Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege104 Structured version   Visualization version   GIF version

Theorem frege104 44070
Description: Proposition 104 of [Frege1879] p. 73.

Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the minor clause and result swapped. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)

Hypothesis
Ref Expression
frege103.z 𝑍𝑉
Assertion
Ref Expression
frege104 (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑋 = 𝑍))

Proof of Theorem frege104
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 frege103.z . . . 4 𝑍𝑉
21elexi 3459 . . 3 𝑍 ∈ V
3 eqeq1 2735 . . . 4 (𝑧 = 𝑍 → (𝑧 = 𝑋𝑍 = 𝑋))
4 eqeq2 2743 . . . 4 (𝑧 = 𝑍 → (𝑋 = 𝑧𝑋 = 𝑍))
53, 4imbi12d 344 . . 3 (𝑧 = 𝑍 → ((𝑧 = 𝑋𝑋 = 𝑧) ↔ (𝑍 = 𝑋𝑋 = 𝑍)))
6 frege55c 44021 . . 3 (𝑧 = 𝑋𝑋 = 𝑧)
72, 5, 6vtocl 3511 . 2 (𝑍 = 𝑋𝑋 = 𝑍)
81frege103 44069 . 2 ((𝑍 = 𝑋𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑋 = 𝑍)))
97, 8ax-mp 5 1 (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑋 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  cun 3895   class class class wbr 5089   I cid 5508  cfv 6481  t+ctcl 14892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-frege1 43893  ax-frege2 43894  ax-frege8 43912  ax-frege52a 43960  ax-frege52c 43991
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621
This theorem is referenced by:  frege114  44080
  Copyright terms: Public domain W3C validator