| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmss | ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3942 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 2 | 1 | eximdv 1917 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 3 | vex 3454 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm2 5867 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 5 | 3 | eldm2 5867 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
| 6 | 2, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵)) |
| 7 | 6 | ssrdv 3954 | 1 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3916 〈cop 4597 dom cdm 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-dm 5650 |
| This theorem is referenced by: dmeq 5869 dmv 5888 rnss 5905 dmiin 5919 dmresss 5984 ssxpb 6149 sofld 6162 resssxp 6245 relrelss 6248 funssxp 6718 fndmdif 7016 fneqeql2 7021 dff3 7074 frxp 8107 fnwelem 8112 frxp2 8125 frxp3 8132 funsssuppss 8171 tposss 8208 frrlem8 8274 frrlem14 8280 smores 8323 smores2 8325 tfrlem13 8360 imafi 9270 hartogslem1 9501 wemapso 9510 dmttrcl 9680 r0weon 9971 infxpenlem 9972 brdom3 10487 brdom5 10488 brdom4 10489 fpwwe2lem12 10601 fpwwe2 10602 canth4 10606 canthwelem 10609 pwfseqlem4 10621 nqerf 10889 dmrecnq 10927 uzrdgfni 13929 hashdmpropge2 14454 dmtrclfv 14990 rlimpm 15472 isstruct2 17125 strleun 17133 imasaddfnlem 17497 imasvscafn 17506 isohom 17744 catcoppccl 18085 tsrss 18554 ledm 18555 dirdm 18565 f1omvdmvd 19379 mvdco 19381 f1omvdconj 19382 pmtrfb 19401 pmtrfconj 19402 symggen 19406 symggen2 19407 pmtrdifellem1 19412 pmtrdifellem2 19413 psgnunilem1 19429 gsum2d 19908 lspextmo 20969 dsmmfi 21653 lindfres 21738 mdetdiaglem 22491 tsmsxp 24048 ustssco 24108 setsmstopn 24372 metustexhalf 24450 tngtopn 24544 equivcau 25206 metsscmetcld 25221 dvbssntr 25807 pserdv 26345 noseqrdgfn 28206 subgreldmiedg 29216 hlimcaui 31171 nfpconfp 32562 gsumfs2d 33001 symgcom2 33047 pmtrcnel 33052 pmtrcnel2 33053 pmtrcnelor 33054 cycpmrn 33106 metideq 33889 esum2d 34089 subgrwlk 35119 fundmpss 35749 fixssdm 35889 filnetlem3 36363 filnetlem4 36364 ssbnd 37777 bnd2lem 37780 ismrcd1 42679 istopclsd 42681 mptrcllem 43595 cnvrcl0 43607 dmtrcl 43609 dfrcl2 43656 relexpss1d 43687 rfovcnvf1od 43986 fourierdlem80 46177 issmflem 46718 |
| Copyright terms: Public domain | W3C validator |