![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmss | Structured version Visualization version GIF version |
Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
dmss | ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 4002 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)) | |
2 | 1 | eximdv 1916 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
3 | vex 3492 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm2 5927 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) |
5 | 3 | eldm2 5927 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐵) |
6 | 2, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵)) |
7 | 6 | ssrdv 4014 | 1 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1777 ∈ wcel 2108 ⊆ wss 3976 ⟨cop 4654 dom cdm 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5168 df-dm 5711 |
This theorem is referenced by: dmeq 5929 dmv 5948 rnss 5965 dmiin 5979 dmresss 6043 ssxpb 6208 sofld 6221 resssxp 6304 relrelss 6307 funssxp 6779 fndmdif 7078 fneqeql2 7083 dff3 7137 frxp 8170 fnwelem 8175 frxp2 8188 frxp3 8195 funsssuppss 8234 tposss 8271 frrlem8 8337 frrlem14 8343 wfrlem16OLD 8383 smores 8411 smores2 8413 tfrlem13 8449 imafi 9384 hartogslem1 9614 wemapso 9623 dmttrcl 9793 r0weon 10084 infxpenlem 10085 brdom3 10600 brdom5 10601 brdom4 10602 fpwwe2lem12 10714 fpwwe2 10715 canth4 10719 canthwelem 10722 pwfseqlem4 10734 nqerf 11002 dmrecnq 11040 uzrdgfni 14026 hashdmpropge2 14549 dmtrclfv 15084 rlimpm 15563 isstruct2 17216 strleun 17224 imasaddfnlem 17608 imasvscafn 17617 isohom 17857 catcoppccl 18204 catcoppcclOLD 18205 tsrss 18679 ledm 18680 dirdm 18690 f1omvdmvd 19505 mvdco 19507 f1omvdconj 19508 pmtrfb 19527 pmtrfconj 19528 symggen 19532 symggen2 19533 pmtrdifellem1 19538 pmtrdifellem2 19539 psgnunilem1 19555 gsum2d 20034 lspextmo 21098 dsmmfi 21801 lindfres 21886 mdetdiaglem 22645 tsmsxp 24204 ustssco 24264 setsmstopn 24531 metustexhalf 24610 tngtopn 24712 equivcau 25373 metsscmetcld 25388 dvbssntr 25975 pserdv 26511 noseqrdgfn 28350 subgreldmiedg 29338 hlimcaui 31288 nfpconfp 32671 symgcom2 33097 pmtrcnel 33102 pmtrcnel2 33103 pmtrcnelor 33104 cycpmrn 33156 metideq 33859 esum2d 34077 subgrwlk 35120 fundmpss 35750 fixssdm 35890 filnetlem3 36366 filnetlem4 36367 ssbnd 37768 bnd2lem 37771 ismrcd1 42673 istopclsd 42675 mptrcllem 43594 cnvrcl0 43606 dmtrcl 43608 dfrcl2 43655 relexpss1d 43686 rfovcnvf1od 43985 fourierdlem80 46125 issmflem 46666 |
Copyright terms: Public domain | W3C validator |