| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmss | ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3950 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 2 | 1 | eximdv 1916 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 3 | vex 3461 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm2 5878 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 5 | 3 | eldm2 5878 | . . 3 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
| 6 | 2, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ dom 𝐵)) |
| 7 | 6 | ssrdv 3962 | 1 ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1778 ∈ wcel 2107 ⊆ wss 3924 〈cop 4605 dom cdm 5651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5117 df-dm 5661 |
| This theorem is referenced by: dmeq 5880 dmv 5899 rnss 5916 dmiin 5930 dmresss 5995 ssxpb 6160 sofld 6173 resssxp 6256 relrelss 6259 funssxp 6730 fndmdif 7028 fneqeql2 7033 dff3 7086 frxp 8119 fnwelem 8124 frxp2 8137 frxp3 8144 funsssuppss 8183 tposss 8220 frrlem8 8286 frrlem14 8292 wfrlem16OLD 8332 smores 8360 smores2 8362 tfrlem13 8398 imafi 9319 hartogslem1 9548 wemapso 9557 dmttrcl 9727 r0weon 10018 infxpenlem 10019 brdom3 10534 brdom5 10535 brdom4 10536 fpwwe2lem12 10648 fpwwe2 10649 canth4 10653 canthwelem 10656 pwfseqlem4 10668 nqerf 10936 dmrecnq 10974 uzrdgfni 13965 hashdmpropge2 14489 dmtrclfv 15024 rlimpm 15503 isstruct2 17153 strleun 17161 imasaddfnlem 17527 imasvscafn 17536 isohom 17774 catcoppccl 18115 tsrss 18584 ledm 18585 dirdm 18595 f1omvdmvd 19409 mvdco 19411 f1omvdconj 19412 pmtrfb 19431 pmtrfconj 19432 symggen 19436 symggen2 19437 pmtrdifellem1 19442 pmtrdifellem2 19443 psgnunilem1 19459 gsum2d 19938 lspextmo 20999 dsmmfi 21683 lindfres 21768 mdetdiaglem 22521 tsmsxp 24078 ustssco 24138 setsmstopn 24402 metustexhalf 24480 tngtopn 24574 equivcau 25237 metsscmetcld 25252 dvbssntr 25838 pserdv 26376 noseqrdgfn 28215 subgreldmiedg 29194 hlimcaui 31149 nfpconfp 32543 gsumfs2d 32967 symgcom2 33013 pmtrcnel 33018 pmtrcnel2 33019 pmtrcnelor 33020 cycpmrn 33072 metideq 33832 esum2d 34032 subgrwlk 35075 fundmpss 35705 fixssdm 35845 filnetlem3 36319 filnetlem4 36320 ssbnd 37733 bnd2lem 37736 ismrcd1 42646 istopclsd 42648 mptrcllem 43562 cnvrcl0 43574 dmtrcl 43576 dfrcl2 43623 relexpss1d 43654 rfovcnvf1od 43953 fourierdlem80 46145 issmflem 46686 |
| Copyright terms: Public domain | W3C validator |