Proof of Theorem nosupcbv
Step | Hyp | Ref
| Expression |
1 | | nosupcbv.1 |
. 2
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
2 | | breq1 5081 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → (𝑥 <s 𝑦 ↔ 𝑎 <s 𝑦)) |
3 | 2 | notbid 317 |
. . . . . 6
⊢ (𝑥 = 𝑎 → (¬ 𝑥 <s 𝑦 ↔ ¬ 𝑎 <s 𝑦)) |
4 | 3 | ralbidv 3122 |
. . . . 5
⊢ (𝑥 = 𝑎 → (∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑎 <s 𝑦)) |
5 | | breq2 5082 |
. . . . . . 7
⊢ (𝑦 = 𝑏 → (𝑎 <s 𝑦 ↔ 𝑎 <s 𝑏)) |
6 | 5 | notbid 317 |
. . . . . 6
⊢ (𝑦 = 𝑏 → (¬ 𝑎 <s 𝑦 ↔ ¬ 𝑎 <s 𝑏)) |
7 | 6 | cbvralvw 3380 |
. . . . 5
⊢
(∀𝑦 ∈
𝐴 ¬ 𝑎 <s 𝑦 ↔ ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏) |
8 | 4, 7 | bitrdi 286 |
. . . 4
⊢ (𝑥 = 𝑎 → (∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ↔ ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏)) |
9 | 8 | cbvrexvw 3381 |
. . 3
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ↔ ∃𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏) |
10 | 8 | cbvriotavw 7235 |
. . . 4
⊢
(℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = (℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏) |
11 | 10 | dmeqi 5810 |
. . . . . 6
⊢ dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = dom (℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏) |
12 | 11 | opeq1i 4812 |
. . . . 5
⊢ 〈dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉 = 〈dom
(℩𝑎 ∈
𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏), 2o〉 |
13 | 12 | sneqi 4577 |
. . . 4
⊢
{〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉} = {〈dom
(℩𝑎 ∈
𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏), 2o〉} |
14 | 10, 13 | uneq12i 4099 |
. . 3
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) =
((℩𝑎 ∈
𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏) ∪ {〈dom (℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏), 2o〉}) |
15 | | eleq1w 2822 |
. . . . . . . . 9
⊢ (𝑔 = 𝑐 → (𝑔 ∈ dom 𝑢 ↔ 𝑐 ∈ dom 𝑢)) |
16 | | suceq 6328 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑐 → suc 𝑔 = suc 𝑐) |
17 | 16 | reseq2d 5888 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑐 → (𝑢 ↾ suc 𝑔) = (𝑢 ↾ suc 𝑐)) |
18 | 16 | reseq2d 5888 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑐 → (𝑣 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑐)) |
19 | 17, 18 | eqeq12d 2755 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑐 → ((𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔) ↔ (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐))) |
20 | 19 | imbi2d 340 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑐 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)))) |
21 | 20 | ralbidv 3122 |
. . . . . . . . 9
⊢ (𝑔 = 𝑐 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)))) |
22 | | fveqeq2 6777 |
. . . . . . . . 9
⊢ (𝑔 = 𝑐 → ((𝑢‘𝑔) = 𝑥 ↔ (𝑢‘𝑐) = 𝑥)) |
23 | 15, 21, 22 | 3anbi123d 1434 |
. . . . . . . 8
⊢ (𝑔 = 𝑐 → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ (𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑥))) |
24 | 23 | rexbidv 3227 |
. . . . . . 7
⊢ (𝑔 = 𝑐 → (∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥) ↔ ∃𝑢 ∈ 𝐴 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑥))) |
25 | 24 | iotabidv 6414 |
. . . . . 6
⊢ (𝑔 = 𝑐 → (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) = (℩𝑥∃𝑢 ∈ 𝐴 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑥))) |
26 | | eqeq2 2751 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → ((𝑢‘𝑐) = 𝑥 ↔ (𝑢‘𝑐) = 𝑎)) |
27 | 26 | 3anbi3d 1440 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → ((𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑥) ↔ (𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑎))) |
28 | 27 | rexbidv 3227 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (∃𝑢 ∈ 𝐴 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑥) ↔ ∃𝑢 ∈ 𝐴 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑎))) |
29 | | dmeq 5809 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑒 → dom 𝑢 = dom 𝑒) |
30 | 29 | eleq2d 2825 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑒 → (𝑐 ∈ dom 𝑢 ↔ 𝑐 ∈ dom 𝑒)) |
31 | | breq2 5082 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑒 → (𝑣 <s 𝑢 ↔ 𝑣 <s 𝑒)) |
