![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege104 | Structured version Visualization version GIF version |
Description: Proposition 104 of [Frege1879] p. 73.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the minor clause and result swapped. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege103.z | ⊢ 𝑍 ∈ 𝑉 |
Ref | Expression |
---|---|
frege104 | ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege103.z | . . . 4 ⊢ 𝑍 ∈ 𝑉 | |
2 | 1 | elexi 3506 | . . 3 ⊢ 𝑍 ∈ V |
3 | eqeq1 2738 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑧 = 𝑋 ↔ 𝑍 = 𝑋)) | |
4 | eqeq2 2746 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑋 = 𝑧 ↔ 𝑋 = 𝑍)) | |
5 | 3, 4 | imbi12d 344 | . . 3 ⊢ (𝑧 = 𝑍 → ((𝑧 = 𝑋 → 𝑋 = 𝑧) ↔ (𝑍 = 𝑋 → 𝑋 = 𝑍))) |
6 | frege55c 43821 | . . 3 ⊢ (𝑧 = 𝑋 → 𝑋 = 𝑧) | |
7 | 2, 5, 6 | vtocl 3565 | . 2 ⊢ (𝑍 = 𝑋 → 𝑋 = 𝑍) |
8 | 1 | frege103 43869 | . 2 ⊢ ((𝑍 = 𝑋 → 𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍))) |
9 | 7, 8 | ax-mp 5 | 1 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2103 ∪ cun 3968 class class class wbr 5169 I cid 5596 ‘cfv 6572 t+ctcl 15030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pr 5450 ax-frege1 43693 ax-frege2 43694 ax-frege8 43712 ax-frege52a 43760 ax-frege52c 43791 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ifp 1064 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3064 df-rex 3073 df-rab 3439 df-v 3484 df-sbc 3799 df-dif 3973 df-un 3975 df-ss 3987 df-nul 4348 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5170 df-opab 5232 df-id 5597 df-xp 5705 df-rel 5706 |
This theorem is referenced by: frege114 43880 |
Copyright terms: Public domain | W3C validator |