Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmss | Structured version Visualization version GIF version |
Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
dmss | ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3868 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
2 | 1 | eximdv 1923 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
3 | vex 3401 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm2 5738 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
5 | 3 | eldm2 5738 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
6 | 2, 4, 5 | 3imtr4g 299 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵)) |
7 | 6 | ssrdv 3881 | 1 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1786 ∈ wcel 2113 ⊆ wss 3841 〈cop 4519 dom cdm 5519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3399 df-un 3846 df-in 3848 df-ss 3858 df-sn 4514 df-pr 4516 df-op 4520 df-br 5028 df-dm 5529 |
This theorem is referenced by: dmeq 5740 dmv 5759 rnss 5776 dmiin 5790 ssxpb 6000 sofld 6013 resssxp 6096 relrelss 6099 funssxp 6527 fndmdif 6813 fneqeql2 6818 dff3 6870 frxp 7839 fnwelem 7844 funsssuppss 7878 tposss 7915 wfrlem16 7992 smores 8011 smores2 8013 tfrlem13 8048 imafiOLD 8883 hartogslem1 9072 wemapso 9081 r0weon 9505 infxpenlem 9506 brdom3 10021 brdom5 10022 brdom4 10023 fpwwe2lem12 10135 fpwwe2 10136 canth4 10140 canthwelem 10143 pwfseqlem4 10155 nqerf 10423 dmrecnq 10461 uzrdgfni 13410 hashdmpropge2 13928 dmtrclfv 14460 rlimpm 14940 isstruct2 16589 strleun 16687 imasaddfnlem 16897 imasvscafn 16906 isohom 17144 catcoppccl 17477 tsrss 17942 ledm 17943 dirdm 17953 f1omvdmvd 18682 mvdco 18684 f1omvdconj 18685 pmtrfb 18704 pmtrfconj 18705 symggen 18709 symggen2 18710 pmtrdifellem1 18715 pmtrdifellem2 18716 psgnunilem1 18732 gsum2d 19204 lspextmo 19940 dsmmfi 20547 lindfres 20632 mdetdiaglem 21342 tsmsxp 22899 ustssco 22959 setsmstopn 23224 metustexhalf 23302 tngtopn 23396 equivcau 24045 metsscmetcld 24060 dvbssntr 24644 pserdv 25168 subgreldmiedg 27217 hlimcaui 29163 nfpconfp 30533 symgcom2 30922 pmtrcnel 30927 pmtrcnel2 30928 pmtrcnelor 30929 cycpmrn 30979 metideq 31407 esum2d 31623 subgrwlk 32657 fundmpss 33304 frxp2 33394 frxp3 33400 frrlem8 33440 frrlem14 33446 fixssdm 33838 filnetlem3 34199 filnetlem4 34200 ssbnd 35558 bnd2lem 35561 ismrcd1 40076 istopclsd 40078 mptrcllem 40750 cnvrcl0 40762 dmtrcl 40764 dfrcl2 40812 relexpss1d 40843 rfovcnvf1od 41142 fourierdlem80 43253 issmflem 43786 |
Copyright terms: Public domain | W3C validator |