MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifbieq2i Structured version   Visualization version   GIF version

Theorem ifbieq2i 4504
Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
ifbieq2i.1 (𝜑𝜓)
ifbieq2i.2 𝐴 = 𝐵
Assertion
Ref Expression
ifbieq2i if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)

Proof of Theorem ifbieq2i
StepHypRef Expression
1 ifbieq2i.1 . . 3 (𝜑𝜓)
2 ifbi 4501 . . 3 ((𝜑𝜓) → if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐴))
31, 2ax-mp 5 . 2 if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐴)
4 ifbieq2i.2 . . 3 𝐴 = 𝐵
5 ifeq2 4483 . . 3 (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵))
64, 5ax-mp 5 . 2 if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)
73, 6eqtri 2752 1 if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  ifcif 4478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-un 3910  df-if 4479
This theorem is referenced by:  ifbieq12i  4506  gcdcom  16443  gcdass  16477  lcmcom  16523  lcmass  16544  bj-xpimasn  36948  cdleme31sdnN  40386  cdlemefr44  40424  cdleme48fv  40498  cdlemeg49lebilem  40538  cdleme50eq  40540  redvmptabs  42353  hoidmvlelem3  46598  hoidmvlelem4  46599
  Copyright terms: Public domain W3C validator