![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffrege69 | Structured version Visualization version GIF version |
Description: If from the proposition that 𝑥 has property 𝐴 it can be inferred generally, whatever 𝑥 may be, that every result of an application of the procedure 𝑅 to 𝑥 has property 𝐴, then we say " Property 𝐴 is hereditary in the 𝑅-sequence. Definition 69 of [Frege1879] p. 55. (Contributed by RP, 28-Mar-2020.) |
Ref | Expression |
---|---|
dffrege69 | ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfhe3 42608 | . 2 ⊢ (𝑅 hereditary 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴))) | |
2 | 1 | bicomi 223 | 1 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 ∈ wcel 2106 class class class wbr 5148 hereditary whe 42605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-he 42606 |
This theorem is referenced by: frege70 42766 frege75 42771 |
Copyright terms: Public domain | W3C validator |