| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmss | ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3924 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 2 | 1 | eximdv 1918 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 3 | vex 3441 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm2 5847 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 5 | 3 | eldm2 5847 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
| 6 | 2, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵)) |
| 7 | 6 | ssrdv 3936 | 1 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 ∈ wcel 2113 ⊆ wss 3898 〈cop 4583 dom cdm 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-dm 5631 |
| This theorem is referenced by: dmeq 5849 dmv 5868 rnss 5885 dmiin 5899 dmresss 5966 ssxpb 6128 sofld 6141 resssxp 6224 relrelss 6227 funssxp 6686 fndmdif 6983 fneqeql2 6988 dff3 7041 frxp 8064 fnwelem 8069 frxp2 8082 frxp3 8089 funsssuppss 8128 tposss 8165 frrlem8 8231 frrlem14 8237 smores 8280 smores2 8282 tfrlem13 8317 imafi 9208 hartogslem1 9437 wemapso 9446 dmttrcl 9620 r0weon 9912 infxpenlem 9913 brdom3 10428 brdom5 10429 brdom4 10430 fpwwe2lem12 10542 fpwwe2 10543 canth4 10547 canthwelem 10550 pwfseqlem4 10562 nqerf 10830 dmrecnq 10868 uzrdgfni 13869 hashdmpropge2 14394 dmtrclfv 14929 rlimpm 15411 isstruct2 17064 strleun 17072 imasaddfnlem 17436 imasvscafn 17445 isohom 17687 catcoppccl 18028 tsrss 18499 ledm 18500 dirdm 18510 f1omvdmvd 19359 mvdco 19361 f1omvdconj 19362 pmtrfb 19381 pmtrfconj 19382 symggen 19386 symggen2 19387 pmtrdifellem1 19392 pmtrdifellem2 19393 psgnunilem1 19409 gsum2d 19888 lspextmo 20994 dsmmfi 21679 lindfres 21764 mdetdiaglem 22516 tsmsxp 24073 ustssco 24133 setsmstopn 24396 metustexhalf 24474 tngtopn 24568 equivcau 25230 metsscmetcld 25245 dvbssntr 25831 pserdv 26369 noseqrdgfn 28239 subgreldmiedg 29265 hlimcaui 31220 nfpconfp 32618 gsumfs2d 33044 symgcom2 33062 pmtrcnel 33067 pmtrcnel2 33068 pmtrcnelor 33069 cycpmrn 33121 metideq 33929 esum2d 34129 subgrwlk 35199 fundmpss 35834 fixssdm 35971 filnetlem3 36447 filnetlem4 36448 ssbnd 37851 bnd2lem 37854 ismrcd1 42818 istopclsd 42820 mptrcllem 43733 cnvrcl0 43745 dmtrcl 43747 dfrcl2 43794 relexpss1d 43825 rfovcnvf1od 44124 fourierdlem80 46311 issmflem 46852 |
| Copyright terms: Public domain | W3C validator |