Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemdvsum Structured version   Visualization version   GIF version

Theorem binomcxplemdvsum 44351
Description: Lemma for binomcxp 44353. The derivative of the generalized sum in binomcxplemnn0 44345. Part of remark "This convergence allows to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
binomcxplem.e 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
binomcxplem.d 𝐷 = (abs “ (0[,)𝑅))
binomcxplem.p 𝑃 = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘))
Assertion
Ref Expression
binomcxplemdvsum (𝜑 → (ℂ D 𝑃) = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)))
Distinct variable groups:   𝑘,𝑏,𝐹   𝜑,𝑏,𝑘   𝑟,𝑏,𝑘,𝐹   𝑗,𝑘,𝜑   𝐶,𝑗
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑘,𝑟,𝑏)   𝐷(𝑗,𝑘,𝑟,𝑏)   𝑃(𝑗,𝑘,𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑟,𝑏)   𝐸(𝑗,𝑘,𝑟,𝑏)   𝐹(𝑗)

Proof of Theorem binomcxplemdvsum
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomcxplem.s . . . 4 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
2 binomcxplem.p . . . . 5 𝑃 = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘))
3 binomcxplem.d . . . . . . 7 𝐷 = (abs “ (0[,)𝑅))
4 nfcv 2892 . . . . . . . 8 𝑏abs
5 nfcv 2892 . . . . . . . . 9 𝑏0
6 nfcv 2892 . . . . . . . . 9 𝑏[,)
7 binomcxplem.r . . . . . . . . . 10 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
8 nfcv 2892 . . . . . . . . . . . . . 14 𝑏 +
9 nfmpt1 5209 . . . . . . . . . . . . . . . 16 𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
101, 9nfcxfr 2890 . . . . . . . . . . . . . . 15 𝑏𝑆
11 nfcv 2892 . . . . . . . . . . . . . . 15 𝑏𝑟
1210, 11nffv 6871 . . . . . . . . . . . . . 14 𝑏(𝑆𝑟)
135, 8, 12nfseq 13983 . . . . . . . . . . . . 13 𝑏seq0( + , (𝑆𝑟))
1413nfel1 2909 . . . . . . . . . . . 12 𝑏seq0( + , (𝑆𝑟)) ∈ dom ⇝
15 nfcv 2892 . . . . . . . . . . . 12 𝑏
1614, 15nfrabw 3446 . . . . . . . . . . 11 𝑏{𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }
17 nfcv 2892 . . . . . . . . . . 11 𝑏*
18 nfcv 2892 . . . . . . . . . . 11 𝑏 <
1916, 17, 18nfsup 9409 . . . . . . . . . 10 𝑏sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
207, 19nfcxfr 2890 . . . . . . . . 9 𝑏𝑅
215, 6, 20nfov 7420 . . . . . . . 8 𝑏(0[,)𝑅)
224, 21nfima 6042 . . . . . . 7 𝑏(abs “ (0[,)𝑅))
233, 22nfcxfr 2890 . . . . . 6 𝑏𝐷
24 nfcv 2892 . . . . . 6 𝑦𝐷
25 nfcv 2892 . . . . . 6 𝑦Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘)
26 nfcv 2892 . . . . . . 7 𝑏0
27 nfcv 2892 . . . . . . . . 9 𝑏𝑦
2810, 27nffv 6871 . . . . . . . 8 𝑏(𝑆𝑦)
29 nfcv 2892 . . . . . . . 8 𝑏𝑚
3028, 29nffv 6871 . . . . . . 7 𝑏((𝑆𝑦)‘𝑚)
3126, 30nfsum 15664 . . . . . 6 𝑏Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚)
32 simpl 482 . . . . . . . . . 10 ((𝑏 = 𝑦𝑘 ∈ ℕ0) → 𝑏 = 𝑦)
3332fveq2d 6865 . . . . . . . . 9 ((𝑏 = 𝑦𝑘 ∈ ℕ0) → (𝑆𝑏) = (𝑆𝑦))
3433fveq1d 6863 . . . . . . . 8 ((𝑏 = 𝑦𝑘 ∈ ℕ0) → ((𝑆𝑏)‘𝑘) = ((𝑆𝑦)‘𝑘))
3534sumeq2dv 15675 . . . . . . 7 (𝑏 = 𝑦 → Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘) = Σ𝑘 ∈ ℕ0 ((𝑆𝑦)‘𝑘))
36 fveq2 6861 . . . . . . . 8 (𝑘 = 𝑚 → ((𝑆𝑦)‘𝑘) = ((𝑆𝑦)‘𝑚))
37 nfcv 2892 . . . . . . . 8 𝑚((𝑆𝑦)‘𝑘)
38 nfcv 2892 . . . . . . . . . . . 12 𝑘
39 nfmpt1 5209 . . . . . . . . . . . 12 𝑘(𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘)))
4038, 39nfmpt 5208 . . . . . . . . . . 11 𝑘(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
411, 40nfcxfr 2890 . . . . . . . . . 10 𝑘𝑆
42 nfcv 2892 . . . . . . . . . 10 𝑘𝑦
4341, 42nffv 6871 . . . . . . . . 9 𝑘(𝑆𝑦)
44 nfcv 2892 . . . . . . . . 9 𝑘𝑚
4543, 44nffv 6871 . . . . . . . 8 𝑘((𝑆𝑦)‘𝑚)
4636, 37, 45cbvsum 15668 . . . . . . 7 Σ𝑘 ∈ ℕ0 ((𝑆𝑦)‘𝑘) = Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚)
