Proof of Theorem noinfcbv
Step | Hyp | Ref
| Expression |
1 | | noinfcbv.1 |
. 2
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
2 | | breq2 5074 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → (𝑦 <s 𝑥 ↔ 𝑦 <s 𝑎)) |
3 | 2 | notbid 317 |
. . . . . 6
⊢ (𝑥 = 𝑎 → (¬ 𝑦 <s 𝑥 ↔ ¬ 𝑦 <s 𝑎)) |
4 | 3 | ralbidv 3120 |
. . . . 5
⊢ (𝑥 = 𝑎 → (∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑎)) |
5 | | breq1 5073 |
. . . . . . 7
⊢ (𝑦 = 𝑏 → (𝑦 <s 𝑎 ↔ 𝑏 <s 𝑎)) |
6 | 5 | notbid 317 |
. . . . . 6
⊢ (𝑦 = 𝑏 → (¬ 𝑦 <s 𝑎 ↔ ¬ 𝑏 <s 𝑎)) |
7 | 6 | cbvralvw 3372 |
. . . . 5
⊢
(∀𝑦 ∈
𝐵 ¬ 𝑦 <s 𝑎 ↔ ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎) |
8 | 4, 7 | bitrdi 286 |
. . . 4
⊢ (𝑥 = 𝑎 → (∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ↔ ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎)) |
9 | 8 | cbvrexvw 3373 |
. . 3
⊢
(∃𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ↔ ∃𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎) |
10 | 8 | cbvriotavw 7222 |
. . . 4
⊢
(℩𝑥
∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) = (℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎) |
11 | 10 | dmeqi 5802 |
. . . . . 6
⊢ dom
(℩𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) = dom (℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎) |
12 | 11 | opeq1i 4804 |
. . . . 5
⊢ 〈dom
(℩𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉 = 〈dom
(℩𝑎 ∈
𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎), 1o〉 |
13 | 12 | sneqi 4569 |
. . . 4
⊢
{〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉} = {〈dom
(℩𝑎 ∈
𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎), 1o〉} |
14 | 10, 13 | uneq12i 4091 |
. . 3
⊢
((℩𝑥
∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}) =
((℩𝑎 ∈
𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎) ∪ {〈dom (℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎), 1o〉}) |
15 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑔 = 𝑐 → (𝑔 ∈ dom 𝑢 ↔ 𝑐 ∈ dom 𝑢)) |
16 | | suceq 6316 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑐 → suc 𝑔 = suc 𝑐) |
17 | 16 | reseq2d 5880 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑐 → (𝑢 ↾ suc 𝑔) = (𝑢 ↾ suc 𝑐)) |
18 | 16 | reseq2d 5880 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑐 → (𝑣 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑐)) |
19 | 17, 18 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑐 → ((𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔) ↔ (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐))) |
20 | 19 | imbi2d 340 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑐 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)))) |
21 | 20 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝑔 = 𝑐 → (∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)))) |
22 | | fveqeq2 6765 |
. . . . . . . . 9
⊢ (𝑔 = 𝑐 → ((𝑢‘𝑔) = 𝑥 ↔ (𝑢‘𝑐) = 𝑥)) |
23 | 15, 21, 22 | 3anbi123d 1434 |
. . . . . . . 8
⊢ (𝑔 = 𝑐 → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ (𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑥))) |
24 | 23 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑔 = 𝑐 → (∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ ∃𝑢 ∈ 𝐵 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑥))) |
25 | 24 | iotabidv 6402 |
. . . . . 6
⊢ (𝑔 = 𝑐 → (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) = (℩𝑥∃𝑢 ∈ 𝐵 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑥))) |
26 | | eqeq2 2750 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → ((𝑢‘𝑐) = 𝑥 ↔ (𝑢‘𝑐) = 𝑎)) |
27 | 26 | 3anbi3d 1440 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → ((𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑥) ↔ (𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑎))) |
28 | 27 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (∃𝑢 ∈ 𝐵 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑥) ↔ ∃𝑢 ∈ 𝐵 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑎))) |
29 | | dmeq 5801 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑑 → dom 𝑢 = dom 𝑑) |
30 | 29 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑑 → (𝑐 ∈ dom 𝑢 ↔ 𝑐 ∈ dom 𝑑)) |
31 | | breq1 5073 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑑 → (𝑢 <s 𝑣 ↔ 𝑑 <s 𝑣)) |
32 | 31 | notbid 317 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑑 → (¬ 𝑢 <s 𝑣 ↔ ¬ 𝑑 <s 𝑣)) |
33 | | reseq1 5874 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑑 → (𝑢 ↾ suc 𝑐) = (𝑑 ↾ suc 𝑐)) |
34 | 33 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑑 → ((𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐) ↔ (𝑑 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐))) |
35 | 32, 34 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑑 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ (¬ 𝑑 <s 𝑣 → (𝑑 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)))) |
36 | 35 | ralbidv 3120 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑑 → (∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ ∀𝑣 ∈ 𝐵 (¬ 𝑑 <s 𝑣 → (𝑑 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)))) |
37 | | breq2 5074 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑒 → (𝑑 <s 𝑣 ↔ 𝑑 <s 𝑒)) |
38 | 37 | notbid 317 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑒 → (¬ 𝑑 <s 𝑣 ↔ ¬ 𝑑 <s 𝑒)) |
39 | | reseq1 5874 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑒 → (𝑣 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) |
40 | 39 | eqeq2d 2749 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑒 → ((𝑑 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐) ↔ (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐))) |
41 | 38, 40 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑒 → ((¬ 𝑑 <s 𝑣 → (𝑑 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)))) |
42 | 41 | cbvralvw 3372 |
. . . . . . . . . . 11
⊢
(∀𝑣 ∈
𝐵 (¬ 𝑑 <s 𝑣 → (𝑑 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐))) |
43 | 36, 42 | bitrdi 286 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑑 → (∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)))) |
44 | | fveq1 6755 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑑 → (𝑢‘𝑐) = (𝑑‘𝑐)) |
45 | 44 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑑 → ((𝑢‘𝑐) = 𝑎 ↔ (𝑑‘𝑐) = 𝑎)) |