32 | 31 | notbid 317 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑒 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑒)) |
33 | | reseq1 5882 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑒 → (𝑢 ↾ suc 𝑐) = (𝑒 ↾ suc 𝑐)) |
34 | 33 | eqeq1d 2741 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑒 → ((𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐) ↔ (𝑒 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐))) |
35 | 32, 34 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑒 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ (¬ 𝑣 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)))) |
36 | 35 | ralbidv 3122 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑒 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)))) |
37 | | breq1 5081 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑓 → (𝑣 <s 𝑒 ↔ 𝑓 <s 𝑒)) |
38 | 37 | notbid 317 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑓 → (¬ 𝑣 <s 𝑒 ↔ ¬ 𝑓 <s 𝑒)) |
39 | | reseq1 5882 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑓 → (𝑣 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) |
40 | 39 | eqeq2d 2750 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑓 → ((𝑒 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐) ↔ (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐))) |
41 | 38, 40 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑓 → ((¬ 𝑣 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)))) |
42 | 41 | cbvralvw 3380 |
. . . . . . . . . . 11
⊢
(∀𝑣 ∈
𝐴 (¬ 𝑣 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐))) |
43 | 36, 42 | bitrdi 286 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑒 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ↔ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)))) |
44 | | fveq1 6767 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑒 → (𝑢‘𝑐) = (𝑒‘𝑐)) |
45 | 44 | eqeq1d 2741 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑒 → ((𝑢‘𝑐) = 𝑎 ↔ (𝑒‘𝑐) = 𝑎)) |
46 | 30, 43, 45 | 3anbi123d 1434 |
. . . . . . . . 9
⊢ (𝑢 = 𝑒 → ((𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑎) ↔ (𝑐 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒‘𝑐) = 𝑎))) |
47 | 46 | cbvrexvw 3381 |
. . . . . . . 8
⊢
(∃𝑢 ∈
𝐴 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑎) ↔ ∃𝑒 ∈ 𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒‘𝑐) = 𝑎)) |
48 | 28, 47 | bitrdi 286 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → (∃𝑢 ∈ 𝐴 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑥) ↔ ∃𝑒 ∈ 𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒‘𝑐) = 𝑎))) |
49 | 48 | cbviotavw 6396 |
. . . . . 6
⊢
(℩𝑥∃𝑢 ∈ 𝐴 (𝑐 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑐) = (𝑣 ↾ suc 𝑐)) ∧ (𝑢‘𝑐) = 𝑥)) = (℩𝑎∃𝑒 ∈ 𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒‘𝑐) = 𝑎)) |
50 | 25, 49 | eqtrdi 2795 |
. . . . 5
⊢ (𝑔 = 𝑐 → (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) = (℩𝑎∃𝑒 ∈ 𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒‘𝑐) = 𝑎))) |
51 | 50 | cbvmptv 5191 |
. . . 4
⊢ (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = (𝑐 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑎∃𝑒 ∈ 𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒‘𝑐) = 𝑎))) |
52 | | eleq1w 2822 |
. . . . . . . . 9
⊢ (𝑦 = 𝑑 → (𝑦 ∈ dom 𝑢 ↔ 𝑑 ∈ dom 𝑢)) |
53 | | suceq 6328 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑑 → suc 𝑦 = suc 𝑑) |
54 | 53 | reseq2d 5888 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑑 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑑)) |
55 | 53 | reseq2d 5888 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑑 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑑)) |
56 | 54, 55 | eqeq12d 2755 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑑 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑))) |
57 | 56 | imbi2d 340 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑑 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑)))) |
58 | 57 | ralbidv 3122 |
. . . . . . . . 9
⊢ (𝑦 = 𝑑 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑)))) |
