| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmss | ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3976 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 2 | 1 | eximdv 1917 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 3 | vex 3483 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm2 5910 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 5 | 3 | eldm2 5910 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
| 6 | 2, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵)) |
| 7 | 6 | ssrdv 3988 | 1 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∈ wcel 2108 ⊆ wss 3950 〈cop 4630 dom cdm 5683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5142 df-dm 5693 |
| This theorem is referenced by: dmeq 5912 dmv 5931 rnss 5948 dmiin 5962 dmresss 6027 ssxpb 6192 sofld 6205 resssxp 6288 relrelss 6291 funssxp 6762 fndmdif 7060 fneqeql2 7065 dff3 7118 frxp 8147 fnwelem 8152 frxp2 8165 frxp3 8172 funsssuppss 8211 tposss 8248 frrlem8 8314 frrlem14 8320 wfrlem16OLD 8360 smores 8388 smores2 8390 tfrlem13 8426 imafi 9349 hartogslem1 9578 wemapso 9587 dmttrcl 9757 r0weon 10048 infxpenlem 10049 brdom3 10564 brdom5 10565 brdom4 10566 fpwwe2lem12 10678 fpwwe2 10679 canth4 10683 canthwelem 10686 pwfseqlem4 10698 nqerf 10966 dmrecnq 11004 uzrdgfni 13995 hashdmpropge2 14518 dmtrclfv 15053 rlimpm 15532 isstruct2 17182 strleun 17190 imasaddfnlem 17569 imasvscafn 17578 isohom 17816 catcoppccl 18158 tsrss 18630 ledm 18631 dirdm 18641 f1omvdmvd 19457 mvdco 19459 f1omvdconj 19460 pmtrfb 19479 pmtrfconj 19480 symggen 19484 symggen2 19485 pmtrdifellem1 19490 pmtrdifellem2 19491 psgnunilem1 19507 gsum2d 19986 lspextmo 21047 dsmmfi 21750 lindfres 21835 mdetdiaglem 22594 tsmsxp 24153 ustssco 24213 setsmstopn 24480 metustexhalf 24559 tngtopn 24661 equivcau 25324 metsscmetcld 25339 dvbssntr 25925 pserdv 26463 noseqrdgfn 28302 subgreldmiedg 29290 hlimcaui 31245 nfpconfp 32631 gsumfs2d 33043 symgcom2 33089 pmtrcnel 33094 pmtrcnel2 33095 pmtrcnelor 33096 cycpmrn 33148 metideq 33870 esum2d 34072 subgrwlk 35115 fundmpss 35745 fixssdm 35885 filnetlem3 36359 filnetlem4 36360 ssbnd 37773 bnd2lem 37776 ismrcd1 42687 istopclsd 42689 mptrcllem 43604 cnvrcl0 43616 dmtrcl 43618 dfrcl2 43665 relexpss1d 43696 rfovcnvf1od 43995 fourierdlem80 46174 issmflem 46715 |
| Copyright terms: Public domain | W3C validator |