Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege77 Structured version   Visualization version   GIF version

Theorem frege77 43922
Description: If 𝑌 follows 𝑋 in the 𝑅-sequence, if property 𝐴 is hereditary in the 𝑅-sequence, and if every result of an application of the procedure 𝑅 to 𝑋 has the property 𝐴, then 𝑌 has property 𝐴. Proposition 77 of [Frege1879] p. 62. (Contributed by RP, 29-Jun-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege77.x 𝑋𝑈
frege77.y 𝑌𝑉
frege77.r 𝑅𝑊
frege77.a 𝐴𝐵
Assertion
Ref Expression
frege77 (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
Distinct variable groups:   𝐴,𝑎   𝑅,𝑎   𝑋,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝑈(𝑎)   𝑉(𝑎)   𝑊(𝑎)   𝑌(𝑎)

Proof of Theorem frege77
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 frege77.x . . 3 𝑋𝑈
2 frege77.y . . 3 𝑌𝑉
3 frege77.r . . 3 𝑅𝑊
41, 2, 3dffrege76 43921 . 2 (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ 𝑋(t+‘𝑅)𝑌)
5 frege77.a . . . 4 𝐴𝐵
65frege68c 43913 . . 3 ((∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ 𝑋(t+‘𝑅)𝑌) → (𝑋(t+‘𝑅)𝑌[𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓))))
7 sbcimg 3799 . . . . 5 (𝐴𝐵 → ([𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ ([𝐴 / 𝑓]𝑅 hereditary 𝑓[𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓))))
85, 7ax-mp 5 . . . 4 ([𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ ([𝐴 / 𝑓]𝑅 hereditary 𝑓[𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)))
9 sbcheg 43761 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑓]𝑅 hereditary 𝑓𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓))
105, 9ax-mp 5 . . . . . 6 ([𝐴 / 𝑓]𝑅 hereditary 𝑓𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓)
11 csbconstg 3878 . . . . . . . 8 (𝐴𝐵𝐴 / 𝑓𝑅 = 𝑅)
125, 11ax-mp 5 . . . . . . 7 𝐴 / 𝑓𝑅 = 𝑅
13 csbvarg 4393 . . . . . . . 8 (𝐴𝐵𝐴 / 𝑓𝑓 = 𝐴)
145, 13ax-mp 5 . . . . . . 7 𝐴 / 𝑓𝑓 = 𝐴
15 heeq12 43758 . . . . . . 7 ((𝐴 / 𝑓𝑅 = 𝑅𝐴 / 𝑓𝑓 = 𝐴) → (𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓𝑅 hereditary 𝐴))
1612, 14, 15mp2an 692 . . . . . 6 (𝐴 / 𝑓𝑅 hereditary 𝐴 / 𝑓𝑓𝑅 hereditary 𝐴)
1710, 16bitri 275 . . . . 5 ([𝐴 / 𝑓]𝑅 hereditary 𝑓𝑅 hereditary 𝐴)
18 sbcimg 3799 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓) ↔ ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝐴 / 𝑓]𝑌𝑓)))
195, 18ax-mp 5 . . . . . 6 ([𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓) ↔ ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝐴 / 𝑓]𝑌𝑓))
20 sbcal 3810 . . . . . . . 8 ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) ↔ ∀𝑎[𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓))
21 sbcimg 3799 . . . . . . . . . . 11 (𝐴𝐵 → ([𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ ([𝐴 / 𝑓]𝑋𝑅𝑎[𝐴 / 𝑓]𝑎𝑓)))
225, 21ax-mp 5 . . . . . . . . . 10 ([𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ ([𝐴 / 𝑓]𝑋𝑅𝑎[𝐴 / 𝑓]𝑎𝑓))
23 sbcg 3823 . . . . . . . . . . . 12 (𝐴𝐵 → ([𝐴 / 𝑓]𝑋𝑅𝑎𝑋𝑅𝑎))
245, 23ax-mp 5 . . . . . . . . . . 11 ([𝐴 / 𝑓]𝑋𝑅𝑎𝑋𝑅𝑎)
25 sbcel2gv 3817 . . . . . . . . . . . 12 (𝐴𝐵 → ([𝐴 / 𝑓]𝑎𝑓𝑎𝐴))
265, 25ax-mp 5 . . . . . . . . . . 11 ([𝐴 / 𝑓]𝑎𝑓𝑎𝐴)
2724, 26imbi12i 350 . . . . . . . . . 10 (([𝐴 / 𝑓]𝑋𝑅𝑎[𝐴 / 𝑓]𝑎𝑓) ↔ (𝑋𝑅𝑎𝑎𝐴))
2822, 27bitri 275 . . . . . . . . 9 ([𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ (𝑋𝑅𝑎𝑎𝐴))
2928albii 1819 . . . . . . . 8 (∀𝑎[𝐴 / 𝑓](𝑋𝑅𝑎𝑎𝑓) ↔ ∀𝑎(𝑋𝑅𝑎𝑎𝐴))
3020, 29bitri 275 . . . . . . 7 ([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) ↔ ∀𝑎(𝑋𝑅𝑎𝑎𝐴))
31 sbcel2gv 3817 . . . . . . . 8 (𝐴𝐵 → ([𝐴 / 𝑓]𝑌𝑓𝑌𝐴))
325, 31ax-mp 5 . . . . . . 7 ([𝐴 / 𝑓]𝑌𝑓𝑌𝐴)
3330, 32imbi12i 350 . . . . . 6 (([𝐴 / 𝑓]𝑎(𝑋𝑅𝑎𝑎𝑓) → [𝐴 / 𝑓]𝑌𝑓) ↔ (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴))
3419, 33bitri 275 . . . . 5 ([𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓) ↔ (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴))
3517, 34imbi12i 350 . . . 4 (([𝐴 / 𝑓]𝑅 hereditary 𝑓[𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
368, 35bitri 275 . . 3 ([𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
376, 36imbitrdi 251 . 2 ((∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎𝑎𝑓) → 𝑌𝑓)) ↔ 𝑋(t+‘𝑅)𝑌) → (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴))))
384, 37ax-mp 5 1 (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎𝑎𝐴) → 𝑌𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wcel 2109  [wsbc 3750  csb 3859   class class class wbr 5102  cfv 6499  t+ctcl 14927   hereditary whe 43754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-frege1 43772  ax-frege2 43773  ax-frege8 43791  ax-frege52a 43839  ax-frege58b 43883
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-seq 13943  df-trcl 14929  df-relexp 14962  df-he 43755
This theorem is referenced by:  frege78  43923  frege85  43930
  Copyright terms: Public domain W3C validator