Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege77 Structured version   Visualization version   GIF version

Theorem frege77 43248
Description: If 𝑌 follows 𝑋 in the 𝑅-sequence, if property 𝐴 is hereditary in the 𝑅-sequence, and if every result of an application of the procedure 𝑅 to 𝑋 has the property 𝐴, then 𝑌 has property 𝐴. Proposition 77 of [Frege1879] p. 62. (Contributed by RP, 29-Jun-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege77.x 𝑋𝑈
frege77.y 𝑌𝑉
frege77.r 𝑅𝑊
frege77.a 𝐴𝐵
Assertion
Ref Expression
frege77 (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
Distinct variable groups:   𝐴,𝑎   𝑅,𝑎   𝑋,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝑈(𝑎)   𝑉(𝑎)   𝑊(𝑎)   𝑌(𝑎)

Proof of Theorem frege77
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 frege77.x . . 3 𝑋𝑈
2 frege77.y . . 3 𝑌𝑉
3 frege77.r . . 3 𝑅𝑊
41, 2, 3dffrege76 43247 . 2 (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ 𝑋(t+‘𝑅)𝑌)
5 frege77.a . . . 4 𝐴𝐵
65frege68c 43239 . . 3 ((∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ 𝑋(t+‘𝑅)𝑌) → (𝑋(t+‘𝑅)𝑌[𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓))))
7 sbcimg 3823 . . . . 5 (𝐴𝐵 → ([𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ ([𝐴 / 𝑓]𝑅 hereditary 𝑓[𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓))))
85, 7ax-mp 5 . . . 4 ([𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ ([𝐴 / 𝑓]𝑅 hereditary 𝑓[𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)))
9 sbcheg 43087 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑓]𝑅 hereditary 𝑓𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓))
105, 9ax-mp 5 . . . . . 6 ([𝐴 / 𝑓]𝑅 hereditary 𝑓𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓)
11 csbconstg 3907 . . . . . . . 8 (𝐴𝐵𝐴 / 𝑓𝑅 = 𝑅)
125, 11ax-mp 5 . . . . . . 7 𝐴 / 𝑓𝑅 = 𝑅
13 csbvarg 4426 . . . . . . . 8 (𝐴𝐵𝐴 / 𝑓𝑓 = 𝐴)
145, 13ax-mp 5 . . . . . . 7 𝐴 / 𝑓𝑓 = 𝐴
15 heeq12 43084 . . . . . . 7 ((𝐴 / 𝑓𝑅 = 𝑅𝐴 / 𝑓𝑓 = 𝐴) → (𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓𝑅 hereditary 𝐴))
1612, 14, 15mp2an 689 . . . . . 6 (𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓𝑅 hereditary 𝐴)
1710, 16bitri 275 . . . . 5 ([𝐴 / 𝑓]𝑅 hereditary 𝑓𝑅 hereditary 𝐴)
18 sbcimg 3823 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓) ↔ ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝐴 / 𝑓]𝑌𝑓)))
195, 18ax-mp 5 . . . . . 6 ([𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓) ↔ ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝐴 / 𝑓]𝑌𝑓))
20 sbcal 3836 . . . . . . . 8 ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) ↔ ∀𝑎[𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓))
21 sbcimg 3823 . . . . . . . . . . 11 (𝐴𝐵 → ([𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ ([𝐴 / 𝑓]𝑋𝑅𝑎[𝐴 / 𝑓]𝑎𝑓)))
225, 21ax-mp 5 . . . . . . . . . 10 ([𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ ([𝐴 / 𝑓]𝑋𝑅𝑎[𝐴 / 𝑓]𝑎𝑓))
23 sbcg 3851 . . . . . . . . . . . 12 (𝐴𝐵 → ([𝐴 / 𝑓]𝑋𝑅𝑎𝑋𝑅𝑎))
245, 23ax-mp 5 . . . . . . . . . . 11 ([𝐴 / 𝑓]𝑋𝑅𝑎𝑋𝑅𝑎)
25 sbcel2gv 3844 . . . . . . . . . . . 12 (𝐴𝐵 → ([𝐴 / 𝑓]𝑎𝑓𝑎𝐴))
265, 25ax-mp 5 . . . . . . . . . . 11 ([𝐴 / 𝑓]𝑎𝑓𝑎𝐴)
2724, 26imbi12i 350 . . . . . . . . . 10 (([𝐴 / 𝑓]𝑋𝑅𝑎[𝐴 / 𝑓]𝑎𝑓) ↔ (𝑋𝑅𝑎𝑎𝐴))
2822, 27bitri 275 . . . . . . . . 9 ([𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ (𝑋𝑅𝑎𝑎𝐴))
2928albii 1813 . . . . . . . 8 (∀𝑎[𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ ∀𝑎(𝑋𝑅𝑎𝑎𝐴))
3020, 29bitri 275 . . . . . . 7 ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) ↔ ∀𝑎(𝑋𝑅𝑎𝑎𝐴))
31 sbcel2gv 3844 . . . . . . . 8 (𝐴𝐵 → ([𝐴 / 𝑓]𝑌𝑓𝑌𝐴))
325, 31ax-mp 5 . . . . . . 7 ([𝐴 / 𝑓]𝑌𝑓𝑌𝐴)
3330, 32imbi12i 350 . . . . . 6 (([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝐴 / 𝑓]𝑌𝑓) ↔ (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴))
3419, 33bitri 275 . . . . 5 ([𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓) ↔ (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴))
3517, 34imbi12i 350 . . . 4 (([𝐴 / 𝑓]𝑅 hereditary 𝑓[𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
368, 35bitri 275 . . 3 ([𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
376, 36imbitrdi 250 . 2 ((∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ 𝑋(t+‘𝑅)𝑌) → (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴))))
384, 37ax-mp 5 1 (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531   = wceq 1533  wcel 2098  [wsbc 3772  csb 3888   class class class wbr 5141  cfv 6536  t+ctcl 14936   hereditary whe 43080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-frege1 43098  ax-frege2 43099  ax-frege8 43117  ax-frege52a 43165  ax-frege58b 43209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1060  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-n0 12474  df-z 12560  df-uz 12824  df-seq 13970  df-trcl 14938  df-relexp 14971  df-he 43081
This theorem is referenced by:  frege78  43249  frege85  43256
  Copyright terms: Public domain W3C validator