Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege77 Structured version   Visualization version   GIF version

Theorem frege77 42691
Description: If 𝑌 follows 𝑋 in the 𝑅-sequence, if property 𝐴 is hereditary in the 𝑅-sequence, and if every result of an application of the procedure 𝑅 to 𝑋 has the property 𝐴, then 𝑌 has property 𝐴. Proposition 77 of [Frege1879] p. 62. (Contributed by RP, 29-Jun-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege77.x 𝑋𝑈
frege77.y 𝑌𝑉
frege77.r 𝑅𝑊
frege77.a 𝐴𝐵
Assertion
Ref Expression
frege77 (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
Distinct variable groups:   𝐴,𝑎   𝑅,𝑎   𝑋,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝑈(𝑎)   𝑉(𝑎)   𝑊(𝑎)   𝑌(𝑎)

Proof of Theorem frege77
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 frege77.x . . 3 𝑋𝑈
2 frege77.y . . 3 𝑌𝑉
3 frege77.r . . 3 𝑅𝑊
41, 2, 3dffrege76 42690 . 2 (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ 𝑋(t+‘𝑅)𝑌)
5 frege77.a . . . 4 𝐴𝐵
65frege68c 42682 . . 3 ((∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ 𝑋(t+‘𝑅)𝑌) → (𝑋(t+‘𝑅)𝑌[𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓))))
7 sbcimg 3829 . . . . 5 (𝐴𝐵 → ([𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ ([𝐴 / 𝑓]𝑅 hereditary 𝑓[𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓))))
85, 7ax-mp 5 . . . 4 ([𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ ([𝐴 / 𝑓]𝑅 hereditary 𝑓[𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)))
9 sbcheg 42530 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑓]𝑅 hereditary 𝑓𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓))
105, 9ax-mp 5 . . . . . 6 ([𝐴 / 𝑓]𝑅 hereditary 𝑓𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓)
11 csbconstg 3913 . . . . . . . 8 (𝐴𝐵𝐴 / 𝑓𝑅 = 𝑅)
125, 11ax-mp 5 . . . . . . 7 𝐴 / 𝑓𝑅 = 𝑅
13 csbvarg 4432 . . . . . . . 8 (𝐴𝐵𝐴 / 𝑓𝑓 = 𝐴)
145, 13ax-mp 5 . . . . . . 7 𝐴 / 𝑓𝑓 = 𝐴
15 heeq12 42527 . . . . . . 7 ((𝐴 / 𝑓𝑅 = 𝑅𝐴 / 𝑓𝑓 = 𝐴) → (𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓𝑅 hereditary 𝐴))
1612, 14, 15mp2an 691 . . . . . 6 (𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓𝑅 hereditary 𝐴)
1710, 16bitri 275 . . . . 5 ([𝐴 / 𝑓]𝑅 hereditary 𝑓𝑅 hereditary 𝐴)
18 sbcimg 3829 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓) ↔ ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝐴 / 𝑓]𝑌𝑓)))
195, 18ax-mp 5 . . . . . 6 ([𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓) ↔ ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝐴 / 𝑓]𝑌𝑓))
20 sbcal 3842 . . . . . . . 8 ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) ↔ ∀𝑎[𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓))
21 sbcimg 3829 . . . . . . . . . . 11 (𝐴𝐵 → ([𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ ([𝐴 / 𝑓]𝑋𝑅𝑎[𝐴 / 𝑓]𝑎𝑓)))
225, 21ax-mp 5 . . . . . . . . . 10 ([𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ ([𝐴 / 𝑓]𝑋𝑅𝑎[𝐴 / 𝑓]𝑎𝑓))
23 sbcg 3857 . . . . . . . . . . . 12 (𝐴𝐵 → ([𝐴 / 𝑓]𝑋𝑅𝑎𝑋𝑅𝑎))
245, 23ax-mp 5 . . . . . . . . . . 11 ([𝐴 / 𝑓]𝑋𝑅𝑎𝑋𝑅𝑎)
25 sbcel2gv 3850 . . . . . . . . . . . 12 (𝐴𝐵 → ([𝐴 / 𝑓]𝑎𝑓𝑎𝐴))
265, 25ax-mp 5 . . . . . . . . . . 11 ([𝐴 / 𝑓]𝑎𝑓𝑎𝐴)
2724, 26imbi12i 351 . . . . . . . . . 10 (([𝐴 / 𝑓]𝑋𝑅𝑎[𝐴 / 𝑓]𝑎𝑓) ↔ (𝑋𝑅𝑎𝑎𝐴))
2822, 27bitri 275 . . . . . . . . 9 ([𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ (𝑋𝑅𝑎𝑎𝐴))
2928albii 1822 . . . . . . . 8 (∀𝑎[𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ ∀𝑎(𝑋𝑅𝑎𝑎𝐴))
3020, 29bitri 275 . . . . . . 7 ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) ↔ ∀𝑎(𝑋𝑅𝑎𝑎𝐴))
31 sbcel2gv 3850 . . . . . . . 8 (𝐴𝐵 → ([𝐴 / 𝑓]𝑌𝑓𝑌𝐴))
325, 31ax-mp 5 . . . . . . 7 ([𝐴 / 𝑓]𝑌𝑓𝑌𝐴)
3330, 32imbi12i 351 . . . . . 6 (([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝐴 / 𝑓]𝑌𝑓) ↔ (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴))
3419, 33bitri 275 . . . . 5 ([𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓) ↔ (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴))
3517, 34imbi12i 351 . . . 4 (([𝐴 / 𝑓]𝑅 hereditary 𝑓[𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
368, 35bitri 275 . . 3 ([𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
376, 36imbitrdi 250 . 2 ((∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ 𝑋(t+‘𝑅)𝑌) → (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴))))
384, 37ax-mp 5 1 (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1540   = wceq 1542  wcel 2107  [wsbc 3778  csb 3894   class class class wbr 5149  cfv 6544  t+ctcl 14932   hereditary whe 42523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-frege1 42541  ax-frege2 42542  ax-frege8 42560  ax-frege52a 42608  ax-frege58b 42652
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-seq 13967  df-trcl 14934  df-relexp 14967  df-he 42524
This theorem is referenced by:  frege78  42692  frege85  42699
  Copyright terms: Public domain W3C validator