Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege70 Structured version   Visualization version   GIF version

Theorem frege70 40634
Description: Lemma for frege72 40636. Proposition 70 of [Frege1879] p. 58. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege70.x 𝑋𝑉
Assertion
Ref Expression
frege70 (𝑅 hereditary 𝐴 → (𝑋𝐴 → ∀𝑦(𝑋𝑅𝑦𝑦𝐴)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem frege70
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dffrege69 40633 . 2 (∀𝑥(𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)) ↔ 𝑅 hereditary 𝐴)
2 frege70.x . . . 4 𝑋𝑉
32frege68c 40632 . . 3 ((∀𝑥(𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)) ↔ 𝑅 hereditary 𝐴) → (𝑅 hereditary 𝐴[𝑋 / 𝑥](𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴))))
4 sbcel1v 3786 . . . . 5 ([𝑋 / 𝑥]𝑥𝐴𝑋𝐴)
54biimpri 231 . . . 4 (𝑋𝐴[𝑋 / 𝑥]𝑥𝐴)
6 sbcim1 3772 . . . 4 ([𝑋 / 𝑥](𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)) → ([𝑋 / 𝑥]𝑥𝐴[𝑋 / 𝑥]𝑦(𝑥𝑅𝑦𝑦𝐴)))
7 sbcal 3780 . . . . 5 ([𝑋 / 𝑥]𝑦(𝑥𝑅𝑦𝑦𝐴) ↔ ∀𝑦[𝑋 / 𝑥](𝑥𝑅𝑦𝑦𝐴))
8 sbcim1 3772 . . . . . . 7 ([𝑋 / 𝑥](𝑥𝑅𝑦𝑦𝐴) → ([𝑋 / 𝑥]𝑥𝑅𝑦[𝑋 / 𝑥]𝑦𝐴))
9 sbcbr1g 5087 . . . . . . . . 9 (𝑋𝑉 → ([𝑋 / 𝑥]𝑥𝑅𝑦𝑋 / 𝑥𝑥𝑅𝑦))
102, 9ax-mp 5 . . . . . . . 8 ([𝑋 / 𝑥]𝑥𝑅𝑦𝑋 / 𝑥𝑥𝑅𝑦)
11 csbvarg 4339 . . . . . . . . . 10 (𝑋𝑉𝑋 / 𝑥𝑥 = 𝑋)
122, 11ax-mp 5 . . . . . . . . 9 𝑋 / 𝑥𝑥 = 𝑋
1312breq1i 5037 . . . . . . . 8 (𝑋 / 𝑥𝑥𝑅𝑦𝑋𝑅𝑦)
1410, 13bitri 278 . . . . . . 7 ([𝑋 / 𝑥]𝑥𝑅𝑦𝑋𝑅𝑦)
15 sbcg 3793 . . . . . . . 8 (𝑋𝑉 → ([𝑋 / 𝑥]𝑦𝐴𝑦𝐴))
162, 15ax-mp 5 . . . . . . 7 ([𝑋 / 𝑥]𝑦𝐴𝑦𝐴)
178, 14, 163imtr3g 298 . . . . . 6 ([𝑋 / 𝑥](𝑥𝑅𝑦𝑦𝐴) → (𝑋𝑅𝑦𝑦𝐴))
1817alimi 1813 . . . . 5 (∀𝑦[𝑋 / 𝑥](𝑥𝑅𝑦𝑦𝐴) → ∀𝑦(𝑋𝑅𝑦𝑦𝐴))
197, 18sylbi 220 . . . 4 ([𝑋 / 𝑥]𝑦(𝑥𝑅𝑦𝑦𝐴) → ∀𝑦(𝑋𝑅𝑦𝑦𝐴))
205, 6, 19syl56 36 . . 3 ([𝑋 / 𝑥](𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)) → (𝑋𝐴 → ∀𝑦(𝑋𝑅𝑦𝑦𝐴)))
213, 20syl6 35 . 2 ((∀𝑥(𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)) ↔ 𝑅 hereditary 𝐴) → (𝑅 hereditary 𝐴 → (𝑋𝐴 → ∀𝑦(𝑋𝑅𝑦𝑦𝐴))))
221, 21ax-mp 5 1 (𝑅 hereditary 𝐴 → (𝑋𝐴 → ∀𝑦(𝑋𝑅𝑦𝑦𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1536   = wceq 1538  wcel 2111  [wsbc 3720  csb 3828   class class class wbr 5030   hereditary whe 40473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-frege1 40491  ax-frege2 40492  ax-frege8 40510  ax-frege52a 40558  ax-frege58b 40602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-cnv 5527  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-he 40474
This theorem is referenced by:  frege71  40635
  Copyright terms: Public domain W3C validator