Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege104 Structured version   Visualization version   GIF version

Theorem frege104 43950
Description: Proposition 104 of [Frege1879] p. 73.

Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the minor clause and result swapped. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)

Hypothesis
Ref Expression
frege103.z 𝑍𝑉
Assertion
Ref Expression
frege104 (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑋 = 𝑍))

Proof of Theorem frege104
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 frege103.z . . . 4 𝑍𝑉
21elexi 3459 . . 3 𝑍 ∈ V
3 eqeq1 2733 . . . 4 (𝑧 = 𝑍 → (𝑧 = 𝑋𝑍 = 𝑋))
4 eqeq2 2741 . . . 4 (𝑧 = 𝑍 → (𝑋 = 𝑧𝑋 = 𝑍))
53, 4imbi12d 344 . . 3 (𝑧 = 𝑍 → ((𝑧 = 𝑋𝑋 = 𝑧) ↔ (𝑍 = 𝑋𝑋 = 𝑍)))
6 frege55c 43901 . . 3 (𝑧 = 𝑋𝑋 = 𝑧)
72, 5, 6vtocl 3513 . 2 (𝑍 = 𝑋𝑋 = 𝑍)
81frege103 43949 . 2 ((𝑍 = 𝑋𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑋 = 𝑍)))
97, 8ax-mp 5 1 (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑋 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  cun 3901   class class class wbr 5092   I cid 5513  cfv 6482  t+ctcl 14892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-frege1 43773  ax-frege2 43774  ax-frege8 43792  ax-frege52a 43840  ax-frege52c 43871
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626
This theorem is referenced by:  frege114  43960
  Copyright terms: Public domain W3C validator