MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupcbv Structured version   Visualization version   GIF version

Theorem nosupcbv 27747
Description: Lemma to change bound variables in a surreal supremum. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
nosupcbv.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupcbv 𝑆 = if(∃𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏, ((𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏) ∪ {⟨dom (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏), 2o⟩}), (𝑐 ∈ {𝑑 ∣ ∃𝑒𝐴 (𝑑 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))} ↦ (℩𝑎𝑒𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒𝑐) = 𝑎))))
Distinct variable groups:   𝐴,𝑎,𝑐,𝑒,𝑔,𝑢,𝑣,𝑦   𝐴,𝑑,𝑓,𝑐,𝑒,𝑢,𝑣,𝑦   𝐴,𝑏,𝑥,𝑎,𝑦   𝑥,𝑐,𝑒   𝑓,𝑔,𝑥,𝑢
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑒,𝑓,𝑔,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem nosupcbv
StepHypRef Expression
1 nosupcbv.1 . 2 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
2 breq1 5146 . . . . . . 7 (𝑥 = 𝑎 → (𝑥 <s 𝑦𝑎 <s 𝑦))
32notbid 318 . . . . . 6 (𝑥 = 𝑎 → (¬ 𝑥 <s 𝑦 ↔ ¬ 𝑎 <s 𝑦))
43ralbidv 3178 . . . . 5 (𝑥 = 𝑎 → (∀𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑎 <s 𝑦))
5 breq2 5147 . . . . . . 7 (𝑦 = 𝑏 → (𝑎 <s 𝑦𝑎 <s 𝑏))
65notbid 318 . . . . . 6 (𝑦 = 𝑏 → (¬ 𝑎 <s 𝑦 ↔ ¬ 𝑎 <s 𝑏))
76cbvralvw 3237 . . . . 5 (∀𝑦𝐴 ¬ 𝑎 <s 𝑦 ↔ ∀𝑏𝐴 ¬ 𝑎 <s 𝑏)
84, 7bitrdi 287 . . . 4 (𝑥 = 𝑎 → (∀𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ ∀𝑏𝐴 ¬ 𝑎 <s 𝑏))
98cbvrexvw 3238 . . 3 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ ∃𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏)
108cbvriotavw 7398 . . . 4 (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏)
1110dmeqi 5915 . . . . . 6 dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = dom (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏)
1211opeq1i 4876 . . . . 5 ⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩ = ⟨dom (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏), 2o
1312sneqi 4637 . . . 4 {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩} = {⟨dom (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏), 2o⟩}
1410, 13uneq12i 4166 . . 3 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = ((𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏) ∪ {⟨dom (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏), 2o⟩})
15 eleq1w 2824 . . . . . . . . 9 (𝑔 = 𝑐 → (𝑔 ∈ dom 𝑢𝑐 ∈ dom 𝑢))
16 suceq 6450 . . . . . . . . . . . . 13 (𝑔 = 𝑐 → suc 𝑔 = suc 𝑐)
1716reseq2d 5997 . . . . . . . . . . . 12 (𝑔 = 𝑐 → (𝑢 ↾ suc 𝑔) = (𝑢 ↾ suc 𝑐))
1816reseq2d 5997 . . . . . . . . . . . 12 (𝑔 = 𝑐 → (𝑣 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑐))
1917, 18eqeq12d 2753 . . . . . . . . . . 11 (𝑔 = 𝑐 → ((𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔) ↔ (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)))
2019imbi2d 340 . . . . . . . . . 10 (𝑔 = 𝑐 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐))))
2120ralbidv 3178 . . . . . . . . 9 (𝑔 = 𝑐 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐))))
22 fveqeq2 6915 . . . . . . . . 9 (𝑔 = 𝑐 → ((𝑢𝑔) = 𝑥 ↔ (𝑢𝑐) = 𝑥))
2315, 21, 223anbi123d 1438 . . . . . . . 8 (𝑔 = 𝑐 → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ (𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑥)))
2423rexbidv 3179 . . . . . . 7 (𝑔 = 𝑐 → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ ∃𝑢𝐴 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑥)))
2524iotabidv 6545 . . . . . 6 (𝑔 = 𝑐 → (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = (℩𝑥𝑢𝐴 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑥)))
26 eqeq2 2749 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝑢𝑐) = 𝑥 ↔ (𝑢𝑐) = 𝑎))
27263anbi3d 1444 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑥) ↔ (𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑎)))
2827rexbidv 3179 . . . . . . . 8 (𝑥 = 𝑎 → (∃𝑢𝐴 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑥) ↔ ∃𝑢𝐴 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑎)))
