Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noinfcbv Structured version   Visualization version   GIF version

Theorem noinfcbv 33847
Description: Change bound variables for surreal infimum. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfcbv.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfcbv 𝑇 = if(∃𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎, ((𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎) ∪ {⟨dom (𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎), 1o⟩}), (𝑐 ∈ {𝑏 ∣ ∃𝑑𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑   𝑔,𝑎,𝑢,𝑣   𝑥,𝑎,𝑦,𝐵,𝑏,𝑐,𝑑   𝑒,𝑏,𝐵   𝐵,𝑔   𝑢,𝑏,𝐵,𝑣   𝑥,𝑏,𝐵,𝑦   𝑐,𝑑,𝑒,𝑔,𝑢,𝑣   𝑥,𝑐,𝑦   𝑒,𝑑,𝑔,𝑢,𝑣   𝑥,𝑑,𝑦   𝑒,𝑔,𝑢,𝑣   𝑥,𝑒,𝑦   𝑢,𝑔,𝑣   𝑥,𝑔,𝑦   𝑣,𝑢   𝑥,𝑢,𝑦   𝑦,𝑣   𝑥,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑒,𝑔,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem noinfcbv
StepHypRef Expression
1 noinfcbv.1 . 2 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
2 breq2 5074 . . . . . . 7 (𝑥 = 𝑎 → (𝑦 <s 𝑥𝑦 <s 𝑎))
32notbid 317 . . . . . 6 (𝑥 = 𝑎 → (¬ 𝑦 <s 𝑥 ↔ ¬ 𝑦 <s 𝑎))
43ralbidv 3120 . . . . 5 (𝑥 = 𝑎 → (∀𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ ∀𝑦𝐵 ¬ 𝑦 <s 𝑎))
5 breq1 5073 . . . . . . 7 (𝑦 = 𝑏 → (𝑦 <s 𝑎𝑏 <s 𝑎))
65notbid 317 . . . . . 6 (𝑦 = 𝑏 → (¬ 𝑦 <s 𝑎 ↔ ¬ 𝑏 <s 𝑎))
76cbvralvw 3372 . . . . 5 (∀𝑦𝐵 ¬ 𝑦 <s 𝑎 ↔ ∀𝑏𝐵 ¬ 𝑏 <s 𝑎)
84, 7bitrdi 286 . . . 4 (𝑥 = 𝑎 → (∀𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ ∀𝑏𝐵 ¬ 𝑏 <s 𝑎))
98cbvrexvw 3373 . . 3 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ↔ ∃𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎)
108cbvriotavw 7222 . . . 4 (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = (𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎)
1110dmeqi 5802 . . . . . 6 dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) = dom (𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎)
1211opeq1i 4804 . . . . 5 ⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩ = ⟨dom (𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎), 1o
1312sneqi 4569 . . . 4 {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩} = {⟨dom (𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎), 1o⟩}
1410, 13uneq12i 4091 . . 3 ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}) = ((𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎) ∪ {⟨dom (𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎), 1o⟩})
15 eleq1w 2821 . . . . . . . . 9 (𝑔 = 𝑐 → (𝑔 ∈ dom 𝑢𝑐 ∈ dom 𝑢))
16 suceq 6316 . . . . . . . . . . . . 13 (𝑔 = 𝑐 → suc 𝑔 = suc 𝑐)
1716reseq2d 5880 . . . . . . . . . . . 12 (𝑔 = 𝑐 → (𝑢 ↾ suc 𝑔) = (𝑢 ↾ suc 𝑐))
1816reseq2d 5880 . . . . . . . . . . . 12 (𝑔 = 𝑐 → (𝑣 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑐))
1917, 18eqeq12d 2754 . . . . . . . . . . 11 (𝑔 = 𝑐 → ((𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔) ↔ (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)))
2019imbi2d 340 . . . . . . . . . 10 (𝑔 = 𝑐 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐))))
2120ralbidv 3120 . . . . . . . . 9 (𝑔 = 𝑐 → (∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐))))
22 fveqeq2 6765 . . . . . . . . 9 (𝑔 = 𝑐 → ((𝑢𝑔) = 𝑥 ↔ (𝑢𝑐) = 𝑥))
2315, 21, 223anbi123d 1434 . . . . . . . 8 (𝑔 = 𝑐 → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ (𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑥)))
2423rexbidv 3225 . . . . . . 7 (𝑔 = 𝑐 → (∃𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ ∃𝑢𝐵 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑥)))
2524iotabidv 6402 . . . . . 6 (𝑔 = 𝑐 → (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = (℩𝑥𝑢𝐵 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑥)))
26 eqeq2 2750 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝑢𝑐) = 𝑥 ↔ (𝑢𝑐) = 𝑎))
27263anbi3d 1440 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑥) ↔ (𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑎)))
