| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifbieq12i | Structured version Visualization version GIF version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Mar-2013.) |
| Ref | Expression |
|---|---|
| ifbieq12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| ifbieq12i.2 | ⊢ 𝐴 = 𝐶 |
| ifbieq12i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| ifbieq12i | ⊢ if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq12i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 2 | ifeq1 4500 | . . 3 ⊢ (𝐴 = 𝐶 → if(𝜑, 𝐴, 𝐵) = if(𝜑, 𝐶, 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = if(𝜑, 𝐶, 𝐵) |
| 4 | ifbieq12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 5 | ifbieq12i.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
| 6 | 4, 5 | ifbieq2i 4522 | . 2 ⊢ if(𝜑, 𝐶, 𝐵) = if(𝜓, 𝐶, 𝐷) |
| 7 | 3, 6 | eqtri 2753 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ifcif 4496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-un 3927 df-if 4497 |
| This theorem is referenced by: cbvditg 25762 nosupcbv 27621 noinfcbv 27636 sgnneg 32766 ditgeq123i 36194 cbvditgvw2 36234 binomcxplemdvsum 44316 |
| Copyright terms: Public domain | W3C validator |