4735, 46eqtrdi 2781 . . . . . 6 (𝑏 = 𝑦 → Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘) = Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚))
4823, 24, 25, 31, 47cbvmptf 5210 . . . . 5 (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘)) = (𝑦𝐷 ↦ Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚))
492, 48eqtri 2753 . . . 4 𝑃 = (𝑦𝐷 ↦ Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚))
50 ovexd 7425 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ V)
51 binomcxplem.f . . . . . 6 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
5251a1i 11 . . . . 5 (𝜑𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
5351a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
54 simpr 484 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
5554oveq2d 7406 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘))
56 simpr 484 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
57 binomcxp.c . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
5857adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
5958, 56bcccl 44335 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ ℂ)
6053, 55, 56, 59fvmptd 6978 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐶C𝑐𝑘))
6160, 59eqeltrd 2829 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
6250, 52, 61fmpt2d 7099 . . . 4 (𝜑𝐹:ℕ0⟶ℂ)
63 nfcv 2892 . . . . . . 7 𝑟
64 nfcv 2892 . . . . . . 7 𝑧
65 nfv 1914 . . . . . . 7 𝑧seq0( + , (𝑆𝑟)) ∈ dom ⇝
66 nfcv 2892 . . . . . . . . 9 𝑟0
67 nfcv 2892 . . . . . . . . 9 𝑟 +
68 nfcv 2892 . . . . . . . . . . 11 𝑟(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
691, 68nfcxfr 2890 . . . . . . . . . 10 𝑟𝑆
70 nfcv 2892 . . . . . . . . . 10 𝑟𝑧
7169, 70nffv 6871 . . . . . . . . 9 𝑟(𝑆𝑧)
7266, 67, 71nfseq 13983 . . . . . . . 8 𝑟seq0( + , (𝑆𝑧))
7372nfel1 2909 . . . . . . 7 𝑟seq0( + , (𝑆𝑧)) ∈ dom ⇝
74 fveq2 6861 . . . . . . . . 9 (𝑟 = 𝑧 → (𝑆𝑟) = (𝑆𝑧))
7574seqeq3d 13981 . . . . . . . 8 (𝑟 = 𝑧 → seq0( + , (𝑆𝑟)) = seq0( + , (𝑆𝑧)))
7675eleq1d 2814 . . . . . . 7 (𝑟 = 𝑧 → (seq0( + , (𝑆𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝑆𝑧)) ∈ dom ⇝ ))
7763, 64, 65, 73, 76cbvrabw 3444 . . . . . 6 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }
7877supeq1i 9405 . . . . 5 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }, ℝ*, < )
797, 78eqtri 2753 . . . 4 𝑅 = sup({𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }, ℝ*, < )
801fveq1i 6862 . . . . . . . . . . 11 (𝑆𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)
81 seqeq3 13978 . . . . . . . . . . 11 ((𝑆𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧) → seq0( + , (𝑆𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)))
8280, 81ax-mp 5 . . . . . . . . . 10 seq0( + , (𝑆𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧))
8382eleq1i 2820 . . . . . . . . 9 (seq0( + , (𝑆𝑧)) ∈ dom ⇝ ↔ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ )
8483rabbii 3414 . . . . . . . 8 {𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }
8584supeq1i 9405 . . . . . . 7 sup({𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )
867, 78, 853eqtrri 2758 . . . . . 6 sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) = 𝑅
8786eleq1i 2820 . . . . 5 (sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ ↔ 𝑅 ∈ ℝ)
8886oveq2i 7401 . . . . . 6 ((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) = ((abs‘𝑥) + 𝑅)
8988oveq1i 7400 . . . . 5 (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2) = (((abs‘𝑥) + 𝑅) / 2)
90 eqid 2730 . . . . 5 ((abs‘𝑥) + 1) = ((abs‘𝑥) + 1)
9187, 89, 90ifbieq12i 4519 . . . 4 if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1)) = if(𝑅 ∈ ℝ, (((abs‘𝑥) + 𝑅) / 2), ((abs‘𝑥) + 1))
92 oveq1 7397 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑏 → (𝑤𝑘) = (𝑏𝑘))