2827rexbidv 3225 . . . . . . . 8 (𝑥 = 𝑎 → (∃𝑢𝐵 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑥) ↔ ∃𝑢𝐵 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑎)))
29 dmeq 5801 . . . . . . . . . . 11 (𝑢 = 𝑑 → dom 𝑢 = dom 𝑑)
3029eleq2d 2824 . . . . . . . . . 10 (𝑢 = 𝑑 → (𝑐 ∈ dom 𝑢𝑐 ∈ dom 𝑑))
31 breq1 5073 . . . . . . . . . . . . . 14 (𝑢 = 𝑑 → (𝑢 <s 𝑣𝑑 <s 𝑣))
3231notbid 317 . . . . . . . . . . . . 13 (𝑢 = 𝑑 → (¬ 𝑢 <s 𝑣 ↔ ¬ 𝑑 <s 𝑣))
33 reseq1 5874 . . . . . . . . . . . . . 14 (𝑢 = 𝑑 → (𝑢 ↾ suc 𝑐) = (𝑑 ↾ suc 𝑐))
3433eqeq1d 2740 . . . . . . . . . . . . 13 (𝑢 = 𝑑 → ((𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐) ↔ (𝑑 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)))
3532, 34imbi12d 344 . . . . . . . . . . . 12 (𝑢 = 𝑑 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ (¬ 𝑑 <s 𝑣 → (𝑑 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐))))
3635ralbidv 3120 . . . . . . . . . . 11 (𝑢 = 𝑑 → (∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ ∀𝑣𝐵𝑑 <s 𝑣 → (𝑑 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐))))
37 breq2 5074 . . . . . . . . . . . . . 14 (𝑣 = 𝑒 → (𝑑 <s 𝑣𝑑 <s 𝑒))
3837notbid 317 . . . . . . . . . . . . 13 (𝑣 = 𝑒 → (¬ 𝑑 <s 𝑣 ↔ ¬ 𝑑 <s 𝑒))
39 reseq1 5874 . . . . . . . . . . . . . 14 (𝑣 = 𝑒 → (𝑣 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐))
4039eqeq2d 2749 . . . . . . . . . . . . 13 (𝑣 = 𝑒 → ((𝑑 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐) ↔ (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)))
4138, 40imbi12d 344 . . . . . . . . . . . 12 (𝑣 = 𝑒 → ((¬ 𝑑 <s 𝑣 → (𝑑 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐))))
4241cbvralvw 3372 . . . . . . . . . . 11 (∀𝑣𝐵𝑑 <s 𝑣 → (𝑑 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)))
4336, 42bitrdi 286 . . . . . . . . . 10 (𝑢 = 𝑑 → (∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐))))
44 fveq1 6755 . . . . . . . . . . 11 (𝑢 = 𝑑 → (𝑢𝑐) = (𝑑𝑐))
4544eqeq1d 2740 . . . . . . . . . 10 (𝑢 = 𝑑 → ((𝑢𝑐) = 𝑎 ↔ (𝑑𝑐) = 𝑎))
4630, 43, 453anbi123d 1434 . . . . . . . . 9 (𝑢 = 𝑑 → ((𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑎) ↔ (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎)))
4746cbvrexvw 3373 . . . . . . . 8 (∃𝑢𝐵 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑎) ↔ ∃𝑑𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎))
4828, 47bitrdi 286 . . . . . . 7 (𝑥 = 𝑎 → (∃𝑢𝐵 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑥) ↔ ∃𝑑𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎)))
4948cbviotavw 6384 . . . . . 6 (℩𝑥𝑢𝐵 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑥)) = (℩𝑎𝑑𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎))
5025, 49eqtrdi 2795 . . . . 5 (𝑔 = 𝑐 → (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = (℩𝑎𝑑𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎)))
5150cbvmptv 5183 . . . 4 (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = (𝑐 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑎𝑑𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎)))
52 eleq1w 2821 . . . . . . . . 9 (𝑦 = 𝑏 → (𝑦 ∈ dom 𝑢𝑏 ∈ dom 𝑢))
53 suceq 6316 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → suc 𝑦 = suc 𝑏)
5453reseq2d 5880 . . . . . . . . . . . 12 (𝑦 = 𝑏 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑏))
5553reseq2d 5880 . . . . . . . . . . . 12 (𝑦 = 𝑏 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑏))
5654, 55eqeq12d 2754 . . . . . . . . . . 11 (𝑦 = 𝑏 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))
5756imbi2d 340 . . . . . . . . . 10 (𝑦 = 𝑏 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))
5857ralbidv 3120 . . . . . . . . 9 (𝑦 = 𝑏 → (∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))
5952, 58anbi12d 630 . . . . . . . 8 (𝑦 = 𝑏 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))))
