Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege104 | Structured version Visualization version GIF version |
Description: Proposition 104 of [Frege1879] p. 73.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the minor clause and result swapped. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege103.z | ⊢ 𝑍 ∈ 𝑉 |
Ref | Expression |
---|---|
frege104 | ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege103.z | . . . 4 ⊢ 𝑍 ∈ 𝑉 | |
2 | 1 | elexi 3441 | . . 3 ⊢ 𝑍 ∈ V |
3 | eqeq1 2742 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑧 = 𝑋 ↔ 𝑍 = 𝑋)) | |
4 | eqeq2 2750 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑋 = 𝑧 ↔ 𝑋 = 𝑍)) | |
5 | 3, 4 | imbi12d 344 | . . 3 ⊢ (𝑧 = 𝑍 → ((𝑧 = 𝑋 → 𝑋 = 𝑧) ↔ (𝑍 = 𝑋 → 𝑋 = 𝑍))) |
6 | frege55c 41415 | . . 3 ⊢ (𝑧 = 𝑋 → 𝑋 = 𝑧) | |
7 | 2, 5, 6 | vtocl 3488 | . 2 ⊢ (𝑍 = 𝑋 → 𝑋 = 𝑍) |
8 | 1 | frege103 41463 | . 2 ⊢ ((𝑍 = 𝑋 → 𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍))) |
9 | 7, 8 | ax-mp 5 | 1 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 class class class wbr 5070 I cid 5479 ‘cfv 6418 t+ctcl 14624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-frege1 41287 ax-frege2 41288 ax-frege8 41306 ax-frege52a 41354 ax-frege52c 41385 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 |
This theorem is referenced by: frege114 41474 |
Copyright terms: Public domain | W3C validator |