MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifbieq12i Structured version   Visualization version   GIF version

Theorem ifbieq12i 4333
Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Mar-2013.)
Hypotheses
Ref Expression
ifbieq12i.1 (𝜑𝜓)
ifbieq12i.2 𝐴 = 𝐶
ifbieq12i.3 𝐵 = 𝐷
Assertion
Ref Expression
ifbieq12i if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷)

Proof of Theorem ifbieq12i
StepHypRef Expression
1 ifbieq12i.2 . . 3 𝐴 = 𝐶
2 ifeq1 4311 . . 3 (𝐴 = 𝐶 → if(𝜑, 𝐴, 𝐵) = if(𝜑, 𝐶, 𝐵))
31, 2ax-mp 5 . 2 if(𝜑, 𝐴, 𝐵) = if(𝜑, 𝐶, 𝐵)
4 ifbieq12i.1 . . 3 (𝜑𝜓)
5 ifbieq12i.3 . . 3 𝐵 = 𝐷
64, 5ifbieq2i 4331 . 2 if(𝜑, 𝐶, 𝐵) = if(𝜓, 𝐶, 𝐷)
73, 6eqtri 2802 1 if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1601  ifcif 4307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-rab 3099  df-v 3400  df-un 3797  df-if 4308
This theorem is referenced by:  cbvditg  24066  sgnneg  31209  binomcxplemdvsum  39524
  Copyright terms: Public domain W3C validator