| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege70 | Structured version Visualization version GIF version | ||
| Description: Lemma for frege72 43959. Proposition 70 of [Frege1879] p. 58. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege70.x | ⊢ 𝑋 ∈ 𝑉 |
| Ref | Expression |
|---|---|
| frege70 | ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffrege69 43956 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) | |
| 2 | frege70.x | . . . 4 ⊢ 𝑋 ∈ 𝑉 | |
| 3 | 2 | frege68c 43955 | . . 3 ⊢ ((∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) → (𝑅 hereditary 𝐴 → [𝑋 / 𝑥](𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)))) |
| 4 | sbcel1v 3831 | . . . . 5 ⊢ ([𝑋 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴) | |
| 5 | 4 | biimpri 228 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → [𝑋 / 𝑥]𝑥 ∈ 𝐴) |
| 6 | sbcim1 3819 | . . . 4 ⊢ ([𝑋 / 𝑥](𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) → ([𝑋 / 𝑥]𝑥 ∈ 𝐴 → [𝑋 / 𝑥]∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴))) | |
| 7 | sbcal 3825 | . . . . 5 ⊢ ([𝑋 / 𝑥]∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) ↔ ∀𝑦[𝑋 / 𝑥](𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) | |
| 8 | sbcim1 3819 | . . . . . . 7 ⊢ ([𝑋 / 𝑥](𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) → ([𝑋 / 𝑥]𝑥𝑅𝑦 → [𝑋 / 𝑥]𝑦 ∈ 𝐴)) | |
| 9 | sbcbr1g 5176 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝑥𝑅𝑦 ↔ ⦋𝑋 / 𝑥⦌𝑥𝑅𝑦)) | |
| 10 | 2, 9 | ax-mp 5 | . . . . . . . 8 ⊢ ([𝑋 / 𝑥]𝑥𝑅𝑦 ↔ ⦋𝑋 / 𝑥⦌𝑥𝑅𝑦) |
| 11 | csbvarg 4409 | . . . . . . . . . 10 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌𝑥 = 𝑋) | |
| 12 | 2, 11 | ax-mp 5 | . . . . . . . . 9 ⊢ ⦋𝑋 / 𝑥⦌𝑥 = 𝑋 |
| 13 | 12 | breq1i 5126 | . . . . . . . 8 ⊢ (⦋𝑋 / 𝑥⦌𝑥𝑅𝑦 ↔ 𝑋𝑅𝑦) |
| 14 | 10, 13 | bitri 275 | . . . . . . 7 ⊢ ([𝑋 / 𝑥]𝑥𝑅𝑦 ↔ 𝑋𝑅𝑦) |
| 15 | sbcg 3838 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 16 | 2, 15 | ax-mp 5 | . . . . . . 7 ⊢ ([𝑋 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| 17 | 8, 14, 16 | 3imtr3g 295 | . . . . . 6 ⊢ ([𝑋 / 𝑥](𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) → (𝑋𝑅𝑦 → 𝑦 ∈ 𝐴)) |
| 18 | 17 | alimi 1811 | . . . . 5 ⊢ (∀𝑦[𝑋 / 𝑥](𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴)) |
| 19 | 7, 18 | sylbi 217 | . . . 4 ⊢ ([𝑋 / 𝑥]∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴)) |
| 20 | 5, 6, 19 | syl56 36 | . . 3 ⊢ ([𝑋 / 𝑥](𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴))) |
| 21 | 3, 20 | syl6 35 | . 2 ⊢ ((∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) → (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴)))) |
| 22 | 1, 21 | ax-mp 5 | 1 ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2108 [wsbc 3765 ⦋csb 3874 class class class wbr 5119 hereditary whe 43796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-frege1 43814 ax-frege2 43815 ax-frege8 43833 ax-frege52a 43881 ax-frege58b 43925 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-he 43797 |
| This theorem is referenced by: frege71 43958 |
| Copyright terms: Public domain | W3C validator |