![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffix2 | Structured version Visualization version GIF version |
Description: The fixpoints of a class in terms of its range. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
dffix2 | ⊢ Fix 𝐴 = ran (𝐴 ∩ I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3446 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | elfix 34342 | . . 3 ⊢ (𝑥 ∈ Fix 𝐴 ↔ 𝑥𝐴𝑥) |
3 | 1 | elrn 5839 | . . . 4 ⊢ (𝑥 ∈ ran (𝐴 ∩ I ) ↔ ∃𝑦 𝑦(𝐴 ∩ I )𝑥) |
4 | brin 5148 | . . . . . 6 ⊢ (𝑦(𝐴 ∩ I )𝑥 ↔ (𝑦𝐴𝑥 ∧ 𝑦 I 𝑥)) | |
5 | ancom 462 | . . . . . 6 ⊢ ((𝑦𝐴𝑥 ∧ 𝑦 I 𝑥) ↔ (𝑦 I 𝑥 ∧ 𝑦𝐴𝑥)) | |
6 | 1 | ideq 5798 | . . . . . . 7 ⊢ (𝑦 I 𝑥 ↔ 𝑦 = 𝑥) |
7 | 6 | anbi1i 625 | . . . . . 6 ⊢ ((𝑦 I 𝑥 ∧ 𝑦𝐴𝑥) ↔ (𝑦 = 𝑥 ∧ 𝑦𝐴𝑥)) |
8 | 4, 5, 7 | 3bitri 297 | . . . . 5 ⊢ (𝑦(𝐴 ∩ I )𝑥 ↔ (𝑦 = 𝑥 ∧ 𝑦𝐴𝑥)) |
9 | 8 | exbii 1850 | . . . 4 ⊢ (∃𝑦 𝑦(𝐴 ∩ I )𝑥 ↔ ∃𝑦(𝑦 = 𝑥 ∧ 𝑦𝐴𝑥)) |
10 | breq1 5099 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦𝐴𝑥 ↔ 𝑥𝐴𝑥)) | |
11 | 10 | equsexvw 2008 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝑥 ∧ 𝑦𝐴𝑥) ↔ 𝑥𝐴𝑥) |
12 | 3, 9, 11 | 3bitri 297 | . . 3 ⊢ (𝑥 ∈ ran (𝐴 ∩ I ) ↔ 𝑥𝐴𝑥) |
13 | 2, 12 | bitr4i 278 | . 2 ⊢ (𝑥 ∈ Fix 𝐴 ↔ 𝑥 ∈ ran (𝐴 ∩ I )) |
14 | 13 | eqriv 2734 | 1 ⊢ Fix 𝐴 = ran (𝐴 ∩ I ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∩ cin 3900 class class class wbr 5096 I cid 5521 ran crn 5625 Fix cfix 34274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-br 5097 df-opab 5159 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-dm 5634 df-rn 5635 df-fix 34298 |
This theorem is referenced by: fixssrn 34346 |
Copyright terms: Public domain | W3C validator |