![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmss | Structured version Visualization version GIF version |
Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
dmss | ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3976 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)) | |
2 | 1 | eximdv 1921 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
3 | vex 3479 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm2 5902 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) |
5 | 3 | eldm2 5902 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐵) |
6 | 2, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵)) |
7 | 6 | ssrdv 3989 | 1 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 ∈ wcel 2107 ⊆ wss 3949 ⟨cop 4635 dom cdm 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-dm 5687 |
This theorem is referenced by: dmeq 5904 dmv 5923 rnss 5939 dmiin 5953 ssxpb 6174 sofld 6187 resssxp 6270 relrelss 6273 funssxp 6747 fndmdif 7044 fneqeql2 7049 dff3 7102 frxp 8112 fnwelem 8117 frxp2 8130 frxp3 8137 funsssuppss 8175 tposss 8212 frrlem8 8278 frrlem14 8284 wfrlem16OLD 8324 smores 8352 smores2 8354 tfrlem13 8390 imafiALT 9345 hartogslem1 9537 wemapso 9546 dmttrcl 9716 r0weon 10007 infxpenlem 10008 brdom3 10523 brdom5 10524 brdom4 10525 fpwwe2lem12 10637 fpwwe2 10638 canth4 10642 canthwelem 10645 pwfseqlem4 10657 nqerf 10925 dmrecnq 10963 uzrdgfni 13923 hashdmpropge2 14444 dmtrclfv 14965 rlimpm 15444 isstruct2 17082 strleun 17090 imasaddfnlem 17474 imasvscafn 17483 isohom 17723 catcoppccl 18067 catcoppcclOLD 18068 tsrss 18542 ledm 18543 dirdm 18553 f1omvdmvd 19311 mvdco 19313 f1omvdconj 19314 pmtrfb 19333 pmtrfconj 19334 symggen 19338 symggen2 19339 pmtrdifellem1 19344 pmtrdifellem2 19345 psgnunilem1 19361 gsum2d 19840 lspextmo 20667 dsmmfi 21293 lindfres 21378 mdetdiaglem 22100 tsmsxp 23659 ustssco 23719 setsmstopn 23986 metustexhalf 24065 tngtopn 24167 equivcau 24817 metsscmetcld 24832 dvbssntr 25417 pserdv 25941 subgreldmiedg 28540 hlimcaui 30489 nfpconfp 31856 symgcom2 32245 pmtrcnel 32250 pmtrcnel2 32251 pmtrcnelor 32252 cycpmrn 32302 metideq 32873 esum2d 33091 subgrwlk 34123 fundmpss 34738 fixssdm 34878 filnetlem3 35265 filnetlem4 35266 ssbnd 36656 bnd2lem 36659 ismrcd1 41436 istopclsd 41438 mptrcllem 42364 cnvrcl0 42376 dmtrcl 42378 dfrcl2 42425 relexpss1d 42456 rfovcnvf1od 42755 fourierdlem80 44902 issmflem 45443 |
Copyright terms: Public domain | W3C validator |