Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege104 Structured version   Visualization version   GIF version

Theorem frege104 41464
Description: Proposition 104 of [Frege1879] p. 73.

Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the minor clause and result swapped. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.)

Hypothesis
Ref Expression
frege103.z 𝑍𝑉
Assertion
Ref Expression
frege104 (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑋 = 𝑍))

Proof of Theorem frege104
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 frege103.z . . . 4 𝑍𝑉
21elexi 3441 . . 3 𝑍 ∈ V
3 eqeq1 2742 . . . 4 (𝑧 = 𝑍 → (𝑧 = 𝑋𝑍 = 𝑋))
4 eqeq2 2750 . . . 4 (𝑧 = 𝑍 → (𝑋 = 𝑧𝑋 = 𝑍))
53, 4imbi12d 344 . . 3 (𝑧 = 𝑍 → ((𝑧 = 𝑋𝑋 = 𝑧) ↔ (𝑍 = 𝑋𝑋 = 𝑍)))
6 frege55c 41415 . . 3 (𝑧 = 𝑋𝑋 = 𝑧)
72, 5, 6vtocl 3488 . 2 (𝑍 = 𝑋𝑋 = 𝑍)
81frege103 41463 . 2 ((𝑍 = 𝑋𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑋 = 𝑍)))
97, 8ax-mp 5 1 (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍𝑋 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  cun 3881   class class class wbr 5070   I cid 5479  cfv 6418  t+ctcl 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-frege1 41287  ax-frege2 41288  ax-frege8 41306  ax-frege52a 41354  ax-frege52c 41385
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587
This theorem is referenced by:  frege114  41474
  Copyright terms: Public domain W3C validator