MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifbieq12i Structured version   Visualization version   GIF version

Theorem ifbieq12i 4491
Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Mar-2013.)
Hypotheses
Ref Expression
ifbieq12i.1 (𝜑𝜓)
ifbieq12i.2 𝐴 = 𝐶
ifbieq12i.3 𝐵 = 𝐷
Assertion
Ref Expression
ifbieq12i if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷)

Proof of Theorem ifbieq12i
StepHypRef Expression
1 ifbieq12i.2 . . 3 𝐴 = 𝐶
2 ifeq1 4468 . . 3 (𝐴 = 𝐶 → if(𝜑, 𝐴, 𝐵) = if(𝜑, 𝐶, 𝐵))
31, 2ax-mp 5 . 2 if(𝜑, 𝐴, 𝐵) = if(𝜑, 𝐶, 𝐵)
4 ifbieq12i.1 . . 3 (𝜑𝜓)
5 ifbieq12i.3 . . 3 𝐵 = 𝐷
64, 5ifbieq2i 4489 . 2 if(𝜑, 𝐶, 𝐵) = if(𝜓, 𝐶, 𝐷)
73, 6eqtri 2767 1 if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  ifcif 4464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-un 3896  df-if 4465
This theorem is referenced by:  cbvditg  24999  sgnneg  32486  nosupcbv  33884  noinfcbv  33899  binomcxplemdvsum  41926
  Copyright terms: Public domain W3C validator