6059rexbidv 3225 . . . . . . 7 (𝑦 = 𝑏 → (∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢𝐵 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))))
6129eleq2d 2824 . . . . . . . . 9 (𝑢 = 𝑑 → (𝑏 ∈ dom 𝑢𝑏 ∈ dom 𝑑))
62 reseq1 5874 . . . . . . . . . . . . 13 (𝑢 = 𝑑 → (𝑢 ↾ suc 𝑏) = (𝑑 ↾ suc 𝑏))
6362eqeq1d 2740 . . . . . . . . . . . 12 (𝑢 = 𝑑 → ((𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏) ↔ (𝑑 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))
6432, 63imbi12d 344 . . . . . . . . . . 11 (𝑢 = 𝑑 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) ↔ (¬ 𝑑 <s 𝑣 → (𝑑 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))
6564ralbidv 3120 . . . . . . . . . 10 (𝑢 = 𝑑 → (∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) ↔ ∀𝑣𝐵𝑑 <s 𝑣 → (𝑑 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))
66 reseq1 5874 . . . . . . . . . . . . 13 (𝑣 = 𝑒 → (𝑣 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏))
6766eqeq2d 2749 . . . . . . . . . . . 12 (𝑣 = 𝑒 → ((𝑑 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏) ↔ (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))
6838, 67imbi12d 344 . . . . . . . . . . 11 (𝑣 = 𝑒 → ((¬ 𝑑 <s 𝑣 → (𝑑 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) ↔ (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏))))
6968cbvralvw 3372 . . . . . . . . . 10 (∀𝑣𝐵𝑑 <s 𝑣 → (𝑑 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) ↔ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))
7065, 69bitrdi 286 . . . . . . . . 9 (𝑢 = 𝑑 → (∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) ↔ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏))))
7161, 70anbi12d 630 . . . . . . . 8 (𝑢 = 𝑑 → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) ↔ (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))))
7271cbvrexvw 3373 . . . . . . 7 (∃𝑢𝐵 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) ↔ ∃𝑑𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏))))
7360, 72bitrdi 286 . . . . . 6 (𝑦 = 𝑏 → (∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑑𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))))
7473cbvabv 2812 . . . . 5 {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} = {𝑏 ∣ ∃𝑑𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))}
7574mpteq1i 5166 . . . 4 (𝑐 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑎𝑑𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎))) = (𝑐 ∈ {𝑏 ∣ ∃𝑑𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎)))
7651, 75eqtri 2766 . . 3 (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = (𝑐 ∈ {𝑏 ∣ ∃𝑑𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎)))
779, 14, 76ifbieq12i 4483 . 2 if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = if(∃𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎, ((𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎) ∪ {⟨dom (𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎), 1o⟩}), (𝑐 ∈ {𝑏 ∣ ∃𝑑𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎))))
781, 77eqtri 2766 1 𝑇 = if(∃𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎, ((𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎) ∪ {⟨dom (𝑎𝐵𝑏𝐵 ¬ 𝑏 <s 𝑎), 1o⟩}), (𝑐 ∈ {𝑏 ∣ ∃𝑑𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎𝑑𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒𝐵𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑𝑐) = 𝑎))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  cun 3881  ifcif 4456  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153  dom cdm 5580  cres 5582  suc csuc 6253  cio 6374  cfv 6418  crio 7211  1oc1o 8260   <s cslt 33771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-xp 5586  df-dm 5590  df-res 5592  df-suc 6257  df-iota 6376  df-fv 6426  df-riota 7212
This theorem is referenced by:  noeta  33873
  Copyright terms: Public domain W3C validator