![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmss | Structured version Visualization version GIF version |
Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
dmss | ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 4002 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
2 | 1 | eximdv 1916 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
3 | vex 3492 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm2 5926 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
5 | 3 | eldm2 5926 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
6 | 2, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵)) |
7 | 6 | ssrdv 4014 | 1 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1777 ∈ wcel 2108 ⊆ wss 3976 〈cop 4654 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-dm 5710 |
This theorem is referenced by: dmeq 5928 dmv 5947 rnss 5964 dmiin 5978 dmresss 6040 ssxpb 6205 sofld 6218 resssxp 6301 relrelss 6304 funssxp 6776 fndmdif 7075 fneqeql2 7080 dff3 7134 frxp 8167 fnwelem 8172 frxp2 8185 frxp3 8192 funsssuppss 8231 tposss 8268 frrlem8 8334 frrlem14 8340 wfrlem16OLD 8380 smores 8408 smores2 8410 tfrlem13 8446 imafi 9381 hartogslem1 9611 wemapso 9620 dmttrcl 9790 r0weon 10081 infxpenlem 10082 brdom3 10597 brdom5 10598 brdom4 10599 fpwwe2lem12 10711 fpwwe2 10712 canth4 10716 canthwelem 10719 pwfseqlem4 10731 nqerf 10999 dmrecnq 11037 uzrdgfni 14009 hashdmpropge2 14532 dmtrclfv 15067 rlimpm 15546 isstruct2 17196 strleun 17204 imasaddfnlem 17588 imasvscafn 17597 isohom 17837 catcoppccl 18184 catcoppcclOLD 18185 tsrss 18659 ledm 18660 dirdm 18670 f1omvdmvd 19485 mvdco 19487 f1omvdconj 19488 pmtrfb 19507 pmtrfconj 19508 symggen 19512 symggen2 19513 pmtrdifellem1 19518 pmtrdifellem2 19519 psgnunilem1 19535 gsum2d 20014 lspextmo 21078 dsmmfi 21781 lindfres 21866 mdetdiaglem 22625 tsmsxp 24184 ustssco 24244 setsmstopn 24511 metustexhalf 24590 tngtopn 24692 equivcau 25353 metsscmetcld 25368 dvbssntr 25955 pserdv 26491 noseqrdgfn 28330 subgreldmiedg 29318 hlimcaui 31268 nfpconfp 32651 symgcom2 33077 pmtrcnel 33082 pmtrcnel2 33083 pmtrcnelor 33084 cycpmrn 33136 metideq 33839 esum2d 34057 subgrwlk 35100 fundmpss 35730 fixssdm 35870 filnetlem3 36346 filnetlem4 36347 ssbnd 37748 bnd2lem 37751 ismrcd1 42654 istopclsd 42656 mptrcllem 43575 cnvrcl0 43587 dmtrcl 43589 dfrcl2 43636 relexpss1d 43667 rfovcnvf1od 43966 fourierdlem80 46107 issmflem 46648 |
Copyright terms: Public domain | W3C validator |