![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffix2 | Structured version Visualization version GIF version |
Description: The fixpoints of a class in terms of its range. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
dffix2 | ⊢ Fix 𝐴 = ran (𝐴 ∩ I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3476 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | elfix 35177 | . . 3 ⊢ (𝑥 ∈ Fix 𝐴 ↔ 𝑥𝐴𝑥) |
3 | 1 | elrn 5894 | . . . 4 ⊢ (𝑥 ∈ ran (𝐴 ∩ I ) ↔ ∃𝑦 𝑦(𝐴 ∩ I )𝑥) |
4 | brin 5201 | . . . . . 6 ⊢ (𝑦(𝐴 ∩ I )𝑥 ↔ (𝑦𝐴𝑥 ∧ 𝑦 I 𝑥)) | |
5 | ancom 459 | . . . . . 6 ⊢ ((𝑦𝐴𝑥 ∧ 𝑦 I 𝑥) ↔ (𝑦 I 𝑥 ∧ 𝑦𝐴𝑥)) | |
6 | 1 | ideq 5853 | . . . . . . 7 ⊢ (𝑦 I 𝑥 ↔ 𝑦 = 𝑥) |
7 | 6 | anbi1i 622 | . . . . . 6 ⊢ ((𝑦 I 𝑥 ∧ 𝑦𝐴𝑥) ↔ (𝑦 = 𝑥 ∧ 𝑦𝐴𝑥)) |
8 | 4, 5, 7 | 3bitri 296 | . . . . 5 ⊢ (𝑦(𝐴 ∩ I )𝑥 ↔ (𝑦 = 𝑥 ∧ 𝑦𝐴𝑥)) |
9 | 8 | exbii 1848 | . . . 4 ⊢ (∃𝑦 𝑦(𝐴 ∩ I )𝑥 ↔ ∃𝑦(𝑦 = 𝑥 ∧ 𝑦𝐴𝑥)) |
10 | breq1 5152 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦𝐴𝑥 ↔ 𝑥𝐴𝑥)) | |
11 | 10 | equsexvw 2006 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝑥 ∧ 𝑦𝐴𝑥) ↔ 𝑥𝐴𝑥) |
12 | 3, 9, 11 | 3bitri 296 | . . 3 ⊢ (𝑥 ∈ ran (𝐴 ∩ I ) ↔ 𝑥𝐴𝑥) |
13 | 2, 12 | bitr4i 277 | . 2 ⊢ (𝑥 ∈ Fix 𝐴 ↔ 𝑥 ∈ ran (𝐴 ∩ I )) |
14 | 13 | eqriv 2727 | 1 ⊢ Fix 𝐴 = ran (𝐴 ∩ I ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ∩ cin 3948 class class class wbr 5149 I cid 5574 ran crn 5678 Fix cfix 35109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-dm 5687 df-rn 5688 df-fix 35133 |
This theorem is referenced by: fixssrn 35181 |
Copyright terms: Public domain | W3C validator |