Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege77 Structured version   Visualization version   GIF version

Theorem frege77 42676
Description: If 𝑌 follows 𝑋 in the 𝑅-sequence, if property 𝐴 is hereditary in the 𝑅-sequence, and if every result of an application of the procedure 𝑅 to 𝑋 has the property 𝐴, then 𝑌 has property 𝐴. Proposition 77 of [Frege1879] p. 62. (Contributed by RP, 29-Jun-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege77.x 𝑋𝑈
frege77.y 𝑌𝑉
frege77.r 𝑅𝑊
frege77.a 𝐴𝐵
Assertion
Ref Expression
frege77 (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
Distinct variable groups:   𝐴,𝑎   𝑅,𝑎   𝑋,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝑈(𝑎)   𝑉(𝑎)   𝑊(𝑎)   𝑌(𝑎)

Proof of Theorem frege77
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 frege77.x . . 3 𝑋𝑈
2 frege77.y . . 3 𝑌𝑉
3 frege77.r . . 3 𝑅𝑊
41, 2, 3dffrege76 42675 . 2 (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ 𝑋(t+‘𝑅)𝑌)
5 frege77.a . . . 4 𝐴𝐵
65frege68c 42667 . . 3 ((∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ 𝑋(t+‘𝑅)𝑌) → (𝑋(t+‘𝑅)𝑌[𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓))))
7 sbcimg 3827 . . . . 5 (𝐴𝐵 → ([𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ ([𝐴 / 𝑓]𝑅 hereditary 𝑓[𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓))))
85, 7ax-mp 5 . . . 4 ([𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ ([𝐴 / 𝑓]𝑅 hereditary 𝑓[𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)))
9 sbcheg 42515 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑓]𝑅 hereditary 𝑓𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓))
105, 9ax-mp 5 . . . . . 6 ([𝐴 / 𝑓]𝑅 hereditary 𝑓𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓)
11 csbconstg 3911 . . . . . . . 8 (𝐴𝐵𝐴 / 𝑓𝑅 = 𝑅)
125, 11ax-mp 5 . . . . . . 7 𝐴 / 𝑓𝑅 = 𝑅
13 csbvarg 4430 . . . . . . . 8 (𝐴𝐵𝐴 / 𝑓𝑓 = 𝐴)
145, 13ax-mp 5 . . . . . . 7 𝐴 / 𝑓𝑓 = 𝐴
15 heeq12 42512 . . . . . . 7 ((𝐴 / 𝑓𝑅 = 𝑅𝐴 / 𝑓𝑓 = 𝐴) → (𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓𝑅 hereditary 𝐴))
1612, 14, 15mp2an 690 . . . . . 6 (𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓𝑅 hereditary 𝐴)
1710, 16bitri 274 . . . . 5 ([𝐴 / 𝑓]𝑅 hereditary 𝑓𝑅 hereditary 𝐴)
18 sbcimg 3827 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓) ↔ ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝐴 / 𝑓]𝑌𝑓)))
195, 18ax-mp 5 . . . . . 6 ([𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓) ↔ ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝐴 / 𝑓]𝑌𝑓))
20 sbcal 3840 . . . . . . . 8 ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) ↔ ∀𝑎[𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓))
21 sbcimg 3827 . . . . . . . . . . 11 (𝐴𝐵 → ([𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ ([𝐴 / 𝑓]𝑋𝑅𝑎[𝐴 / 𝑓]𝑎𝑓)))
225, 21ax-mp 5 . . . . . . . . . 10 ([𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ ([𝐴 / 𝑓]𝑋𝑅𝑎[𝐴 / 𝑓]𝑎𝑓))
23 sbcg 3855 . . . . . . . . . . . 12 (𝐴𝐵 → ([𝐴 / 𝑓]𝑋𝑅𝑎𝑋𝑅𝑎))
245, 23ax-mp 5 . . . . . . . . . . 11 ([𝐴 / 𝑓]𝑋𝑅𝑎𝑋𝑅𝑎)
25 sbcel2gv 3848 . . . . . . . . . . . 12 (𝐴𝐵 → ([𝐴 / 𝑓]𝑎𝑓𝑎𝐴))
265, 25ax-mp 5 . . . . . . . . . . 11 ([𝐴 / 𝑓]𝑎𝑓𝑎𝐴)
2724, 26imbi12i 350 . . . . . . . . . 10 (([𝐴 / 𝑓]𝑋𝑅𝑎[𝐴 / 𝑓]𝑎𝑓) ↔ (𝑋𝑅𝑎𝑎𝐴))
2822, 27bitri 274 . . . . . . . . 9 ([𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ (𝑋𝑅𝑎𝑎𝐴))
2928albii 1821 . . . . . . . 8 (∀𝑎[𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ ∀𝑎(𝑋𝑅𝑎𝑎𝐴))
3020, 29bitri 274 . . . . . . 7 ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) ↔ ∀𝑎(𝑋𝑅𝑎𝑎𝐴))
31 sbcel2gv 3848 . . . . . . . 8 (𝐴𝐵 → ([𝐴 / 𝑓]𝑌𝑓𝑌𝐴))
325, 31ax-mp 5 . . . . . . 7 ([𝐴 / 𝑓]𝑌𝑓𝑌𝐴)
3330, 32imbi12i 350 . . . . . 6 (([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝐴 / 𝑓]𝑌𝑓) ↔ (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴))
3419, 33bitri 274 . . . . 5 ([𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓) ↔ (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴))
3517, 34imbi12i 350 . . . 4 (([𝐴 / 𝑓]𝑅 hereditary 𝑓[𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
368, 35bitri 274 . . 3 ([𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
376, 36imbitrdi 250 . 2 ((∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ 𝑋(t+‘𝑅)𝑌) → (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴))))
384, 37ax-mp 5 1 (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539   = wceq 1541  wcel 2106  [wsbc 3776  csb 3892   class class class wbr 5147  cfv 6540  t+ctcl 14928   hereditary whe 42508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-frege1 42526  ax-frege2 42527  ax-frege8 42545  ax-frege52a 42593  ax-frege58b 42637
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-seq 13963  df-trcl 14930  df-relexp 14963  df-he 42509
This theorem is referenced by:  frege78  42677  frege85  42684
  Copyright terms: Public domain W3C validator