29 dmeq 5914 . . . . . . . . . . 11 (𝑢 = 𝑒 → dom 𝑢 = dom 𝑒)
3029eleq2d 2827 . . . . . . . . . 10 (𝑢 = 𝑒 → (𝑐 ∈ dom 𝑢𝑐 ∈ dom 𝑒))
31 breq2 5147 . . . . . . . . . . . . . 14 (𝑢 = 𝑒 → (𝑣 <s 𝑢𝑣 <s 𝑒))
3231notbid 318 . . . . . . . . . . . . 13 (𝑢 = 𝑒 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑒))
33 reseq1 5991 . . . . . . . . . . . . . 14 (𝑢 = 𝑒 → (𝑢 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐))
3433eqeq1d 2739 . . . . . . . . . . . . 13 (𝑢 = 𝑒 → ((𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐) ↔ (𝑒 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)))
3532, 34imbi12d 344 . . . . . . . . . . . 12 (𝑢 = 𝑒 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ (¬ 𝑣 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐))))
3635ralbidv 3178 . . . . . . . . . . 11 (𝑢 = 𝑒 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ ∀𝑣𝐴𝑣 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐))))
37 breq1 5146 . . . . . . . . . . . . . 14 (𝑣 = 𝑓 → (𝑣 <s 𝑒𝑓 <s 𝑒))
3837notbid 318 . . . . . . . . . . . . 13 (𝑣 = 𝑓 → (¬ 𝑣 <s 𝑒 ↔ ¬ 𝑓 <s 𝑒))
39 reseq1 5991 . . . . . . . . . . . . . 14 (𝑣 = 𝑓 → (𝑣 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐))
4039eqeq2d 2748 . . . . . . . . . . . . 13 (𝑣 = 𝑓 → ((𝑒 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐) ↔ (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)))
4138, 40imbi12d 344 . . . . . . . . . . . 12 (𝑣 = 𝑓 → ((¬ 𝑣 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐))))
4241cbvralvw 3237 . . . . . . . . . . 11 (∀𝑣𝐴𝑣 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)))
4336, 42bitrdi 287 . . . . . . . . . 10 (𝑢 = 𝑒 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐))))
44 fveq1 6905 . . . . . . . . . . 11 (𝑢 = 𝑒 → (𝑢𝑐) = (𝑒𝑐))
4544eqeq1d 2739 . . . . . . . . . 10 (𝑢 = 𝑒 → ((𝑢𝑐) = 𝑎 ↔ (𝑒𝑐) = 𝑎))
4630, 43, 453anbi123d 1438 . . . . . . . . 9 (𝑢 = 𝑒 → ((𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑎) ↔ (𝑐 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒𝑐) = 𝑎)))
4746cbvrexvw 3238 . . . . . . . 8 (∃𝑢𝐴 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑎) ↔ ∃𝑒𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒𝑐) = 𝑎))
4828, 47bitrdi 287 . . . . . . 7 (𝑥 = 𝑎 → (∃𝑢𝐴 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑥) ↔ ∃𝑒𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒𝑐) = 𝑎)))
4948cbviotavw 6522 . . . . . 6 (℩𝑥𝑢𝐴 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢𝑐) = 𝑥)) = (℩𝑎𝑒𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒𝑐) = 𝑎))
5025, 49eqtrdi 2793 . . . . 5 (𝑔 = 𝑐 → (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = (℩𝑎𝑒𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒𝑐) = 𝑎)))
5150cbvmptv 5255 . . . 4 (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = (𝑐 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑎𝑒𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒𝑐) = 𝑎)))
52 eleq1w 2824 . . . . . . . . 9 (𝑦 = 𝑑 → (𝑦 ∈ dom 𝑢𝑑 ∈ dom 𝑢))
53 suceq 6450 . . . . . . . . . . . . 13 (𝑦 = 𝑑 → suc 𝑦 = suc 𝑑)
5453reseq2d 5997 . . . . . . . . . . . 12 (𝑦 = 𝑑 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑑))
5553reseq2d 5997 . . . . . . . . . . . 12 (𝑦 = 𝑑 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑑))
5654, 55eqeq12d 2753 . . . . . . . . . . 11 (𝑦 = 𝑑 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑)))
5756imbi2d 340 . . . . . . . . . 10 (𝑦 = 𝑑 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑))))
5857ralbidv 3178 . . . . . . . . 9 (𝑦 = 𝑑 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑))))
5952, 58anbi12d 632 . . . . . . . 8 (𝑦 = 𝑑 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑑 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑)))))
6059rexbidv 3179 . . . . . . 7 (𝑦 = 𝑑 → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢𝐴 (𝑑 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑)))))
