Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege70 Structured version   Visualization version   GIF version

Theorem frege70 41007
Description: Lemma for frege72 41009. Proposition 70 of [Frege1879] p. 58. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege70.x 𝑋𝑉
Assertion
Ref Expression
frege70 (𝑅 hereditary 𝐴 → (𝑋𝐴 → ∀𝑦(𝑋𝑅𝑦𝑦𝐴)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem frege70
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dffrege69 41006 . 2 (∀𝑥(𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)) ↔ 𝑅 hereditary 𝐴)
2 frege70.x . . . 4 𝑋𝑉
32frege68c 41005 . . 3 ((∀𝑥(𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)) ↔ 𝑅 hereditary 𝐴) → (𝑅 hereditary 𝐴[𝑋 / 𝑥](𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴))))
4 sbcel1v 3763 . . . . 5 ([𝑋 / 𝑥]𝑥𝐴𝑋𝐴)
54biimpri 231 . . . 4 (𝑋𝐴[𝑋 / 𝑥]𝑥𝐴)
6 sbcim1 3749 . . . 4 ([𝑋 / 𝑥](𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)) → ([𝑋 / 𝑥]𝑥𝐴[𝑋 / 𝑥]𝑦(𝑥𝑅𝑦𝑦𝐴)))
7 sbcal 3757 . . . . 5 ([𝑋 / 𝑥]𝑦(𝑥𝑅𝑦𝑦𝐴) ↔ ∀𝑦[𝑋 / 𝑥](𝑥𝑅𝑦𝑦𝐴))
8 sbcim1 3749 . . . . . . 7 ([𝑋 / 𝑥](𝑥𝑅𝑦𝑦𝐴) → ([𝑋 / 𝑥]𝑥𝑅𝑦[𝑋 / 𝑥]𝑦𝐴))
9 sbcbr1g 5089 . . . . . . . . 9 (𝑋𝑉 → ([𝑋 / 𝑥]𝑥𝑅𝑦𝑋 / 𝑥𝑥𝑅𝑦))
102, 9ax-mp 5 . . . . . . . 8 ([𝑋 / 𝑥]𝑥𝑅𝑦𝑋 / 𝑥𝑥𝑅𝑦)
11 csbvarg 4328 . . . . . . . . . 10 (𝑋𝑉𝑋 / 𝑥𝑥 = 𝑋)
122, 11ax-mp 5 . . . . . . . . 9 𝑋 / 𝑥𝑥 = 𝑋
1312breq1i 5039 . . . . . . . 8 (𝑋 / 𝑥𝑥𝑅𝑦𝑋𝑅𝑦)
1410, 13bitri 278 . . . . . . 7 ([𝑋 / 𝑥]𝑥𝑅𝑦𝑋𝑅𝑦)
15 sbcg 3770 . . . . . . . 8 (𝑋𝑉 → ([𝑋 / 𝑥]𝑦𝐴𝑦𝐴))
162, 15ax-mp 5 . . . . . . 7 ([𝑋 / 𝑥]𝑦𝐴𝑦𝐴)
178, 14, 163imtr3g 298 . . . . . 6 ([𝑋 / 𝑥](𝑥𝑅𝑦𝑦𝐴) → (𝑋𝑅𝑦𝑦𝐴))
1817alimi 1813 . . . . 5 (∀𝑦[𝑋 / 𝑥](𝑥𝑅𝑦𝑦𝐴) → ∀𝑦(𝑋𝑅𝑦𝑦𝐴))
197, 18sylbi 220 . . . 4 ([𝑋 / 𝑥]𝑦(𝑥𝑅𝑦𝑦𝐴) → ∀𝑦(𝑋𝑅𝑦𝑦𝐴))
205, 6, 19syl56 36 . . 3 ([𝑋 / 𝑥](𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)) → (𝑋𝐴 → ∀𝑦(𝑋𝑅𝑦𝑦𝐴)))
213, 20syl6 35 . 2 ((∀𝑥(𝑥𝐴 → ∀𝑦(𝑥𝑅𝑦𝑦𝐴)) ↔ 𝑅 hereditary 𝐴) → (𝑅 hereditary 𝐴 → (𝑋𝐴 → ∀𝑦(𝑋𝑅𝑦𝑦𝐴))))
221, 21ax-mp 5 1 (𝑅 hereditary 𝐴 → (𝑋𝐴 → ∀𝑦(𝑋𝑅𝑦𝑦𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1536   = wceq 1538  wcel 2111  [wsbc 3696  csb 3805   class class class wbr 5032   hereditary whe 40846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-frege1 40864  ax-frege2 40865  ax-frege8 40883  ax-frege52a 40931  ax-frege58b 40975
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-br 5033  df-opab 5095  df-xp 5530  df-cnv 5532  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-he 40847
This theorem is referenced by:  frege71  41008
  Copyright terms: Public domain W3C validator