| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege70 | Structured version Visualization version GIF version | ||
| Description: Lemma for frege72 43931. Proposition 70 of [Frege1879] p. 58. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege70.x | ⊢ 𝑋 ∈ 𝑉 |
| Ref | Expression |
|---|---|
| frege70 | ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffrege69 43928 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) | |
| 2 | frege70.x | . . . 4 ⊢ 𝑋 ∈ 𝑉 | |
| 3 | 2 | frege68c 43927 | . . 3 ⊢ ((∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) → (𝑅 hereditary 𝐴 → [𝑋 / 𝑥](𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)))) |
| 4 | sbcel1v 3822 | . . . . 5 ⊢ ([𝑋 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴) | |
| 5 | 4 | biimpri 228 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → [𝑋 / 𝑥]𝑥 ∈ 𝐴) |
| 6 | sbcim1 3810 | . . . 4 ⊢ ([𝑋 / 𝑥](𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) → ([𝑋 / 𝑥]𝑥 ∈ 𝐴 → [𝑋 / 𝑥]∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴))) | |
| 7 | sbcal 3816 | . . . . 5 ⊢ ([𝑋 / 𝑥]∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) ↔ ∀𝑦[𝑋 / 𝑥](𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) | |
| 8 | sbcim1 3810 | . . . . . . 7 ⊢ ([𝑋 / 𝑥](𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) → ([𝑋 / 𝑥]𝑥𝑅𝑦 → [𝑋 / 𝑥]𝑦 ∈ 𝐴)) | |
| 9 | sbcbr1g 5167 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝑥𝑅𝑦 ↔ ⦋𝑋 / 𝑥⦌𝑥𝑅𝑦)) | |
| 10 | 2, 9 | ax-mp 5 | . . . . . . . 8 ⊢ ([𝑋 / 𝑥]𝑥𝑅𝑦 ↔ ⦋𝑋 / 𝑥⦌𝑥𝑅𝑦) |
| 11 | csbvarg 4400 | . . . . . . . . . 10 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌𝑥 = 𝑋) | |
| 12 | 2, 11 | ax-mp 5 | . . . . . . . . 9 ⊢ ⦋𝑋 / 𝑥⦌𝑥 = 𝑋 |
| 13 | 12 | breq1i 5117 | . . . . . . . 8 ⊢ (⦋𝑋 / 𝑥⦌𝑥𝑅𝑦 ↔ 𝑋𝑅𝑦) |
| 14 | 10, 13 | bitri 275 | . . . . . . 7 ⊢ ([𝑋 / 𝑥]𝑥𝑅𝑦 ↔ 𝑋𝑅𝑦) |
| 15 | sbcg 3829 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 16 | 2, 15 | ax-mp 5 | . . . . . . 7 ⊢ ([𝑋 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| 17 | 8, 14, 16 | 3imtr3g 295 | . . . . . 6 ⊢ ([𝑋 / 𝑥](𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) → (𝑋𝑅𝑦 → 𝑦 ∈ 𝐴)) |
| 18 | 17 | alimi 1811 | . . . . 5 ⊢ (∀𝑦[𝑋 / 𝑥](𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴)) |
| 19 | 7, 18 | sylbi 217 | . . . 4 ⊢ ([𝑋 / 𝑥]∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴)) |
| 20 | 5, 6, 19 | syl56 36 | . . 3 ⊢ ([𝑋 / 𝑥](𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴))) |
| 21 | 3, 20 | syl6 35 | . 2 ⊢ ((∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) → (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴)))) |
| 22 | 1, 21 | ax-mp 5 | 1 ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 [wsbc 3756 ⦋csb 3865 class class class wbr 5110 hereditary whe 43768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-frege1 43786 ax-frege2 43787 ax-frege8 43805 ax-frege52a 43853 ax-frege58b 43897 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-he 43769 |
| This theorem is referenced by: frege71 43930 |
| Copyright terms: Public domain | W3C validator |