Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffix2 Structured version   Visualization version   GIF version

Theorem dffix2 35890
Description: The fixpoints of a class in terms of its range. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
dffix2 Fix 𝐴 = ran (𝐴 ∩ I )

Proof of Theorem dffix2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3459 . . . 4 𝑥 ∈ V
21elfix 35888 . . 3 (𝑥 Fix 𝐴𝑥𝐴𝑥)
31elrn 5865 . . . 4 (𝑥 ∈ ran (𝐴 ∩ I ) ↔ ∃𝑦 𝑦(𝐴 ∩ I )𝑥)
4 brin 5167 . . . . . 6 (𝑦(𝐴 ∩ I )𝑥 ↔ (𝑦𝐴𝑥𝑦 I 𝑥))
5 ancom 460 . . . . . 6 ((𝑦𝐴𝑥𝑦 I 𝑥) ↔ (𝑦 I 𝑥𝑦𝐴𝑥))
61ideq 5824 . . . . . . 7 (𝑦 I 𝑥𝑦 = 𝑥)
76anbi1i 624 . . . . . 6 ((𝑦 I 𝑥𝑦𝐴𝑥) ↔ (𝑦 = 𝑥𝑦𝐴𝑥))
84, 5, 73bitri 297 . . . . 5 (𝑦(𝐴 ∩ I )𝑥 ↔ (𝑦 = 𝑥𝑦𝐴𝑥))
98exbii 1848 . . . 4 (∃𝑦 𝑦(𝐴 ∩ I )𝑥 ↔ ∃𝑦(𝑦 = 𝑥𝑦𝐴𝑥))
10 breq1 5118 . . . . 5 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝑥𝐴𝑥))
1110equsexvw 2005 . . . 4 (∃𝑦(𝑦 = 𝑥𝑦𝐴𝑥) ↔ 𝑥𝐴𝑥)
123, 9, 113bitri 297 . . 3 (𝑥 ∈ ran (𝐴 ∩ I ) ↔ 𝑥𝐴𝑥)
132, 12bitr4i 278 . 2 (𝑥 Fix 𝐴𝑥 ∈ ran (𝐴 ∩ I ))
1413eqriv 2727 1 Fix 𝐴 = ran (𝐴 ∩ I )
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  cin 3921   class class class wbr 5115   I cid 5540  ran crn 5647   Fix cfix 35820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-dm 5656  df-rn 5657  df-fix 35844
This theorem is referenced by:  fixssrn  35892
  Copyright terms: Public domain W3C validator