| Step | Hyp | Ref
| Expression |
| 1 | | binomcxplem.s |
. . . 4
⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
| 2 | | binomcxplem.p |
. . . . 5
⊢ 𝑃 = (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆‘𝑏)‘𝑘)) |
| 3 | | binomcxplem.d |
. . . . . . 7
⊢ 𝐷 = (◡abs “ (0[,)𝑅)) |
| 4 | | nfcv 2899 |
. . . . . . . 8
⊢
Ⅎ𝑏◡abs |
| 5 | | nfcv 2899 |
. . . . . . . . 9
⊢
Ⅎ𝑏0 |
| 6 | | nfcv 2899 |
. . . . . . . . 9
⊢
Ⅎ𝑏[,) |
| 7 | | binomcxplem.r |
. . . . . . . . . 10
⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) |
| 8 | | nfcv 2899 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏
+ |
| 9 | | nfmpt1 5225 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
| 10 | 1, 9 | nfcxfr 2897 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏𝑆 |
| 11 | | nfcv 2899 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏𝑟 |
| 12 | 10, 11 | nffv 6891 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏(𝑆‘𝑟) |
| 13 | 5, 8, 12 | nfseq 14034 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏seq0(
+ , (𝑆‘𝑟)) |
| 14 | 13 | nfel1 2916 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏seq0( + ,
(𝑆‘𝑟)) ∈ dom ⇝ |
| 15 | | nfcv 2899 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏ℝ |
| 16 | 14, 15 | nfrabw 3459 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏{𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ } |
| 17 | | nfcv 2899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏ℝ* |
| 18 | | nfcv 2899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏
< |
| 19 | 16, 17, 18 | nfsup 9468 |
. . . . . . . . . 10
⊢
Ⅎ𝑏sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) |
| 20 | 7, 19 | nfcxfr 2897 |
. . . . . . . . 9
⊢
Ⅎ𝑏𝑅 |
| 21 | 5, 6, 20 | nfov 7440 |
. . . . . . . 8
⊢
Ⅎ𝑏(0[,)𝑅) |
| 22 | 4, 21 | nfima 6060 |
. . . . . . 7
⊢
Ⅎ𝑏(◡abs
“ (0[,)𝑅)) |
| 23 | 3, 22 | nfcxfr 2897 |
. . . . . 6
⊢
Ⅎ𝑏𝐷 |
| 24 | | nfcv 2899 |
. . . . . 6
⊢
Ⅎ𝑦𝐷 |
| 25 | | nfcv 2899 |
. . . . . 6
⊢
Ⅎ𝑦Σ𝑘 ∈ ℕ0 ((𝑆‘𝑏)‘𝑘) |
| 26 | | nfcv 2899 |
. . . . . . 7
⊢
Ⅎ𝑏ℕ0 |
| 27 | | nfcv 2899 |
. . . . . . . . 9
⊢
Ⅎ𝑏𝑦 |
| 28 | 10, 27 | nffv 6891 |
. . . . . . . 8
⊢
Ⅎ𝑏(𝑆‘𝑦) |
| 29 | | nfcv 2899 |
. . . . . . . 8
⊢
Ⅎ𝑏𝑚 |
| 30 | 28, 29 | nffv 6891 |
. . . . . . 7
⊢
Ⅎ𝑏((𝑆‘𝑦)‘𝑚) |
| 31 | 26, 30 | nfsum 15712 |
. . . . . 6
⊢
Ⅎ𝑏Σ𝑚 ∈ ℕ0 ((𝑆‘𝑦)‘𝑚) |
| 32 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑏 = 𝑦 ∧ 𝑘 ∈ ℕ0) → 𝑏 = 𝑦) |
| 33 | 32 | fveq2d 6885 |
. . . . . . . . 9
⊢ ((𝑏 = 𝑦 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑏) = (𝑆‘𝑦)) |
| 34 | 33 | fveq1d 6883 |
. . . . . . . 8
⊢ ((𝑏 = 𝑦 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑏)‘𝑘) = ((𝑆‘𝑦)‘𝑘)) |
| 35 | 34 | sumeq2dv 15723 |
. . . . . . 7
⊢ (𝑏 = 𝑦 → Σ𝑘 ∈ ℕ0 ((𝑆‘𝑏)‘𝑘) = Σ𝑘 ∈ ℕ0 ((𝑆‘𝑦)‘𝑘)) |
| 36 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → ((𝑆‘𝑦)‘𝑘) = ((𝑆‘𝑦)‘𝑚)) |
| 37 | | nfcv 2899 |
. . . . . . . 8
⊢
Ⅎ𝑚((𝑆‘𝑦)‘𝑘) |
| 38 | | nfcv 2899 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘ℂ |
| 39 | | nfmpt1 5225 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))) |
