Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmss | Structured version Visualization version GIF version |
Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
dmss | ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3919 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
2 | 1 | eximdv 1918 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
3 | vex 3441 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm2 5823 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
5 | 3 | eldm2 5823 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
6 | 2, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵)) |
7 | 6 | ssrdv 3932 | 1 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1779 ∈ wcel 2104 ⊆ wss 3892 〈cop 4571 dom cdm 5600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-dm 5610 |
This theorem is referenced by: dmeq 5825 dmv 5844 rnss 5860 dmiin 5874 ssxpb 6092 sofld 6105 resssxp 6188 relrelss 6191 funssxp 6659 fndmdif 6951 fneqeql2 6956 dff3 7008 frxp 7998 fnwelem 8003 funsssuppss 8037 tposss 8074 frrlem8 8140 frrlem14 8146 wfrlem16OLD 8186 smores 8214 smores2 8216 tfrlem13 8252 imafiALT 9160 hartogslem1 9349 wemapso 9358 dmttrcl 9527 r0weon 9818 infxpenlem 9819 brdom3 10334 brdom5 10335 brdom4 10336 fpwwe2lem12 10448 fpwwe2 10449 canth4 10453 canthwelem 10456 pwfseqlem4 10468 nqerf 10736 dmrecnq 10774 uzrdgfni 13728 hashdmpropge2 14246 dmtrclfv 14778 rlimpm 15258 isstruct2 16899 strleun 16907 imasaddfnlem 17288 imasvscafn 17297 isohom 17537 catcoppccl 17881 catcoppcclOLD 17882 tsrss 18356 ledm 18357 dirdm 18367 f1omvdmvd 19100 mvdco 19102 f1omvdconj 19103 pmtrfb 19122 pmtrfconj 19123 symggen 19127 symggen2 19128 pmtrdifellem1 19133 pmtrdifellem2 19134 psgnunilem1 19150 gsum2d 19622 lspextmo 20367 dsmmfi 20994 lindfres 21079 mdetdiaglem 21796 tsmsxp 23355 ustssco 23415 setsmstopn 23682 metustexhalf 23761 tngtopn 23863 equivcau 24513 metsscmetcld 24528 dvbssntr 25113 pserdv 25637 subgreldmiedg 27699 hlimcaui 29647 nfpconfp 31016 symgcom2 31402 pmtrcnel 31407 pmtrcnel2 31408 pmtrcnelor 31409 cycpmrn 31459 metideq 31892 esum2d 32110 subgrwlk 33143 fundmpss 33789 frxp2 33840 frxp3 33846 fixssdm 34257 filnetlem3 34618 filnetlem4 34619 ssbnd 35994 bnd2lem 35997 ismrcd1 40715 istopclsd 40717 mptrcllem 41434 cnvrcl0 41446 dmtrcl 41448 dfrcl2 41495 relexpss1d 41526 rfovcnvf1od 41825 fourierdlem80 43956 issmflem 44495 |
Copyright terms: Public domain | W3C validator |