Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemdvsum Structured version   Visualization version   GIF version

Theorem binomcxplemdvsum 39387
Description: Lemma for binomcxp 39389. The derivative of the generalized sum in binomcxplemnn0 39381. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
binomcxplem.e 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
binomcxplem.d 𝐷 = (abs “ (0[,)𝑅))
binomcxplem.p 𝑃 = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘))
Assertion
Ref Expression
binomcxplemdvsum (𝜑 → (ℂ D 𝑃) = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)))
Distinct variable groups:   𝑘,𝑏,𝐹   𝜑,𝑏,𝑘   𝑟,𝑏,𝑘,𝐹   𝑗,𝑘,𝜑   𝐶,𝑗
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑘,𝑟,𝑏)   𝐷(𝑗,𝑘,𝑟,𝑏)   𝑃(𝑗,𝑘,𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑟,𝑏)   𝐸(𝑗,𝑘,𝑟,𝑏)   𝐹(𝑗)

Proof of Theorem binomcxplemdvsum
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomcxplem.s . . . 4 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
2 binomcxplem.p . . . . 5 𝑃 = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘))
3 binomcxplem.d . . . . . . 7 𝐷 = (abs “ (0[,)𝑅))
4 nfcv 2969 . . . . . . . 8 𝑏abs
5 nfcv 2969 . . . . . . . . 9 𝑏0
6 nfcv 2969 . . . . . . . . 9 𝑏[,)
7 binomcxplem.r . . . . . . . . . 10 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
8 nfcv 2969 . . . . . . . . . . . . . 14 𝑏 +
9 nfmpt1 4970 . . . . . . . . . . . . . . . 16 𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
101, 9nfcxfr 2967 . . . . . . . . . . . . . . 15 𝑏𝑆
11 nfcv 2969 . . . . . . . . . . . . . . 15 𝑏𝑟
1210, 11nffv 6443 . . . . . . . . . . . . . 14 𝑏(𝑆𝑟)
135, 8, 12nfseq 13105 . . . . . . . . . . . . 13 𝑏seq0( + , (𝑆𝑟))
1413nfel1 2984 . . . . . . . . . . . 12 𝑏seq0( + , (𝑆𝑟)) ∈ dom ⇝
15 nfcv 2969 . . . . . . . . . . . 12 𝑏
1614, 15nfrab 3334 . . . . . . . . . . 11 𝑏{𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }
17 nfcv 2969 . . . . . . . . . . 11 𝑏*
18 nfcv 2969 . . . . . . . . . . 11 𝑏 <
1916, 17, 18nfsup 8626 . . . . . . . . . 10 𝑏sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
207, 19nfcxfr 2967 . . . . . . . . 9 𝑏𝑅
215, 6, 20nfov 6935 . . . . . . . 8 𝑏(0[,)𝑅)
224, 21nfima 5715 . . . . . . 7 𝑏(abs “ (0[,)𝑅))
233, 22nfcxfr 2967 . . . . . 6 𝑏𝐷
24 nfcv 2969 . . . . . 6 𝑦𝐷
25 nfcv 2969 . . . . . 6 𝑦Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘)
26 nfcv 2969 . . . . . . 7 𝑏0
27 nfcv 2969 . . . . . . . . 9 𝑏𝑦
2810, 27nffv 6443 . . . . . . . 8 𝑏(𝑆𝑦)
29 nfcv 2969 . . . . . . . 8 𝑏𝑚
3028, 29nffv 6443 . . . . . . 7 𝑏((𝑆𝑦)‘𝑚)
3126, 30nfsum 14798 . . . . . 6 𝑏Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚)
32 simpl 476 . . . . . . . . . 10 ((𝑏 = 𝑦𝑘 ∈ ℕ0) → 𝑏 = 𝑦)
3332fveq2d 6437 . . . . . . . . 9 ((𝑏 = 𝑦𝑘 ∈ ℕ0) → (𝑆𝑏) = (𝑆𝑦))
3433fveq1d 6435 . . . . . . . 8 ((𝑏 = 𝑦𝑘 ∈ ℕ0) → ((𝑆𝑏)‘𝑘) = ((𝑆𝑦)‘𝑘))
3534sumeq2dv 14810 . . . . . . 7 (𝑏 = 𝑦 → Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘) = Σ𝑘 ∈ ℕ0 ((𝑆𝑦)‘𝑘))
36 nfcv 2969 . . . . . . . 8 𝑚((𝑆𝑦)‘𝑘)
37 nfcv 2969 . . . . . . . . . . . 12 𝑘
38 nfmpt1 4970 . . . . . . . . . . . 12 𝑘(𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘)))
3937, 38nfmpt 4969 . . . . . . . . . . 11 𝑘(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
401, 39nfcxfr 2967 . . . . . . . . . 10 𝑘𝑆
41 nfcv 2969 . . . . . . . . . 10 𝑘𝑦
4240, 41nffv 6443 . . . . . . . . 9 𝑘(𝑆𝑦)
43 nfcv 2969 . . . . . . . . 9 𝑘𝑚
4442, 43nffv 6443 . . . . . . . 8 𝑘((𝑆𝑦)‘𝑚)
45 fveq2 6433 . . . . . . . 8 (𝑘 = 𝑚 → ((𝑆𝑦)‘𝑘) = ((𝑆𝑦)‘𝑚))
4636, 44, 45cbvsumi 14804 . . . . . . 7 Σ𝑘 ∈ ℕ0 ((𝑆𝑦)‘𝑘) = Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚)
4735, 46syl6eq 2877 . . . . . 6 (𝑏 = 𝑦 → Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘) = Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚))
4823, 24, 25, 31, 47cbvmptf 4971 . . . . 5 (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘)) = (𝑦𝐷 ↦ Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚))
