![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifbieq2i | Structured version Visualization version GIF version |
Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
ifbieq2i.1 | ⊢ (𝜑 ↔ 𝜓) |
ifbieq2i.2 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
ifbieq2i | ⊢ if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | ifbi 4553 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐴) |
4 | ifbieq2i.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
5 | ifeq2 4536 | . . 3 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵) |
7 | 3, 6 | eqtri 2763 | 1 ⊢ if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ifcif 4531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-un 3968 df-if 4532 |
This theorem is referenced by: ifbieq12i 4558 gcdcom 16547 gcdass 16581 lcmcom 16627 lcmass 16648 bj-xpimasn 36938 cdleme31sdnN 40370 cdlemefr44 40408 cdleme48fv 40482 cdlemeg49lebilem 40522 cdleme50eq 40524 redvmptabs 42369 hoidmvlelem3 46553 hoidmvlelem4 46554 |
Copyright terms: Public domain | W3C validator |