| 40 | 38, 39 | nfmpt 5224 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
| 41 | 1, 40 | nfcxfr 2897 |
. . . . . . . . . 10
⊢
Ⅎ𝑘𝑆 |
| 42 | | nfcv 2899 |
. . . . . . . . . 10
⊢
Ⅎ𝑘𝑦 |
| 43 | 41, 42 | nffv 6891 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝑆‘𝑦) |
| 44 | | nfcv 2899 |
. . . . . . . . 9
⊢
Ⅎ𝑘𝑚 |
| 45 | 43, 44 | nffv 6891 |
. . . . . . . 8
⊢
Ⅎ𝑘((𝑆‘𝑦)‘𝑚) |
| 46 | 36, 37, 45 | cbvsum 15716 |
. . . . . . 7
⊢
Σ𝑘 ∈
ℕ0 ((𝑆‘𝑦)‘𝑘) = Σ𝑚 ∈ ℕ0 ((𝑆‘𝑦)‘𝑚) |
| 47 | 35, 46 | eqtrdi 2787 |
. . . . . 6
⊢ (𝑏 = 𝑦 → Σ𝑘 ∈ ℕ0 ((𝑆‘𝑏)‘𝑘) = Σ𝑚 ∈ ℕ0 ((𝑆‘𝑦)‘𝑚)) |
| 48 | 23, 24, 25, 31, 47 | cbvmptf 5226 |
. . . . 5
⊢ (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆‘𝑏)‘𝑘)) = (𝑦 ∈ 𝐷 ↦ Σ𝑚 ∈ ℕ0 ((𝑆‘𝑦)‘𝑚)) |
| 49 | 2, 48 | eqtri 2759 |
. . . 4
⊢ 𝑃 = (𝑦 ∈ 𝐷 ↦ Σ𝑚 ∈ ℕ0 ((𝑆‘𝑦)‘𝑚)) |
| 50 | | ovexd 7445 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ V) |
| 51 | | binomcxplem.f |
. . . . . 6
⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
| 52 | 51 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))) |
| 53 | 51 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))) |
| 54 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘) |
| 55 | 54 | oveq2d 7426 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘)) |
| 56 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
| 57 | | binomcxp.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 58 | 57 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈
ℂ) |
| 59 | 58, 56 | bcccl 44330 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈
ℂ) |
| 60 | 53, 55, 56, 59 | fvmptd 6998 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (𝐶C𝑐𝑘)) |
| 61 | 60, 59 | eqeltrd 2835 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℂ) |
| 62 | 50, 52, 61 | fmpt2d 7119 |
. . . 4
⊢ (𝜑 → 𝐹:ℕ0⟶ℂ) |
| 63 | | nfcv 2899 |
. . . . . . 7
⊢
Ⅎ𝑟ℝ |
| 64 | | nfcv 2899 |
. . . . . . 7
⊢
Ⅎ𝑧ℝ |
| 65 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑧seq0( + ,
(𝑆‘𝑟)) ∈ dom ⇝ |
| 66 | | nfcv 2899 |
. . . . . . . . 9
⊢
Ⅎ𝑟0 |
| 67 | | nfcv 2899 |
. . . . . . . . 9
⊢
Ⅎ𝑟
+ |
| 68 | | nfcv 2899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑟(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
| 69 | 1, 68 | nfcxfr 2897 |
. . . . . . . . . 10
⊢
Ⅎ𝑟𝑆 |
| 70 | | nfcv 2899 |
. . . . . . . . . 10
⊢
Ⅎ𝑟𝑧 |
| 71 | 69, 70 | nffv 6891 |
. . . . . . . . 9
⊢
Ⅎ𝑟(𝑆‘𝑧) |
| 72 | 66, 67, 71 | nfseq 14034 |
. . . . . . . 8
⊢
Ⅎ𝑟seq0(
+ , (𝑆‘𝑧)) |
| 73 | 72 | nfel1 2916 |
. . . . . . 7
⊢
Ⅎ𝑟seq0( + ,
(𝑆‘𝑧)) ∈ dom ⇝ |
| 74 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑟 = 𝑧 → (𝑆‘𝑟) = (𝑆‘𝑧)) |
| 75 | 74 | seqeq3d 14032 |
. . . . . . . 8
⊢ (𝑟 = 𝑧 → seq0( + , (𝑆‘𝑟)) = seq0( + , (𝑆‘𝑧))) |
| 76 | 75 | eleq1d 2820 |
. . . . . . 7
⊢ (𝑟 = 𝑧 → (seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝑆‘𝑧)) ∈ dom ⇝ )) |
| 77 | 63, 64, 65, 73, 76 | cbvrabw 3457 |
. . . . . 6
⊢ {𝑟 ∈ ℝ ∣ seq0( +
, (𝑆‘𝑟)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( +
, (𝑆‘𝑧)) ∈ dom ⇝
} |
| 78 | 77 | supeq1i 9464 |
. . . . 5
⊢
sup({𝑟 ∈
ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) = sup({𝑧 ∈
ℝ ∣ seq0( + , (𝑆‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) |
| 79 | 7, 78 | eqtri 2759 |
. . . 4
⊢ 𝑅 = sup({𝑧 ∈ ℝ ∣ seq0( + , (𝑆‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) |
| 80 | 1 | fveq1i 6882 |
. . . . . . . . . . 11
⊢ (𝑆‘𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧) |
| 81 | | seqeq3 14029 |
. . . . . . . . . . 11
⊢ ((𝑆‘𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧) → seq0( + , (𝑆‘𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧))) |
| 82 | 80, 81 | ax-mp 5 |
. . . . . . . . . 10
⊢ seq0( + ,
(𝑆‘𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) |
| 83 | 82 | eleq1i 2826 |
. . . . . . . . 9
⊢ (seq0( +
, (𝑆‘𝑧)) ∈ dom ⇝ ↔
seq0( + , ((𝑏 ∈
ℂ ↦ (𝑘 ∈
ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ ) |
| 84 | 83 | rabbii 3426 |
. . . . . . . 8
⊢ {𝑧 ∈ ℝ ∣ seq0( +
, (𝑆‘𝑧)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( +
, ((𝑏 ∈ ℂ
↦ (𝑘 ∈
ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ } |
| 85 | 84 | supeq1i 9464 |
. . . . . . 7
⊢
sup({𝑧 ∈
ℝ ∣ seq0( + , (𝑆‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) = sup({𝑧 ∈
ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) |
| 86 | 7, 78, 85 | 3eqtrri 2764 |
. . . . . 6
⊢
sup({𝑧 ∈
ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) = 𝑅 |
| 87 | 86 | eleq1i 2826 |
. . . . 5
⊢
(sup({𝑧 ∈
ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ ↔ 𝑅 ∈ ℝ) |
| 88 | 86 | oveq2i 7421 |
. . . . . 6
⊢
((abs‘𝑥) +
sup({𝑧 ∈ ℝ
∣ seq0( + , ((𝑏
∈ ℂ ↦ (𝑘
∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) = ((abs‘𝑥) +
𝑅) |
| 89 | 88 | oveq1i 7420 |
. . . . 5
⊢
(((abs‘𝑥) +
sup({𝑧 ∈ ℝ
∣ seq0( + , ((𝑏
∈ ℂ ↦ (𝑘
∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2) = (((abs‘𝑥) + 𝑅) / 2) |
| 90 | | eqid 2736 |
. . . . 5
⊢
((abs‘𝑥) + 1)
= ((abs‘𝑥) +
1) |
| 91 | 87, 89, 90 | ifbieq12i 4533 |
. . . 4
⊢
if(sup({𝑧 ∈
ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2), ((abs‘𝑥) + 1)) = if(𝑅 ∈ ℝ, (((abs‘𝑥) + 𝑅) / 2), ((abs‘𝑥) + 1)) |
| 92 | | oveq1 7417 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑏 → (𝑤↑𝑘) = (𝑏↑𝑘)) |
| 93 | 92 | oveq2d 7426 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑏 → ((𝐹‘𝑘) · (𝑤↑𝑘)) = ((𝐹‘𝑘) · (𝑏↑𝑘))) |
| 94 | 93 | mpteq2dv 5220 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑏 → (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
| 95 | 94 | cbvmptv 5230 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑤↑𝑘)))) = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
| 96 | 95 | fveq1i 6882 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧) |
| 97 | | seqeq3 14029 |
. . . . . . . . . . . . 13
⊢ (((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧) → seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧))) |
| 98 | 96, 97 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ seq0( + ,
((𝑤 ∈ ℂ ↦
(𝑘 ∈
ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) |
| 99 | 98 | eleq1i 2826 |
. . . . . . . . . . 11
⊢ (seq0( +
, ((𝑤 ∈ ℂ
↦ (𝑘 ∈
ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ ↔ seq0( + ,
((𝑏 ∈ ℂ ↦
(𝑘 ∈
ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ ) |
| 100 | 99 | rabbii 3426 |
. . . . . . . . . 10
⊢ {𝑧 ∈ ℝ ∣ seq0( +
, ((𝑤 ∈ ℂ
↦ (𝑘 ∈
ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ } |
| 101 | 100 | supeq1i 9464 |
. . . . . . . . 9
⊢
sup({𝑧 ∈
ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) = sup({𝑧 ∈
ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) |
| 102 | 101 | eleq1i 2826 |
. . . . . . . 8
⊢
(sup({𝑧 ∈
ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ ↔ sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ) |
| 103 | 101 | oveq2i 7421 |
. . . . . . . . 9
⊢
((abs‘𝑥) +
sup({𝑧 ∈ ℝ
∣ seq0( + , ((𝑤
∈ ℂ ↦ (𝑘
∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) = ((abs‘𝑥) +
sup({𝑧 ∈ ℝ
∣ seq0( + , ((𝑏
∈ ℂ ↦ (𝑘
∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) |
| 104 | 103 | oveq1i 7420 |
. . . . . . . 8
⊢
(((abs‘𝑥) +
sup({𝑧 ∈ ℝ
∣ seq0( + , ((𝑤
∈ ℂ ↦ (𝑘
∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2) = (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2) |
| 105 | 102, 104,
90 | ifbieq12i 4533 |
. . . . . . 7
⊢
if(sup({𝑧 ∈
ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2), ((abs‘𝑥) + 1)) = if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2), ((abs‘𝑥) + 1)) |
| 106 | 105 | oveq2i 7421 |
. . . . . 6
⊢
((abs‘𝑥) +
if(sup({𝑧 ∈ ℝ
∣ seq0( + , ((𝑤
∈ ℂ ↦ (𝑘
∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2), ((abs‘𝑥) + 1))) = ((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2), ((abs‘𝑥) + 1))) |
| 107 | 106 | oveq1i 7420 |
. . . . 5
⊢
(((abs‘𝑥) +
if(sup({𝑧 ∈ ℝ
∣ seq0( + , ((𝑤
∈ ℂ ↦ (𝑘
∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2), ((abs‘𝑥) + 1))) / 2) = (((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2), ((abs‘𝑥) + 1))) / 2) |
| 108 | 107 | oveq2i 7421 |
. . . 4
⊢
(0(ball‘(abs ∘ − ))(((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2), ((abs‘𝑥) + 1))) / 2)) = (0(ball‘(abs ∘
− ))(((abs‘𝑥) +
if(sup({𝑧 ∈ ℝ
∣ seq0( + , ((𝑏
∈ ℂ ↦ (𝑘
∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2), ((abs‘𝑥) + 1))) / 2)) |
| 109 | 1, 49, 62, 79, 3, 91, 108 | pserdv2 26397 |
. . 3
⊢ (𝜑 → (ℂ D 𝑃) = (𝑦 ∈ 𝐷 ↦ Σ𝑛 ∈ ℕ ((𝑛 · (𝐹‘𝑛)) · (𝑦↑(𝑛 − 1))))) |
| 110 | | cnvimass 6074 |
. . . . . . . 8
⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs |
| 111 | 3, 110 | eqsstri 4010 |
. . . . . . 7
⊢ 𝐷 ⊆ dom
abs |
| 112 | | absf 15361 |
. . . . . . . 8
⊢
abs:ℂ⟶ℝ |
| 113 | 112 | fdmi 6722 |
. . . . . . 7
⊢ dom abs =
ℂ |
| 114 | 111, 113 | sseqtri 4012 |
. . . . . 6
⊢ 𝐷 ⊆
ℂ |
| 115 | 114 | sseli 3959 |
. . . . 5
⊢ (𝑦 ∈ 𝐷 → 𝑦 ∈ ℂ) |
| 116 | | binomcxplem.e |
. . . . . . . . . 10
⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) |
| 117 | 116 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1)))))) |
| 118 | | simplr 768 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → 𝑏 = 𝑦) |
| 119 | 118 | oveq1d 7425 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → (𝑏↑(𝑘 − 1)) = (𝑦↑(𝑘 − 1))) |