492, 48eqtri 2849 . . . 4 𝑃 = (𝑦𝐷 ↦ Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚))
50 ovexd 6939 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ V)
51 binomcxplem.f . . . . . 6 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
5251a1i 11 . . . . 5 (𝜑𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
5351a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
54 simpr 479 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
5554oveq2d 6921 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘))
56 simpr 479 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
57 binomcxp.c . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
5857adantr 474 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
5958, 56bcccl 39371 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ ℂ)
6053, 55, 56, 59fvmptd 6535 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐶C𝑐𝑘))
6160, 59eqeltrd 2906 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
6250, 52, 61fmpt2d 6642 . . . 4 (𝜑𝐹:ℕ0⟶ℂ)
63 nfcv 2969 . . . . . . 7 𝑟
64 nfcv 2969 . . . . . . 7 𝑧
65 nfv 2013 . . . . . . 7 𝑧seq0( + , (𝑆𝑟)) ∈ dom ⇝
66 nfcv 2969 . . . . . . . . 9 𝑟0
67 nfcv 2969 . . . . . . . . 9 𝑟 +
68 nfcv 2969 . . . . . . . . . . 11 𝑟(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
691, 68nfcxfr 2967 . . . . . . . . . 10 𝑟𝑆
70 nfcv 2969 . . . . . . . . . 10 𝑟𝑧
7169, 70nffv 6443 . . . . . . . . 9 𝑟(𝑆𝑧)
7266, 67, 71nfseq 13105 . . . . . . . 8 𝑟seq0( + , (𝑆𝑧))
7372nfel1 2984 . . . . . . 7 𝑟seq0( + , (𝑆𝑧)) ∈ dom ⇝
74 fveq2 6433 . . . . . . . . 9 (𝑟 = 𝑧 → (𝑆𝑟) = (𝑆𝑧))
7574seqeq3d 13103 . . . . . . . 8 (𝑟 = 𝑧 → seq0( + , (𝑆𝑟)) = seq0( + , (𝑆𝑧)))
7675eleq1d 2891 . . . . . . 7 (𝑟 = 𝑧 → (seq0( + , (𝑆𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝑆𝑧)) ∈ dom ⇝ ))
7763, 64, 65, 73, 76cbvrab 3411 . . . . . 6 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }
7877supeq1i 8622 . . . . 5 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }, ℝ*, < )
797, 78eqtri 2849 . . . 4 𝑅 = sup({𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }, ℝ*, < )
801fveq1i 6434 . . . . . . . . . . 11 (𝑆𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)
81 seqeq3 13100 . . . . . . . . . . 11 ((𝑆𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧) → seq0( + , (𝑆𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)))
8280, 81ax-mp 5 . . . . . . . . . 10 seq0( + , (𝑆𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧))
8382eleq1i 2897 . . . . . . . . 9 (seq0( + , (𝑆𝑧)) ∈ dom ⇝ ↔ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ )
8483rabbii 3398 . . . . . . . 8 {𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }
8584supeq1i 8622 . . . . . . 7 sup({𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )
867, 78, 853eqtrri 2854 . . . . . 6 sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) = 𝑅
8786eleq1i 2897 . . . . 5 (sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ ↔ 𝑅 ∈ ℝ)
8886oveq2i 6916 . . . . . 6 ((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) = ((abs‘𝑥) + 𝑅)
8988oveq1i 6915 . . . . 5 (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2) = (((abs‘𝑥) + 𝑅) / 2)
90 eqid 2825 . . . . 5 ((abs‘𝑥) + 1) = ((abs‘𝑥) + 1)
9187, 89, 90ifbieq12i 4332 . . . 4 if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1)) = if(𝑅 ∈ ℝ, (((abs‘𝑥) + 𝑅) / 2), ((abs‘𝑥) + 1))
92 oveq1 6912 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑏 → (𝑤𝑘) = (𝑏𝑘))
9392oveq2d 6921 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑏 → ((𝐹𝑘) · (𝑤𝑘)) = ((𝐹𝑘) · (𝑏𝑘)))
9493mpteq2dv 4968 . . . . . . . . . . . . . . 15 (𝑤 = 𝑏 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
9594cbvmptv 4973 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘)))) = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
9695fveq1i 6434 . . . . . . . . . . . . 13 ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)
97 seqeq3 13100 . . . . . . . . . . . . 13 (((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧) → seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)))