46 | 30, 43, 45 | 3anbi123d 1434 |
. . . . . . . . 9
⊢ (𝑢 = 𝑑 → ((𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑎) ↔ (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎))) |
47 | 46 | cbvrexvw 3373 |
. . . . . . . 8
⊢
(∃𝑢 ∈
𝐵 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑎) ↔ ∃𝑑 ∈ 𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎)) |
48 | 28, 47 | bitrdi 286 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → (∃𝑢 ∈ 𝐵 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑥) ↔ ∃𝑑 ∈ 𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎))) |
49 | 48 | cbviotavw 6384 |
. . . . . 6
⊢
(℩𝑥∃𝑢 ∈ 𝐵 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑥)) = (℩𝑎∃𝑑 ∈ 𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎)) |
50 | 25, 49 | eqtrdi 2795 |
. . . . 5
⊢ (𝑔 = 𝑐 → (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) = (℩𝑎∃𝑑 ∈ 𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎))) |
51 | 50 | cbvmptv 5183 |
. . . 4
⊢ (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = (𝑐 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑎∃𝑑 ∈ 𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎))) |
52 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑦 = 𝑏 → (𝑦 ∈ dom 𝑢 ↔ 𝑏 ∈ dom 𝑢)) |
53 | | suceq 6316 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑏 → suc 𝑦 = suc 𝑏) |
54 | 53 | reseq2d 5880 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑏 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑏)) |
55 | 53 | reseq2d 5880 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑏 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑏)) |
56 | 54, 55 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑏 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) |
57 | 56 | imbi2d 340 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑏 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))) |
58 | 57 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝑦 = 𝑏 → (∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))) |
59 | 52, 58 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑦 = 𝑏 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))) |
60 | 59 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑦 = 𝑏 → (∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢 ∈ 𝐵 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))) |
61 | 29 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑢 = 𝑑 → (𝑏 ∈ dom 𝑢 ↔ 𝑏 ∈ dom 𝑑)) |
62 | | reseq1 5874 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑑 → (𝑢 ↾ suc 𝑏) = (𝑑 ↾ suc 𝑏)) |
63 | 62 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑑 → ((𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏) ↔ (𝑑 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) |
64 | 32, 63 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑑 → ((¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) ↔ (¬ 𝑑 <s 𝑣 → (𝑑 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))) |
65 | 64 | ralbidv 3120 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑑 → (∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) ↔ ∀𝑣 ∈ 𝐵 (¬ 𝑑 <s 𝑣 → (𝑑 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))) |
66 | | reseq1 5874 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑒 → (𝑣 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)) |
67 | 66 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑒 → ((𝑑 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏) ↔ (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏))) |
68 | 38, 67 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑒 → ((¬ 𝑑 <s 𝑣 → (𝑑 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) ↔ (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))) |
69 | 68 | cbvralvw 3372 |
. . . . . . . . . 10
⊢
(∀𝑣 ∈
𝐵 (¬ 𝑑 <s 𝑣 → (𝑑 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) ↔ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏))) |
70 | 65, 69 | bitrdi 286 |
. . . . . . . . 9
⊢ (𝑢 = 𝑑 → (∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) ↔ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))) |
71 | 61, 70 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑢 = 𝑑 → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) ↔ (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏))))) |
72 | 71 | cbvrexvw 3373 |
. . . . . . 7
⊢
(∃𝑢 ∈
𝐵 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) ↔ ∃𝑑 ∈ 𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))) |
73 | 60, 72 | bitrdi 286 |
. . . . . 6
⊢ (𝑦 = 𝑏 → (∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑑 ∈ 𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏))))) |
74 | 73 | cbvabv 2812 |
. . . . 5
⊢ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} = {𝑏 ∣ ∃𝑑 ∈ 𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} |
75 | 74 | mpteq1i 5166 |
. . . 4
⊢ (𝑐 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑎∃𝑑 ∈ 𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎))) = (𝑐 ∈ {𝑏 ∣ ∃𝑑 ∈ 𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎∃𝑑 ∈ 𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎))) |
76 | 51, 75 | eqtri 2766 |
. . 3
⊢ (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = (𝑐 ∈ {𝑏 ∣ ∃𝑑 ∈ 𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎∃𝑑 ∈ 𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎))) |
77 | 9, 14, 76 | ifbieq12i 4483 |
. 2
⊢
if(∃𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = if(∃𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎, ((℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎) ∪ {〈dom (℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎), 1o〉}), (𝑐 ∈ {𝑏 ∣ ∃𝑑 ∈ 𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎∃𝑑 ∈ 𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎)))) |
78 | 1, 77 | eqtri 2766 |
1
⊢ 𝑇 = if(∃𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎, ((℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎) ∪ {〈dom (℩𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ¬ 𝑏 <s 𝑎), 1o〉}), (𝑐 ∈ {𝑏 ∣ ∃𝑑 ∈ 𝐵 (𝑏 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑏) = (𝑒 ↾ suc 𝑏)))} ↦ (℩𝑎∃𝑑 ∈ 𝐵 (𝑐 ∈ dom 𝑑 ∧ ∀𝑒 ∈ 𝐵 (¬ 𝑑 <s 𝑒 → (𝑑 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) ∧ (𝑑‘𝑐) = 𝑎)))) |