![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege70 | Structured version Visualization version GIF version |
Description: Lemma for frege72 42686. Proposition 70 of [Frege1879] p. 58. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege70.x | ⊢ 𝑋 ∈ 𝑉 |
Ref | Expression |
---|---|
frege70 | ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffrege69 42683 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) | |
2 | frege70.x | . . . 4 ⊢ 𝑋 ∈ 𝑉 | |
3 | 2 | frege68c 42682 | . . 3 ⊢ ((∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) → (𝑅 hereditary 𝐴 → [𝑋 / 𝑥](𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)))) |
4 | sbcel1v 3849 | . . . . 5 ⊢ ([𝑋 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴) | |
5 | 4 | biimpri 227 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → [𝑋 / 𝑥]𝑥 ∈ 𝐴) |
6 | sbcim1 3834 | . . . 4 ⊢ ([𝑋 / 𝑥](𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) → ([𝑋 / 𝑥]𝑥 ∈ 𝐴 → [𝑋 / 𝑥]∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴))) | |
7 | sbcal 3842 | . . . . 5 ⊢ ([𝑋 / 𝑥]∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) ↔ ∀𝑦[𝑋 / 𝑥](𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) | |
8 | sbcim1 3834 | . . . . . . 7 ⊢ ([𝑋 / 𝑥](𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) → ([𝑋 / 𝑥]𝑥𝑅𝑦 → [𝑋 / 𝑥]𝑦 ∈ 𝐴)) | |
9 | sbcbr1g 5206 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝑥𝑅𝑦 ↔ ⦋𝑋 / 𝑥⦌𝑥𝑅𝑦)) | |
10 | 2, 9 | ax-mp 5 | . . . . . . . 8 ⊢ ([𝑋 / 𝑥]𝑥𝑅𝑦 ↔ ⦋𝑋 / 𝑥⦌𝑥𝑅𝑦) |
11 | csbvarg 4432 | . . . . . . . . . 10 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌𝑥 = 𝑋) | |
12 | 2, 11 | ax-mp 5 | . . . . . . . . 9 ⊢ ⦋𝑋 / 𝑥⦌𝑥 = 𝑋 |
13 | 12 | breq1i 5156 | . . . . . . . 8 ⊢ (⦋𝑋 / 𝑥⦌𝑥𝑅𝑦 ↔ 𝑋𝑅𝑦) |
14 | 10, 13 | bitri 275 | . . . . . . 7 ⊢ ([𝑋 / 𝑥]𝑥𝑅𝑦 ↔ 𝑋𝑅𝑦) |
15 | sbcg 3857 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
16 | 2, 15 | ax-mp 5 | . . . . . . 7 ⊢ ([𝑋 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
17 | 8, 14, 16 | 3imtr3g 295 | . . . . . 6 ⊢ ([𝑋 / 𝑥](𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) → (𝑋𝑅𝑦 → 𝑦 ∈ 𝐴)) |
18 | 17 | alimi 1814 | . . . . 5 ⊢ (∀𝑦[𝑋 / 𝑥](𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴)) |
19 | 7, 18 | sylbi 216 | . . . 4 ⊢ ([𝑋 / 𝑥]∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴) → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴)) |
20 | 5, 6, 19 | syl56 36 | . . 3 ⊢ ([𝑋 / 𝑥](𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴))) |
21 | 3, 20 | syl6 35 | . 2 ⊢ ((∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) → (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴)))) |
22 | 1, 21 | ax-mp 5 | 1 ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 = wceq 1542 ∈ wcel 2107 [wsbc 3778 ⦋csb 3894 class class class wbr 5149 hereditary whe 42523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-frege1 42541 ax-frege2 42542 ax-frege8 42560 ax-frege52a 42608 ax-frege58b 42652 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ifp 1063 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-he 42524 |
This theorem is referenced by: frege71 42685 |
Copyright terms: Public domain | W3C validator |