9896, 97ax-mp 5 . . . . . . . . . . . 12 seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧))
9998eleq1i 2897 . . . . . . . . . . 11 (seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ ↔ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ )
10099rabbii 3398 . . . . . . . . . 10 {𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }
101100supeq1i 8622 . . . . . . . . 9 sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )
102101eleq1i 2897 . . . . . . . 8 (sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ ↔ sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ)
103101oveq2i 6916 . . . . . . . . 9 ((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) = ((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ))
104103oveq1i 6915 . . . . . . . 8 (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2) = (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2)
105102, 104, 90ifbieq12i 4332 . . . . . . 7 if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1)) = if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))
106105oveq2i 6916 . . . . . 6 ((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) = ((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1)))
107106oveq1i 6915 . . . . 5 (((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2) = (((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2)
108107oveq2i 6916 . . . 4 (0(ball‘(abs ∘ − ))(((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2)) = (0(ball‘(abs ∘ − ))(((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2))
1091, 49, 62, 79, 3, 91, 108pserdv2 24583 . . 3 (𝜑 → (ℂ D 𝑃) = (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1)))))
110 cnvimass 5726 . . . . . . . 8 (abs “ (0[,)𝑅)) ⊆ dom abs
1113, 110eqsstri 3860 . . . . . . 7 𝐷 ⊆ dom abs
112 absf 14454 . . . . . . . 8 abs:ℂ⟶ℝ
113112fdmi 6288 . . . . . . 7 dom abs = ℂ
114111, 113sseqtri 3862 . . . . . 6 𝐷 ⊆ ℂ
115114sseli 3823 . . . . 5 (𝑦𝐷𝑦 ∈ ℂ)
116 binomcxplem.e . . . . . . . . . 10 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
117116a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))))))
118 simplr 785 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → 𝑏 = 𝑦)
119118oveq1d 6920 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → (𝑏↑(𝑘 − 1)) = (𝑦↑(𝑘 − 1)))
120119oveq2d 6921 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))) = ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1))))
121120mpteq2dva 4967 . . . . . . . . 9 (((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))))
122 simpr 479 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
123 nnex 11357 . . . . . . . . . . 11 ℕ ∈ V
124123mptex 6742 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))) ∈ V
125124a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))) ∈ V)
126117, 121, 122, 125fvmptd 6535 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (𝐸𝑦) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))))
127126adantr 474 . . . . . . 7 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → (𝐸𝑦) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))))
128 simpr 479 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → 𝑘 = 𝑛)
129128fveq2d 6437 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑘) = (𝐹𝑛))
130128, 129oveq12d 6923 . . . . . . . 8 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑘 · (𝐹𝑘)) = (𝑛 · (𝐹𝑛)))
131128oveq1d 6920 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑘 − 1) = (𝑛 − 1))
132131oveq2d 6921 . . . . . . . 8 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑦↑(𝑘 − 1)) = (𝑦↑(𝑛 − 1)))
133130, 132oveq12d 6923 . . . . . . 7 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1))) = ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
134 simpr 479 . . . . . . 7 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
135 ovexd 6939 . . . . . . 7 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))) ∈ V)
