MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifbieq2i Structured version   Visualization version   GIF version

Theorem ifbieq2i 4556
Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
ifbieq2i.1 (𝜑𝜓)
ifbieq2i.2 𝐴 = 𝐵
Assertion
Ref Expression
ifbieq2i if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)

Proof of Theorem ifbieq2i
StepHypRef Expression
1 ifbieq2i.1 . . 3 (𝜑𝜓)
2 ifbi 4553 . . 3 ((𝜑𝜓) → if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐴))
31, 2ax-mp 5 . 2 if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐴)
4 ifbieq2i.2 . . 3 𝐴 = 𝐵
5 ifeq2 4536 . . 3 (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵))
64, 5ax-mp 5 . 2 if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)
73, 6eqtri 2763 1 if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  ifcif 4531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-un 3968  df-if 4532
This theorem is referenced by:  ifbieq12i  4558  gcdcom  16547  gcdass  16581  lcmcom  16627  lcmass  16648  bj-xpimasn  36938  cdleme31sdnN  40370  cdlemefr44  40408  cdleme48fv  40482  cdlemeg49lebilem  40522  cdleme50eq  40524  redvmptabs  42369  hoidmvlelem3  46553  hoidmvlelem4  46554
  Copyright terms: Public domain W3C validator