6129eleq2d 2827 . . . . . . . . 9 (𝑢 = 𝑒 → (𝑑 ∈ dom 𝑢𝑑 ∈ dom 𝑒))
62 reseq1 5991 . . . . . . . . . . . . 13 (𝑢 = 𝑒 → (𝑢 ↾ suc 𝑑) = (𝑒 ↾ suc 𝑑))
6362eqeq1d 2739 . . . . . . . . . . . 12 (𝑢 = 𝑒 → ((𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑) ↔ (𝑒 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑)))
6432, 63imbi12d 344 . . . . . . . . . . 11 (𝑢 = 𝑒 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑)) ↔ (¬ 𝑣 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑))))
6564ralbidv 3178 . . . . . . . . . 10 (𝑢 = 𝑒 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑)) ↔ ∀𝑣𝐴𝑣 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑))))
66 reseq1 5991 . . . . . . . . . . . . 13 (𝑣 = 𝑓 → (𝑣 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑))
6766eqeq2d 2748 . . . . . . . . . . . 12 (𝑣 = 𝑓 → ((𝑒 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑) ↔ (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))
6838, 67imbi12d 344 . . . . . . . . . . 11 (𝑣 = 𝑓 → ((¬ 𝑣 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑)) ↔ (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑))))
6968cbvralvw 3237 . . . . . . . . . 10 (∀𝑣𝐴𝑣 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑)) ↔ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))
7065, 69bitrdi 287 . . . . . . . . 9 (𝑢 = 𝑒 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑)) ↔ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑))))
7161, 70anbi12d 632 . . . . . . . 8 (𝑢 = 𝑒 → ((𝑑 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑))) ↔ (𝑑 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))))
7271cbvrexvw 3238 . . . . . . 7 (∃𝑢𝐴 (𝑑 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑))) ↔ ∃𝑒𝐴 (𝑑 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑))))
7360, 72bitrdi 287 . . . . . 6 (𝑦 = 𝑑 → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑒𝐴 (𝑑 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))))
7473cbvabv 2812 . . . . 5 {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} = {𝑑 ∣ ∃𝑒𝐴 (𝑑 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))}
7574mpteq1i 5238 . . . 4 (𝑐 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑎𝑒𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒𝑐) = 𝑎))) = (𝑐 ∈ {𝑑 ∣ ∃𝑒𝐴 (𝑑 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))} ↦ (℩𝑎𝑒𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒𝑐) = 𝑎)))
7651, 75eqtri 2765 . . 3 (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = (𝑐 ∈ {𝑑 ∣ ∃𝑒𝐴 (𝑑 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))} ↦ (℩𝑎𝑒𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒𝑐) = 𝑎)))
779, 14, 76ifbieq12i 4553 . 2 if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = if(∃𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏, ((𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏) ∪ {⟨dom (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏), 2o⟩}), (𝑐 ∈ {𝑑 ∣ ∃𝑒𝐴 (𝑑 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))} ↦ (℩𝑎𝑒𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒𝑐) = 𝑎))))
781, 77eqtri 2765 1 𝑆 = if(∃𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏, ((𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏) ∪ {⟨dom (𝑎𝐴𝑏𝐴 ¬ 𝑎 <s 𝑏), 2o⟩}), (𝑐 ∈ {𝑑 ∣ ∃𝑒𝐴 (𝑑 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))} ↦ (℩𝑎𝑒𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓𝐴𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒𝑐) = 𝑎))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  {cab 2714  wral 3061  wrex 3070  cun 3949  ifcif 4525  {csn 4626  cop 4632   class class class wbr 5143  cmpt 5225  dom cdm 5685  cres 5687  suc csuc 6386  cio 6512  cfv 6561  crio 7387  2oc2o 8500   <s cslt 27685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-xp 5691  df-dm 5695  df-res 5697  df-suc 6390  df-iota 6514  df-fv 6569  df-riota 7388
This theorem is referenced by:  noeta  27788
  Copyright terms: Public domain W3C validator