9392oveq2d 7406 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑏 → ((𝐹𝑘) · (𝑤𝑘)) = ((𝐹𝑘) · (𝑏𝑘)))
9493mpteq2dv 5204 . . . . . . . . . . . . . . 15 (𝑤 = 𝑏 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
9594cbvmptv 5214 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘)))) = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
9695fveq1i 6862 . . . . . . . . . . . . 13 ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)
97 seqeq3 13978 . . . . . . . . . . . . 13 (((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧) → seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)))
9896, 97ax-mp 5 . . . . . . . . . . . 12 seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧))
9998eleq1i 2820 . . . . . . . . . . 11 (seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ ↔ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ )
10099rabbii 3414 . . . . . . . . . 10 {𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }
101100supeq1i 9405 . . . . . . . . 9 sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )
102101eleq1i 2820 . . . . . . . 8 (sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ ↔ sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ)
103101oveq2i 7401 . . . . . . . . 9 ((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) = ((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ))
104103oveq1i 7400 . . . . . . . 8 (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2) = (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2)
105102, 104, 90ifbieq12i 4519 . . . . . . 7 if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1)) = if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))
106105oveq2i 7401 . . . . . 6 ((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) = ((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1)))
107106oveq1i 7400 . . . . 5 (((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2) = (((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2)
108107oveq2i 7401 . . . 4 (0(ball‘(abs ∘ − ))(((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2)) = (0(ball‘(abs ∘ − ))(((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2))
1091, 49, 62, 79, 3, 91, 108pserdv2 26347 . . 3 (𝜑 → (ℂ D 𝑃) = (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1)))))
110 cnvimass 6056 . . . . . . . 8 (abs “ (0[,)𝑅)) ⊆ dom abs
1113, 110eqsstri 3996 . . . . . . 7 𝐷 ⊆ dom abs
112 absf 15311 . . . . . . . 8 abs:ℂ⟶ℝ
113112fdmi 6702 . . . . . . 7 dom abs = ℂ
114111, 113sseqtri 3998 . . . . . 6 𝐷 ⊆ ℂ
115114sseli 3945 . . . . 5 (𝑦𝐷𝑦 ∈ ℂ)
116 binomcxplem.e . . . . . . . . . 10 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
117116a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))))))
118 simplr 768 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → 𝑏 = 𝑦)
119118oveq1d 7405 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → (𝑏↑(𝑘 − 1)) = (𝑦↑(𝑘 − 1)))
120119oveq2d 7406 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))) = ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1))))
121120mpteq2dva 5203 . . . . . . . . 9 (((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))))
122 simpr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
123 nnex 12199 . . . . . . . . . . 11 ℕ ∈ V
124123mptex 7200 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))) ∈ V
125124a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))) ∈ V)
126117, 121, 122, 125fvmptd 6978 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (𝐸𝑦) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))))
127126adantr 480 . . . . . . 7 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → (𝐸𝑦) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))))