136127, 133, 134, 135fvmptd 6535 . . . . . 6 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → ((𝐸𝑦)‘𝑛) = ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
137136sumeq2dv 14810 . . . . 5 ((𝜑𝑦 ∈ ℂ) → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
138115, 137sylan2 586 . . . 4 ((𝜑𝑦𝐷) → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
139138mpteq2dva 4967 . . 3 (𝜑 → (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)) = (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1)))))
140109, 139eqtr4d 2864 . 2 (𝜑 → (ℂ D 𝑃) = (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)))
141 nfcv 2969 . . . 4 𝑏
142 nfmpt1 4970 . . . . . . 7 𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
143116, 142nfcxfr 2967 . . . . . 6 𝑏𝐸
144143, 27nffv 6443 . . . . 5 𝑏(𝐸𝑦)
145 nfcv 2969 . . . . 5 𝑏𝑛
146144, 145nffv 6443 . . . 4 𝑏((𝐸𝑦)‘𝑛)
147141, 146nfsum 14798 . . 3 𝑏Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)
148 nfcv 2969 . . 3 𝑦Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)
149 simpl 476 . . . . . . 7 ((𝑦 = 𝑏𝑛 ∈ ℕ) → 𝑦 = 𝑏)
150149fveq2d 6437 . . . . . 6 ((𝑦 = 𝑏𝑛 ∈ ℕ) → (𝐸𝑦) = (𝐸𝑏))
151150fveq1d 6435 . . . . 5 ((𝑦 = 𝑏𝑛 ∈ ℕ) → ((𝐸𝑦)‘𝑛) = ((𝐸𝑏)‘𝑛))
152151sumeq2dv 14810 . . . 4 (𝑦 = 𝑏 → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝐸𝑏)‘𝑛))
153 nfmpt1 4970 . . . . . . . . 9 𝑘(𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))))
15437, 153nfmpt 4969 . . . . . . . 8 𝑘(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
155116, 154nfcxfr 2967 . . . . . . 7 𝑘𝐸
156 nfcv 2969 . . . . . . 7 𝑘𝑏
157155, 156nffv 6443 . . . . . 6 𝑘(𝐸𝑏)
158 nfcv 2969 . . . . . 6 𝑘𝑛
159157, 158nffv 6443 . . . . 5 𝑘((𝐸𝑏)‘𝑛)
160 nfcv 2969 . . . . 5 𝑛((𝐸𝑏)‘𝑘)
161 fveq2 6433 . . . . 5 (𝑛 = 𝑘 → ((𝐸𝑏)‘𝑛) = ((𝐸𝑏)‘𝑘))
162159, 160, 161cbvsumi 14804 . . . 4 Σ𝑛 ∈ ℕ ((𝐸𝑏)‘𝑛) = Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)
163152, 162syl6eq 2877 . . 3 (𝑦 = 𝑏 → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘))
16424, 23, 147, 148, 163cbvmptf 4971 . 2 (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)) = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘))
165140, 164syl6eq 2877 1 (𝜑 → (ℂ D 𝑃) = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  {crab 3121  Vcvv 3414  ifcif 4306   class class class wbr 4873  cmpt 4952  ccnv 5341  dom cdm 5342  cima 5345  ccom 5346  cfv 6123  (class class class)co 6905  supcsup 8615  cc 10250  cr 10251  0cc0 10252  1c1 10253   + caddc 10255   · cmul 10257  *cxr 10390   < clt 10391  cmin 10585   / cdiv 11009  cn 11350  2c2 11406  0cn0 11618  +crp 12112  [,)cico 12465  seqcseq 13095  cexp 13154  abscabs 14351  cli 14592  Σcsu 14793  ballcbl 20093   D cdv 24026  C𝑐cbcc 39368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ioo 12467  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-fl 12888  df-seq 13096  df-exp 13155  df-fac 13354  df-hash 13411  df-shft 14184  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-limsup 14579  df-clim 14596  df-rlim 14597  df-sum 14794  df-prod 15009  df-fallfac 15110  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-hom 16329  df-cco 16330  df-rest 16436  df-topn 16437  df-0g 16455  df-gsum 16456  df-topgen 16457  df-pt 16458  df-prds 16461  df-xrs 16515  df-qtop 16520  df-imas 16521  df-xps 16523  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-mulg 17895  df-cntz 18100  df-cmn 18548  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-fbas 20103  df-fg 20104  df-cnfld 20107  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-cld 21194  df-ntr 21195  df-cls 21196  df-nei 21273  df-lp 21311  df-perf 21312  df-cn 21402  df-cnp 21403  df-haus 21490  df-cmp 21561  df-tx 21736  df-hmeo 21929  df-fil 22020  df-fm 22112  df-flim 22113  df-flf 22114  df-xms 22495  df-ms 22496  df-tms 22497  df-cncf 23051  df-limc 24029  df-dv 24030  df-ulm 24530  df-bcc 39369
This theorem is referenced by:  binomcxplemnotnn0  39388
  Copyright terms: Public domain W3C validator