Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege104 | Structured version Visualization version GIF version |
Description: Proposition 104 of [Frege1879] p. 73.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the minor clause and result swapped. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege103.z | ⊢ 𝑍 ∈ 𝑉 |
Ref | Expression |
---|---|
frege104 | ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege103.z | . . . 4 ⊢ 𝑍 ∈ 𝑉 | |
2 | 1 | elexi 3429 | . . 3 ⊢ 𝑍 ∈ V |
3 | eqeq1 2762 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑧 = 𝑋 ↔ 𝑍 = 𝑋)) | |
4 | eqeq2 2770 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑋 = 𝑧 ↔ 𝑋 = 𝑍)) | |
5 | 3, 4 | imbi12d 348 | . . 3 ⊢ (𝑧 = 𝑍 → ((𝑧 = 𝑋 → 𝑋 = 𝑧) ↔ (𝑍 = 𝑋 → 𝑋 = 𝑍))) |
6 | frege55c 40992 | . . 3 ⊢ (𝑧 = 𝑋 → 𝑋 = 𝑧) | |
7 | 2, 5, 6 | vtocl 3477 | . 2 ⊢ (𝑍 = 𝑋 → 𝑋 = 𝑍) |
8 | 1 | frege103 41040 | . 2 ⊢ ((𝑍 = 𝑋 → 𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍))) |
9 | 7, 8 | ax-mp 5 | 1 ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1538 ∈ wcel 2111 ∪ cun 3856 class class class wbr 5032 I cid 5429 ‘cfv 6335 t+ctcl 14392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-frege1 40864 ax-frege2 40865 ax-frege8 40883 ax-frege52a 40931 ax-frege52c 40962 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ifp 1059 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 |
This theorem is referenced by: frege114 41051 |
Copyright terms: Public domain | W3C validator |