128 simpr 484 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → 𝑘 = 𝑛)
129128fveq2d 6865 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑘) = (𝐹𝑛))
130128, 129oveq12d 7408 . . . . . . . 8 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑘 · (𝐹𝑘)) = (𝑛 · (𝐹𝑛)))
131128oveq1d 7405 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑘 − 1) = (𝑛 − 1))
132131oveq2d 7406 . . . . . . . 8 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑦↑(𝑘 − 1)) = (𝑦↑(𝑛 − 1)))
133130, 132oveq12d 7408 . . . . . . 7 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1))) = ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
134 simpr 484 . . . . . . 7 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
135 ovexd 7425 . . . . . . 7 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))) ∈ V)
136127, 133, 134, 135fvmptd 6978 . . . . . 6 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → ((𝐸𝑦)‘𝑛) = ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
137136sumeq2dv 15675 . . . . 5 ((𝜑𝑦 ∈ ℂ) → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
138115, 137sylan2 593 . . . 4 ((𝜑𝑦𝐷) → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
139138mpteq2dva 5203 . . 3 (𝜑 → (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)) = (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1)))))
140109, 139eqtr4d 2768 . 2 (𝜑 → (ℂ D 𝑃) = (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)))
141 nfcv 2892 . . . 4 𝑏
142 nfmpt1 5209 . . . . . . 7 𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
143116, 142nfcxfr 2890 . . . . . 6 𝑏𝐸
144143, 27nffv 6871 . . . . 5 𝑏(𝐸𝑦)
145 nfcv 2892 . . . . 5 𝑏𝑛
146144, 145nffv 6871 . . . 4 𝑏((𝐸𝑦)‘𝑛)
147141, 146nfsum 15664 . . 3 𝑏Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)
148 nfcv 2892 . . 3 𝑦Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)
149 simpl 482 . . . . . . 7 ((𝑦 = 𝑏𝑛 ∈ ℕ) → 𝑦 = 𝑏)
150149fveq2d 6865 . . . . . 6 ((𝑦 = 𝑏𝑛 ∈ ℕ) → (𝐸𝑦) = (𝐸𝑏))
151150fveq1d 6863 . . . . 5 ((𝑦 = 𝑏𝑛 ∈ ℕ) → ((𝐸𝑦)‘𝑛) = ((𝐸𝑏)‘𝑛))
152151sumeq2dv 15675 . . . 4 (𝑦 = 𝑏 → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝐸𝑏)‘𝑛))
153 fveq2 6861 . . . . 5 (𝑛 = 𝑘 → ((𝐸𝑏)‘𝑛) = ((𝐸𝑏)‘𝑘))
154 nfmpt1 5209 . . . . . . . . 9 𝑘(𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))))
15538, 154nfmpt 5208 . . . . . . . 8 𝑘(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
156116, 155nfcxfr 2890 . . . . . . 7 𝑘𝐸
157 nfcv 2892 . . . . . . 7 𝑘𝑏
158156, 157nffv 6871 . . . . . 6 𝑘(𝐸𝑏)
159 nfcv 2892 . . . . . 6 𝑘𝑛
160158, 159nffv 6871 . . . . 5 𝑘((𝐸𝑏)‘𝑛)
161 nfcv 2892 . . . . 5 𝑛((𝐸𝑏)‘𝑘)
162153, 160, 161cbvsum 15668 . . . 4 Σ𝑛 ∈ ℕ ((𝐸𝑏)‘𝑛) = Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)
163152, 162eqtrdi 2781 . . 3 (𝑦 = 𝑏 → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘))
16424, 23, 147, 148, 163cbvmptf 5210 . 2 (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)) = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘))
165140, 164eqtrdi 2781 1 (𝜑 → (ℂ D 𝑃) = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  ifcif 4491   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  cima 5644  ccom 5645  cfv 6514  (class class class)co 7390  supcsup 9398  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  +crp 12958  [,)cico 13315  seqcseq 13973  cexp 14033  abscabs 15207  cli 15457  Σcsu 15659  ballcbl 21258   D cdv 25771  C𝑐cbcc 44332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-fac 14246  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-prod 15877  df-fallfac 15980  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-ulm 26293  df-bcc 44333
This theorem is referenced by:  binomcxplemnotnn0  44352
  Copyright terms: Public domain W3C validator