Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffix2 Structured version   Visualization version   GIF version

Theorem dffix2 35179
Description: The fixpoints of a class in terms of its range. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
dffix2 Fix 𝐴 = ran (𝐴 ∩ I )

Proof of Theorem dffix2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3476 . . . 4 𝑥 ∈ V
21elfix 35177 . . 3 (𝑥 Fix 𝐴𝑥𝐴𝑥)
31elrn 5894 . . . 4 (𝑥 ∈ ran (𝐴 ∩ I ) ↔ ∃𝑦 𝑦(𝐴 ∩ I )𝑥)
4 brin 5201 . . . . . 6 (𝑦(𝐴 ∩ I )𝑥 ↔ (𝑦𝐴𝑥𝑦 I 𝑥))
5 ancom 459 . . . . . 6 ((𝑦𝐴𝑥𝑦 I 𝑥) ↔ (𝑦 I 𝑥𝑦𝐴𝑥))
61ideq 5853 . . . . . . 7 (𝑦 I 𝑥𝑦 = 𝑥)
76anbi1i 622 . . . . . 6 ((𝑦 I 𝑥𝑦𝐴𝑥) ↔ (𝑦 = 𝑥𝑦𝐴𝑥))
84, 5, 73bitri 296 . . . . 5 (𝑦(𝐴 ∩ I )𝑥 ↔ (𝑦 = 𝑥𝑦𝐴𝑥))
98exbii 1848 . . . 4 (∃𝑦 𝑦(𝐴 ∩ I )𝑥 ↔ ∃𝑦(𝑦 = 𝑥𝑦𝐴𝑥))
10 breq1 5152 . . . . 5 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝑥𝐴𝑥))
1110equsexvw 2006 . . . 4 (∃𝑦(𝑦 = 𝑥𝑦𝐴𝑥) ↔ 𝑥𝐴𝑥)
123, 9, 113bitri 296 . . 3 (𝑥 ∈ ran (𝐴 ∩ I ) ↔ 𝑥𝐴𝑥)
132, 12bitr4i 277 . 2 (𝑥 Fix 𝐴𝑥 ∈ ran (𝐴 ∩ I ))
1413eqriv 2727 1 Fix 𝐴 = ran (𝐴 ∩ I )
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1539  wex 1779  wcel 2104  cin 3948   class class class wbr 5149   I cid 5574  ran crn 5678   Fix cfix 35109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-dm 5687  df-rn 5688  df-fix 35133
This theorem is referenced by:  fixssrn  35181
  Copyright terms: Public domain W3C validator