| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege104 | Structured version Visualization version GIF version | ||
| Description: Proposition 104 of [Frege1879] p. 73.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the minor clause and result swapped. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege103.z | ⊢ 𝑍 ∈ 𝑉 |
| Ref | Expression |
|---|---|
| frege104 | ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege103.z | . . . 4 ⊢ 𝑍 ∈ 𝑉 | |
| 2 | 1 | elexi 3478 | . . 3 ⊢ 𝑍 ∈ V |
| 3 | eqeq1 2734 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑧 = 𝑋 ↔ 𝑍 = 𝑋)) | |
| 4 | eqeq2 2742 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑋 = 𝑧 ↔ 𝑋 = 𝑍)) | |
| 5 | 3, 4 | imbi12d 344 | . . 3 ⊢ (𝑧 = 𝑍 → ((𝑧 = 𝑋 → 𝑋 = 𝑧) ↔ (𝑍 = 𝑋 → 𝑋 = 𝑍))) |
| 6 | frege55c 43879 | . . 3 ⊢ (𝑧 = 𝑋 → 𝑋 = 𝑧) | |
| 7 | 2, 5, 6 | vtocl 3533 | . 2 ⊢ (𝑍 = 𝑋 → 𝑋 = 𝑍) |
| 8 | 1 | frege103 43927 | . 2 ⊢ ((𝑍 = 𝑋 → 𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍))) |
| 9 | 7, 8 | ax-mp 5 | 1 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3920 class class class wbr 5115 I cid 5540 ‘cfv 6519 t+ctcl 14961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-frege1 43751 ax-frege2 43752 ax-frege8 43770 ax-frege52a 43818 ax-frege52c 43849 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 |
| This theorem is referenced by: frege114 43938 |
| Copyright terms: Public domain | W3C validator |