| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege130 | Structured version Visualization version GIF version | ||
| Description: Lemma for frege131 44026. Proposition 130 of [Frege1879] p. 84. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege130.m | ⊢ 𝑀 ∈ 𝑈 |
| frege130.r | ⊢ 𝑅 ∈ 𝑉 |
| Ref | Expression |
|---|---|
| frege130 | ⊢ ((∀𝑏((¬ 𝑏(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑎))) → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) → (Fun ◡◡𝑅 → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . 5 ⊢ 𝑎 ∈ V | |
| 2 | vex 3440 | . . . . 5 ⊢ 𝑏 ∈ V | |
| 3 | frege130.m | . . . . 5 ⊢ 𝑀 ∈ 𝑈 | |
| 4 | frege130.r | . . . . 5 ⊢ 𝑅 ∈ 𝑉 | |
| 5 | 1, 2, 3, 4 | frege129 44024 | . . . 4 ⊢ (Fun ◡◡𝑅 → ((¬ 𝑏(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑏) → (𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑎)))) |
| 6 | 5 | alrimdv 1930 | . . 3 ⊢ (Fun ◡◡𝑅 → ((¬ 𝑏(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑎)))) |
| 7 | 6 | alrimiv 1928 | . 2 ⊢ (Fun ◡◡𝑅 → ∀𝑏((¬ 𝑏(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑎)))) |
| 8 | frege9 43844 | . 2 ⊢ ((Fun ◡◡𝑅 → ∀𝑏((¬ 𝑏(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑎)))) → ((∀𝑏((¬ 𝑏(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑎))) → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) → (Fun ◡◡𝑅 → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))))) | |
| 9 | 7, 8 | ax-mp 5 | 1 ⊢ ((∀𝑏((¬ 𝑏(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑏) → ∀𝑎(𝑏𝑅𝑎 → (¬ 𝑎(t+‘𝑅)𝑀 → 𝑀((t+‘𝑅) ∪ I )𝑎))) → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀}))) → (Fun ◡◡𝑅 → 𝑅 hereditary ((◡(t+‘𝑅) “ {𝑀}) ∪ (((t+‘𝑅) ∪ I ) “ {𝑀})))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 ∈ wcel 2111 Vcvv 3436 ∪ cun 3900 {csn 4576 class class class wbr 5091 I cid 5510 ◡ccnv 5615 “ cima 5619 Fun wfun 6475 ‘cfv 6481 t+ctcl 14889 hereditary whe 43804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-frege1 43822 ax-frege2 43823 ax-frege8 43841 ax-frege28 43862 ax-frege31 43866 ax-frege41 43877 ax-frege52a 43889 ax-frege52c 43920 ax-frege58b 43933 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-seq 13906 df-trcl 14891 df-relexp 14924 df-he 43805 |
| This theorem is referenced by: frege131 44026 |
| Copyright terms: Public domain | W3C validator |