| Step | Hyp | Ref
| Expression |
| 1 | | dffrege115 43936 |
. 2
⊢
(∀𝑐∀𝑏(𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐)) ↔ Fun ◡◡𝑅) |
| 2 | | frege116.x |
. . . 4
⊢ 𝑋 ∈ 𝑈 |
| 3 | 2 | frege68c 43889 |
. . 3
⊢
((∀𝑐∀𝑏(𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐)) ↔ Fun ◡◡𝑅) → (Fun ◡◡𝑅 → [𝑋 / 𝑐]∀𝑏(𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐)))) |
| 4 | | sbcal 3832 |
. . . 4
⊢
([𝑋 / 𝑐]∀𝑏(𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐)) ↔ ∀𝑏[𝑋 / 𝑐](𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐))) |
| 5 | | sbcimg 3821 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑈 → ([𝑋 / 𝑐](𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐)) ↔ ([𝑋 / 𝑐]𝑏𝑅𝑐 → [𝑋 / 𝑐]∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐)))) |
| 6 | 2, 5 | ax-mp 5 |
. . . . . 6
⊢
([𝑋 / 𝑐](𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐)) ↔ ([𝑋 / 𝑐]𝑏𝑅𝑐 → [𝑋 / 𝑐]∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐))) |
| 7 | | sbcbr2g 5183 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝑈 → ([𝑋 / 𝑐]𝑏𝑅𝑐 ↔ 𝑏𝑅⦋𝑋 / 𝑐⦌𝑐)) |
| 8 | 2, 7 | ax-mp 5 |
. . . . . . . 8
⊢
([𝑋 / 𝑐]𝑏𝑅𝑐 ↔ 𝑏𝑅⦋𝑋 / 𝑐⦌𝑐) |
| 9 | | csbvarg 4416 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝑈 → ⦋𝑋 / 𝑐⦌𝑐 = 𝑋) |
| 10 | 2, 9 | ax-mp 5 |
. . . . . . . . 9
⊢
⦋𝑋 /
𝑐⦌𝑐 = 𝑋 |
| 11 | 10 | breq2i 5133 |
. . . . . . . 8
⊢ (𝑏𝑅⦋𝑋 / 𝑐⦌𝑐 ↔ 𝑏𝑅𝑋) |
| 12 | 8, 11 | bitri 275 |
. . . . . . 7
⊢
([𝑋 / 𝑐]𝑏𝑅𝑐 ↔ 𝑏𝑅𝑋) |
| 13 | | sbcal 3832 |
. . . . . . . 8
⊢
([𝑋 / 𝑐]∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐) ↔ ∀𝑎[𝑋 / 𝑐](𝑏𝑅𝑎 → 𝑎 = 𝑐)) |
| 14 | | sbcimg 3821 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝑈 → ([𝑋 / 𝑐](𝑏𝑅𝑎 → 𝑎 = 𝑐) ↔ ([𝑋 / 𝑐]𝑏𝑅𝑎 → [𝑋 / 𝑐]𝑎 = 𝑐))) |
| 15 | 2, 14 | ax-mp 5 |
. . . . . . . . . 10
⊢
([𝑋 / 𝑐](𝑏𝑅𝑎 → 𝑎 = 𝑐) ↔ ([𝑋 / 𝑐]𝑏𝑅𝑎 → [𝑋 / 𝑐]𝑎 = 𝑐)) |
| 16 | | sbcg 3845 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝑈 → ([𝑋 / 𝑐]𝑏𝑅𝑎 ↔ 𝑏𝑅𝑎)) |
| 17 | 2, 16 | ax-mp 5 |
. . . . . . . . . . 11
⊢
([𝑋 / 𝑐]𝑏𝑅𝑎 ↔ 𝑏𝑅𝑎) |
| 18 | | sbceq2g 4401 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ 𝑈 → ([𝑋 / 𝑐]𝑎 = 𝑐 ↔ 𝑎 = ⦋𝑋 / 𝑐⦌𝑐)) |
| 19 | 2, 18 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
([𝑋 / 𝑐]𝑎 = 𝑐 ↔ 𝑎 = ⦋𝑋 / 𝑐⦌𝑐) |
| 20 | 10 | eqeq2i 2747 |
. . . . . . . . . . . 12
⊢ (𝑎 = ⦋𝑋 / 𝑐⦌𝑐 ↔ 𝑎 = 𝑋) |
| 21 | 19, 20 | bitri 275 |
. . . . . . . . . . 11
⊢
([𝑋 / 𝑐]𝑎 = 𝑐 ↔ 𝑎 = 𝑋) |
| 22 | 17, 21 | imbi12i 350 |
. . . . . . . . . 10
⊢
(([𝑋 / 𝑐]𝑏𝑅𝑎 → [𝑋 / 𝑐]𝑎 = 𝑐) ↔ (𝑏𝑅𝑎 → 𝑎 = 𝑋)) |
| 23 | 15, 22 | bitri 275 |
. . . . . . . . 9
⊢
([𝑋 / 𝑐](𝑏𝑅𝑎 → 𝑎 = 𝑐) ↔ (𝑏𝑅𝑎 → 𝑎 = 𝑋)) |
| 24 | 23 | albii 1818 |
. . . . . . . 8
⊢
(∀𝑎[𝑋 / 𝑐](𝑏𝑅𝑎 → 𝑎 = 𝑐) ↔ ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑋)) |
| 25 | 13, 24 | bitri 275 |
. . . . . . 7
⊢
([𝑋 / 𝑐]∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐) ↔ ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑋)) |
| 26 | 12, 25 | imbi12i 350 |
. . . . . 6
⊢
(([𝑋 / 𝑐]𝑏𝑅𝑐 → [𝑋 / 𝑐]∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐)) ↔ (𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑋))) |
| 27 | 6, 26 | bitri 275 |
. . . . 5
⊢
([𝑋 / 𝑐](𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐)) ↔ (𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑋))) |
| 28 | 27 | albii 1818 |
. . . 4
⊢
(∀𝑏[𝑋 / 𝑐](𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐)) ↔ ∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑋))) |
| 29 | 4, 28 | bitri 275 |
. . 3
⊢
([𝑋 / 𝑐]∀𝑏(𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐)) ↔ ∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑋))) |
| 30 | 3, 29 | imbitrdi 251 |
. 2
⊢
((∀𝑐∀𝑏(𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐)) ↔ Fun ◡◡𝑅) → (Fun ◡◡𝑅 → ∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑋)))) |
| 31 | 1, 30 | ax-mp 5 |
1
⊢ (Fun
◡◡𝑅 → ∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑋))) |