59 | 52, 58 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑦 = 𝑑 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑑 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑))))) |
60 | 59 | rexbidv 3227 |
. . . . . . 7
⊢ (𝑦 = 𝑑 → (∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢 ∈ 𝐴 (𝑑 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑))))) |
61 | 29 | eleq2d 2825 |
. . . . . . . . 9
⊢ (𝑢 = 𝑒 → (𝑑 ∈ dom 𝑢 ↔ 𝑑 ∈ dom 𝑒)) |
62 | | reseq1 5882 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑒 → (𝑢 ↾ suc 𝑑) = (𝑒 ↾ suc 𝑑)) |
63 | 62 | eqeq1d 2741 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑒 → ((𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑) ↔ (𝑒 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑))) |
64 | 32, 63 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑒 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑)) ↔ (¬ 𝑣 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑)))) |
65 | 64 | ralbidv 3122 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑒 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑)))) |
66 | | reseq1 5882 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑓 → (𝑣 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)) |
67 | 66 | eqeq2d 2750 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑓 → ((𝑒 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑) ↔ (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑))) |
68 | 38, 67 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑓 → ((¬ 𝑣 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑)) ↔ (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))) |
69 | 68 | cbvralvw 3380 |
. . . . . . . . . 10
⊢
(∀𝑣 ∈
𝐴 (¬ 𝑣 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑)) ↔ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑))) |
70 | 65, 69 | bitrdi 286 |
. . . . . . . . 9
⊢ (𝑢 = 𝑒 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑)) ↔ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))) |
71 | 61, 70 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑢 = 𝑒 → ((𝑑 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑))) ↔ (𝑑 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑))))) |
72 | 71 | cbvrexvw 3381 |
. . . . . . 7
⊢
(∃𝑢 ∈
𝐴 (𝑑 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑑) = (𝑣 ↾ suc 𝑑))) ↔ ∃𝑒 ∈ 𝐴 (𝑑 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))) |
73 | 60, 72 | bitrdi 286 |
. . . . . 6
⊢ (𝑦 = 𝑑 → (∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑒 ∈ 𝐴 (𝑑 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑))))) |
74 | 73 | cbvabv 2812 |
. . . . 5
⊢ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} = {𝑑 ∣ ∃𝑒 ∈ 𝐴 (𝑑 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))} |
75 | 74 | mpteq1i 5174 |
. . . 4
⊢ (𝑐 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑎∃𝑒 ∈ 𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒‘𝑐) = 𝑎))) = (𝑐 ∈ {𝑑 ∣ ∃𝑒 ∈ 𝐴 (𝑑 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))} ↦ (℩𝑎∃𝑒 ∈ 𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒‘𝑐) = 𝑎))) |
76 | 51, 75 | eqtri 2767 |
. . 3
⊢ (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = (𝑐 ∈ {𝑑 ∣ ∃𝑒 ∈ 𝐴 (𝑑 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))} ↦ (℩𝑎∃𝑒 ∈ 𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒‘𝑐) = 𝑎))) |
77 | 9, 14, 76 | ifbieq12i 4491 |
. 2
⊢
if(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = if(∃𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏, ((℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏) ∪ {〈dom (℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏), 2o〉}), (𝑐 ∈ {𝑑 ∣ ∃𝑒 ∈ 𝐴 (𝑑 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))} ↦ (℩𝑎∃𝑒 ∈ 𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒‘𝑐) = 𝑎)))) |
78 | 1, 77 | eqtri 2767 |
1
⊢ 𝑆 = if(∃𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏, ((℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏) ∪ {〈dom (℩𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ¬ 𝑎 <s 𝑏), 2o〉}), (𝑐 ∈ {𝑑 ∣ ∃𝑒 ∈ 𝐴 (𝑑 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑑) = (𝑓 ↾ suc 𝑑)))} ↦ (℩𝑎∃𝑒 ∈ 𝐴 (𝑐 ∈ dom 𝑒 ∧ ∀𝑓 ∈ 𝐴 (¬ 𝑓 <s 𝑒 → (𝑒 ↾ suc 𝑐) = (𝑓 ↾ suc 𝑐)) ∧ (𝑒‘𝑐) = 𝑎)))) |