| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmss | ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3928 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 2 | 1 | eximdv 1918 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 3 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm2 5841 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 5 | 3 | eldm2 5841 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
| 6 | 2, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵)) |
| 7 | 6 | ssrdv 3940 | 1 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 ∈ wcel 2111 ⊆ wss 3902 〈cop 4582 dom cdm 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-dm 5626 |
| This theorem is referenced by: dmeq 5843 dmv 5862 rnss 5879 dmiin 5893 dmresss 5960 ssxpb 6121 sofld 6134 resssxp 6217 relrelss 6220 funssxp 6679 fndmdif 6975 fneqeql2 6980 dff3 7033 frxp 8056 fnwelem 8061 frxp2 8074 frxp3 8081 funsssuppss 8120 tposss 8157 frrlem8 8223 frrlem14 8229 smores 8272 smores2 8274 tfrlem13 8309 imafi 9199 hartogslem1 9428 wemapso 9437 dmttrcl 9611 r0weon 9903 infxpenlem 9904 brdom3 10419 brdom5 10420 brdom4 10421 fpwwe2lem12 10533 fpwwe2 10534 canth4 10538 canthwelem 10541 pwfseqlem4 10553 nqerf 10821 dmrecnq 10859 uzrdgfni 13865 hashdmpropge2 14390 dmtrclfv 14925 rlimpm 15407 isstruct2 17060 strleun 17068 imasaddfnlem 17432 imasvscafn 17441 isohom 17683 catcoppccl 18024 tsrss 18495 ledm 18496 dirdm 18506 f1omvdmvd 19356 mvdco 19358 f1omvdconj 19359 pmtrfb 19378 pmtrfconj 19379 symggen 19383 symggen2 19384 pmtrdifellem1 19389 pmtrdifellem2 19390 psgnunilem1 19406 gsum2d 19885 lspextmo 20991 dsmmfi 21676 lindfres 21761 mdetdiaglem 22514 tsmsxp 24071 ustssco 24131 setsmstopn 24394 metustexhalf 24472 tngtopn 24566 equivcau 25228 metsscmetcld 25243 dvbssntr 25829 pserdv 26367 noseqrdgfn 28237 subgreldmiedg 29262 hlimcaui 31214 nfpconfp 32612 gsumfs2d 33033 symgcom2 33051 pmtrcnel 33056 pmtrcnel2 33057 pmtrcnelor 33058 cycpmrn 33110 metideq 33904 esum2d 34104 subgrwlk 35174 fundmpss 35809 fixssdm 35946 filnetlem3 36420 filnetlem4 36421 ssbnd 37834 bnd2lem 37837 ismrcd1 42737 istopclsd 42739 mptrcllem 43652 cnvrcl0 43664 dmtrcl 43666 dfrcl2 43713 relexpss1d 43744 rfovcnvf1od 44043 fourierdlem80 46230 issmflem 46771 |
| Copyright terms: Public domain | W3C validator |