Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege117 Structured version   Visualization version   GIF version

Theorem frege117 42326
Description: Lemma for frege118 42327. Proposition 117 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege116.x 𝑋𝑈
Assertion
Ref Expression
frege117 ((∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))) → (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))))
Distinct variable groups:   𝑎,𝑏,𝑅   𝑋,𝑎,𝑏
Allowed substitution hints:   𝑈(𝑎,𝑏)   𝑌(𝑎,𝑏)

Proof of Theorem frege117
StepHypRef Expression
1 frege116.x . . 3 𝑋𝑈
21frege116 42325 . 2 (Fun 𝑅 → ∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)))
3 frege9 42158 . 2 ((Fun 𝑅 → ∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋))) → ((∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))) → (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋)))))
42, 3ax-mp 5 1 ((∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑋)) → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))) → (Fun 𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎𝑎 = 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540   = wceq 1542  wcel 2107   class class class wbr 5110  ccnv 5637  Fun wfun 6495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-frege1 42136  ax-frege2 42137  ax-frege8 42155  ax-frege52a 42203  ax-frege58b 42247
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-fun 6503
This theorem is referenced by:  frege118  42327
  Copyright terms: Public domain W3C validator