𝑥)
123, 9, 113bitri 297 . . 3 (𝑥 ∈ ran (𝐴 ∩ I ) ↔ 𝑥𝐴𝑥)
132, 12bitr4i 278 . 2 (𝑥 Fix 𝐴𝑥 ∈ ran (𝐴 ∩ I ))
1413eqriv 2734 1 Fix 𝐴 = ran (𝐴 ∩ I )
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1541  wex 1781  wcel 2106  cin 3900   class class class wbr 5096   I cid 5521  ran crn 5625   Fix cfix 34274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pr 5376
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-br 5097  df-opab 5159  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-dm 5634  df-rn 5635  df-fix 34298
This theorem is referenced by:  fixssrn  34346
  Copyright terms: Public domain W3C validator