| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmss | ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3931 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 2 | 1 | eximdv 1917 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 3 | vex 3442 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm2 5848 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 5 | 3 | eldm2 5848 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
| 6 | 2, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵)) |
| 7 | 6 | ssrdv 3943 | 1 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3905 〈cop 4585 dom cdm 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-dm 5633 |
| This theorem is referenced by: dmeq 5850 dmv 5869 rnss 5885 dmiin 5899 dmresss 5966 ssxpb 6127 sofld 6140 resssxp 6222 relrelss 6225 funssxp 6684 fndmdif 6980 fneqeql2 6985 dff3 7038 frxp 8066 fnwelem 8071 frxp2 8084 frxp3 8091 funsssuppss 8130 tposss 8167 frrlem8 8233 frrlem14 8239 smores 8282 smores2 8284 tfrlem13 8319 imafi 9222 hartogslem1 9453 wemapso 9462 dmttrcl 9636 r0weon 9925 infxpenlem 9926 brdom3 10441 brdom5 10442 brdom4 10443 fpwwe2lem12 10555 fpwwe2 10556 canth4 10560 canthwelem 10563 pwfseqlem4 10575 nqerf 10843 dmrecnq 10881 uzrdgfni 13883 hashdmpropge2 14408 dmtrclfv 14943 rlimpm 15425 isstruct2 17078 strleun 17086 imasaddfnlem 17450 imasvscafn 17459 isohom 17701 catcoppccl 18042 tsrss 18513 ledm 18514 dirdm 18524 f1omvdmvd 19340 mvdco 19342 f1omvdconj 19343 pmtrfb 19362 pmtrfconj 19363 symggen 19367 symggen2 19368 pmtrdifellem1 19373 pmtrdifellem2 19374 psgnunilem1 19390 gsum2d 19869 lspextmo 20978 dsmmfi 21663 lindfres 21748 mdetdiaglem 22501 tsmsxp 24058 ustssco 24118 setsmstopn 24382 metustexhalf 24460 tngtopn 24554 equivcau 25216 metsscmetcld 25231 dvbssntr 25817 pserdv 26355 noseqrdgfn 28223 subgreldmiedg 29246 hlimcaui 31198 nfpconfp 32589 gsumfs2d 33021 symgcom2 33039 pmtrcnel 33044 pmtrcnel2 33045 pmtrcnelor 33046 cycpmrn 33098 metideq 33862 esum2d 34062 subgrwlk 35107 fundmpss 35742 fixssdm 35882 filnetlem3 36356 filnetlem4 36357 ssbnd 37770 bnd2lem 37773 ismrcd1 42674 istopclsd 42676 mptrcllem 43589 cnvrcl0 43601 dmtrcl 43603 dfrcl2 43650 relexpss1d 43681 rfovcnvf1od 43980 fourierdlem80 46171 issmflem 46712 |
| Copyright terms: Public domain | W3C validator |