| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmss | ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3940 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 2 | 1 | eximdv 1917 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 3 | vex 3451 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm2 5865 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 5 | 3 | eldm2 5865 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
| 6 | 2, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵)) |
| 7 | 6 | ssrdv 3952 | 1 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3914 〈cop 4595 dom cdm 5638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-dm 5648 |
| This theorem is referenced by: dmeq 5867 dmv 5886 rnss 5903 dmiin 5917 dmresss 5982 ssxpb 6147 sofld 6160 resssxp 6243 relrelss 6246 funssxp 6716 fndmdif 7014 fneqeql2 7019 dff3 7072 frxp 8105 fnwelem 8110 frxp2 8123 frxp3 8130 funsssuppss 8169 tposss 8206 frrlem8 8272 frrlem14 8278 smores 8321 smores2 8323 tfrlem13 8358 imafi 9264 hartogslem1 9495 wemapso 9504 dmttrcl 9674 r0weon 9965 infxpenlem 9966 brdom3 10481 brdom5 10482 brdom4 10483 fpwwe2lem12 10595 fpwwe2 10596 canth4 10600 canthwelem 10603 pwfseqlem4 10615 nqerf 10883 dmrecnq 10921 uzrdgfni 13923 hashdmpropge2 14448 dmtrclfv 14984 rlimpm 15466 isstruct2 17119 strleun 17127 imasaddfnlem 17491 imasvscafn 17500 isohom 17738 catcoppccl 18079 tsrss 18548 ledm 18549 dirdm 18559 f1omvdmvd 19373 mvdco 19375 f1omvdconj 19376 pmtrfb 19395 pmtrfconj 19396 symggen 19400 symggen2 19401 pmtrdifellem1 19406 pmtrdifellem2 19407 psgnunilem1 19423 gsum2d 19902 lspextmo 20963 dsmmfi 21647 lindfres 21732 mdetdiaglem 22485 tsmsxp 24042 ustssco 24102 setsmstopn 24366 metustexhalf 24444 tngtopn 24538 equivcau 25200 metsscmetcld 25215 dvbssntr 25801 pserdv 26339 noseqrdgfn 28200 subgreldmiedg 29210 hlimcaui 31165 nfpconfp 32556 gsumfs2d 32995 symgcom2 33041 pmtrcnel 33046 pmtrcnel2 33047 pmtrcnelor 33048 cycpmrn 33100 metideq 33883 esum2d 34083 subgrwlk 35119 fundmpss 35754 fixssdm 35894 filnetlem3 36368 filnetlem4 36369 ssbnd 37782 bnd2lem 37785 ismrcd1 42686 istopclsd 42688 mptrcllem 43602 cnvrcl0 43614 dmtrcl 43616 dfrcl2 43663 relexpss1d 43694 rfovcnvf1od 43993 fourierdlem80 46184 issmflem 46725 |
| Copyright terms: Public domain | W3C validator |