| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffix2 | Structured version Visualization version GIF version | ||
| Description: The fixpoints of a class in terms of its range. (Contributed by Scott Fenton, 16-Apr-2012.) |
| Ref | Expression |
|---|---|
| dffix2 | ⊢ Fix 𝐴 = ran (𝐴 ∩ I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3467 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elfix 35838 | . . 3 ⊢ (𝑥 ∈ Fix 𝐴 ↔ 𝑥𝐴𝑥) |
| 3 | 1 | elrn 5884 | . . . 4 ⊢ (𝑥 ∈ ran (𝐴 ∩ I ) ↔ ∃𝑦 𝑦(𝐴 ∩ I )𝑥) |
| 4 | brin 5175 | . . . . . 6 ⊢ (𝑦(𝐴 ∩ I )𝑥 ↔ (𝑦𝐴𝑥 ∧ 𝑦 I 𝑥)) | |
| 5 | ancom 460 | . . . . . 6 ⊢ ((𝑦𝐴𝑥 ∧ 𝑦 I 𝑥) ↔ (𝑦 I 𝑥 ∧ 𝑦𝐴𝑥)) | |
| 6 | 1 | ideq 5843 | . . . . . . 7 ⊢ (𝑦 I 𝑥 ↔ 𝑦 = 𝑥) |
| 7 | 6 | anbi1i 624 | . . . . . 6 ⊢ ((𝑦 I 𝑥 ∧ 𝑦𝐴𝑥) ↔ (𝑦 = 𝑥 ∧ 𝑦𝐴𝑥)) |
| 8 | 4, 5, 7 | 3bitri 297 | . . . . 5 ⊢ (𝑦(𝐴 ∩ I )𝑥 ↔ (𝑦 = 𝑥 ∧ 𝑦𝐴𝑥)) |
| 9 | 8 | exbii 1847 | . . . 4 ⊢ (∃𝑦 𝑦(𝐴 ∩ I )𝑥 ↔ ∃𝑦(𝑦 = 𝑥 ∧ 𝑦𝐴𝑥)) |
| 10 | breq1 5126 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦𝐴𝑥 ↔ 𝑥𝐴𝑥)) | |
| 11 | 10 | equsexvw 2003 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝑥 ∧ 𝑦𝐴𝑥) ↔ 𝑥𝐴𝑥) |
| 12 | 3, 9, 11 | 3bitri 297 | . . 3 ⊢ (𝑥 ∈ ran (𝐴 ∩ I ) ↔ 𝑥𝐴𝑥) |
| 13 | 2, 12 | bitr4i 278 | . 2 ⊢ (𝑥 ∈ Fix 𝐴 ↔ 𝑥 ∈ ran (𝐴 ∩ I )) |
| 14 | 13 | eqriv 2731 | 1 ⊢ Fix 𝐴 = ran (𝐴 ∩ I ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∩ cin 3930 class class class wbr 5123 I cid 5557 ran crn 5666 Fix cfix 35770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-fix 35794 |
| This theorem is referenced by: fixssrn 35842 |
| Copyright terms: Public domain | W3C validator |