Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege77 Structured version   Visualization version   GIF version

Theorem frege77 42286
Description: If 𝑌 follows 𝑋 in the 𝑅-sequence, if property 𝐴 is hereditary in the 𝑅-sequence, and if every result of an application of the procedure 𝑅 to 𝑋 has the property 𝐴, then 𝑌 has property 𝐴. Proposition 77 of [Frege1879] p. 62. (Contributed by RP, 29-Jun-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege77.x 𝑋𝑈
frege77.y 𝑌𝑉
frege77.r 𝑅𝑊
frege77.a 𝐴𝐵
Assertion
Ref Expression
frege77 (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
Distinct variable groups:   𝐴,𝑎   𝑅,𝑎   𝑋,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝑈(𝑎)   𝑉(𝑎)   𝑊(𝑎)   𝑌(𝑎)

Proof of Theorem frege77
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 frege77.x . . 3 𝑋𝑈
2 frege77.y . . 3 𝑌𝑉
3 frege77.r . . 3 𝑅𝑊
41, 2, 3dffrege76 42285 . 2 (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ 𝑋(t+‘𝑅)𝑌)
5 frege77.a . . . 4 𝐴𝐵
65frege68c 42277 . . 3 ((∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ 𝑋(t+‘𝑅)𝑌) → (𝑋(t+‘𝑅)𝑌[𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓))))
7 sbcimg 3795 . . . . 5 (𝐴𝐵 → ([𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ ([𝐴 / 𝑓]𝑅 hereditary 𝑓[𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓))))
85, 7ax-mp 5 . . . 4 ([𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ ([𝐴 / 𝑓]𝑅 hereditary 𝑓[𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)))
9 sbcheg 42125 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑓]𝑅 hereditary 𝑓𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓))
105, 9ax-mp 5 . . . . . 6 ([𝐴 / 𝑓]𝑅 hereditary 𝑓𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓)
11 csbconstg 3879 . . . . . . . 8 (𝐴𝐵𝐴 / 𝑓𝑅 = 𝑅)
125, 11ax-mp 5 . . . . . . 7 𝐴 / 𝑓𝑅 = 𝑅
13 csbvarg 4396 . . . . . . . 8 (𝐴𝐵𝐴 / 𝑓𝑓 = 𝐴)
145, 13ax-mp 5 . . . . . . 7 𝐴 / 𝑓𝑓 = 𝐴
15 heeq12 42122 . . . . . . 7 ((𝐴 / 𝑓𝑅 = 𝑅𝐴 / 𝑓𝑓 = 𝐴) → (𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓𝑅 hereditary 𝐴))
1612, 14, 15mp2an 691 . . . . . 6 (𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓𝑅 hereditary 𝐴)
1710, 16bitri 275 . . . . 5 ([𝐴 / 𝑓]𝑅 hereditary 𝑓𝑅 hereditary 𝐴)
18 sbcimg 3795 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓) ↔ ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝐴 / 𝑓]𝑌𝑓)))
195, 18ax-mp 5 . . . . . 6 ([𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓) ↔ ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝐴 / 𝑓]𝑌𝑓))
20 sbcal 3808 . . . . . . . 8 ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) ↔ ∀𝑎[𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓))
21 sbcimg 3795 . . . . . . . . . . 11 (𝐴𝐵 → ([𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ ([𝐴 / 𝑓]𝑋𝑅𝑎[𝐴 / 𝑓]𝑎𝑓)))
225, 21ax-mp 5 . . . . . . . . . 10 ([𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ ([𝐴 / 𝑓]𝑋𝑅𝑎[𝐴 / 𝑓]𝑎𝑓))
23 sbcg 3823 . . . . . . . . . . . 12 (𝐴𝐵 → ([𝐴 / 𝑓]𝑋𝑅𝑎𝑋𝑅𝑎))
245, 23ax-mp 5 . . . . . . . . . . 11 ([𝐴 / 𝑓]𝑋𝑅𝑎𝑋𝑅𝑎)
25 sbcel2gv 3816 . . . . . . . . . . . 12 (𝐴𝐵 → ([𝐴 / 𝑓]𝑎𝑓𝑎𝐴))
265, 25ax-mp 5 . . . . . . . . . . 11 ([𝐴 / 𝑓]𝑎𝑓𝑎𝐴)
2724, 26imbi12i 351 . . . . . . . . . 10 (([𝐴 / 𝑓]𝑋𝑅𝑎[𝐴 / 𝑓]𝑎𝑓) ↔ (𝑋𝑅𝑎𝑎𝐴))
2822, 27bitri 275 . . . . . . . . 9 ([𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ (𝑋𝑅𝑎𝑎𝐴))
2928albii 1822 . . . . . . . 8 (∀𝑎[𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ ∀𝑎(𝑋𝑅𝑎𝑎𝐴))
3020, 29bitri 275 . . . . . . 7 ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) ↔ ∀𝑎(𝑋𝑅𝑎𝑎𝐴))
31 sbcel2gv 3816 . . . . . . . 8 (𝐴𝐵 → ([𝐴 / 𝑓]𝑌𝑓𝑌𝐴))
325, 31ax-mp 5 . . . . . . 7 ([𝐴 / 𝑓]𝑌𝑓𝑌𝐴)
3330, 32imbi12i 351 . . . . . 6 (([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝐴 / 𝑓]𝑌𝑓) ↔ (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴))
3419, 33bitri 275 . . . . 5 ([𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓) ↔ (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴))
3517, 34imbi12i 351 . . . 4 (([𝐴 / 𝑓]𝑅 hereditary 𝑓[𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
368, 35bitri 275 . . 3 ([𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
376, 36syl6ib 251 . 2 ((∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ 𝑋(t+‘𝑅)𝑌) → (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴))))
384, 37ax-mp 5 1 (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1540   = wceq 1542  wcel 2107  [wsbc 3744  csb 3860   class class class wbr 5110  cfv 6501  t+ctcl 14877   hereditary whe 42118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-frege1 42136  ax-frege2 42137  ax-frege8 42155  ax-frege52a 42203  ax-frege58b 42247
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-n0 12421  df-z 12507  df-uz 12771  df-seq 13914  df-trcl 14879  df-relexp 14912  df-he 42119
This theorem is referenced by:  frege78  42287  frege85  42294
  Copyright terms: Public domain W3C validator