| 120 | 119 | oveq2d 7426 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))) = ((𝑘 · (𝐹‘𝑘)) · (𝑦↑(𝑘 − 1)))) |
| 121 | 120 | mpteq2dva 5219 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
| 122 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) |
| 123 | | nnex 12251 |
. . . . . . . . . . 11
⊢ ℕ
∈ V |
| 124 | 123 | mptex 7220 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑦↑(𝑘 − 1)))) ∈ V |
| 125 | 124 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑦↑(𝑘 − 1)))) ∈ V) |
| 126 | 117, 121,
122, 125 | fvmptd 6998 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝐸‘𝑦) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
| 127 | 126 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → (𝐸‘𝑦) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
| 128 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → 𝑘 = 𝑛) |
| 129 | 128 | fveq2d 6885 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹‘𝑘) = (𝐹‘𝑛)) |
| 130 | 128, 129 | oveq12d 7428 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑘 · (𝐹‘𝑘)) = (𝑛 · (𝐹‘𝑛))) |
| 131 | 128 | oveq1d 7425 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑘 − 1) = (𝑛 − 1)) |
| 132 | 131 | oveq2d 7426 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑦↑(𝑘 − 1)) = (𝑦↑(𝑛 − 1))) |
| 133 | 130, 132 | oveq12d 7428 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → ((𝑘 · (𝐹‘𝑘)) · (𝑦↑(𝑘 − 1))) = ((𝑛 · (𝐹‘𝑛)) · (𝑦↑(𝑛 − 1)))) |
| 134 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 135 | | ovexd 7445 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → ((𝑛 · (𝐹‘𝑛)) · (𝑦↑(𝑛 − 1))) ∈ V) |
| 136 | 127, 133,
134, 135 | fvmptd 6998 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → ((𝐸‘𝑦)‘𝑛) = ((𝑛 · (𝐹‘𝑛)) · (𝑦↑(𝑛 − 1)))) |
| 137 | 136 | sumeq2dv 15723 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → Σ𝑛 ∈ ℕ ((𝐸‘𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝑛 · (𝐹‘𝑛)) · (𝑦↑(𝑛 − 1)))) |
| 138 | 115, 137 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → Σ𝑛 ∈ ℕ ((𝐸‘𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝑛 · (𝐹‘𝑛)) · (𝑦↑(𝑛 − 1)))) |
| 139 | 138 | mpteq2dva 5219 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸‘𝑦)‘𝑛)) = (𝑦 ∈ 𝐷 ↦ Σ𝑛 ∈ ℕ ((𝑛 · (𝐹‘𝑛)) · (𝑦↑(𝑛 − 1))))) |
| 140 | 109, 139 | eqtr4d 2774 |
. 2
⊢ (𝜑 → (ℂ D 𝑃) = (𝑦 ∈ 𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸‘𝑦)‘𝑛))) |
| 141 | | nfcv 2899 |
. . . 4
⊢
Ⅎ𝑏ℕ |
| 142 | | nfmpt1 5225 |
. . . . . . 7
⊢
Ⅎ𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) |
| 143 | 116, 142 | nfcxfr 2897 |
. . . . . 6
⊢
Ⅎ𝑏𝐸 |
| 144 | 143, 27 | nffv 6891 |
. . . . 5
⊢
Ⅎ𝑏(𝐸‘𝑦) |
| 145 | | nfcv 2899 |
. . . . 5
⊢
Ⅎ𝑏𝑛 |
| 146 | 144, 145 | nffv 6891 |
. . . 4
⊢
Ⅎ𝑏((𝐸‘𝑦)‘𝑛) |
| 147 | 141, 146 | nfsum 15712 |
. . 3
⊢
Ⅎ𝑏Σ𝑛 ∈ ℕ ((𝐸‘𝑦)‘𝑛) |
| 148 | | nfcv 2899 |
. . 3
⊢
Ⅎ𝑦Σ𝑘 ∈ ℕ ((𝐸‘𝑏)‘𝑘) |
| 149 | | simpl 482 |
. . . . . . 7
⊢ ((𝑦 = 𝑏 ∧ 𝑛 ∈ ℕ) → 𝑦 = 𝑏) |
| 150 | 149 | fveq2d 6885 |
. . . . . 6
⊢ ((𝑦 = 𝑏 ∧ 𝑛 ∈ ℕ) → (𝐸‘𝑦) = (𝐸‘𝑏)) |
| 151 | 150 | fveq1d 6883 |
. . . . 5
⊢ ((𝑦 = 𝑏 ∧ 𝑛 ∈ ℕ) → ((𝐸‘𝑦)‘𝑛) = ((𝐸‘𝑏)‘𝑛)) |
| 152 | 151 | sumeq2dv 15723 |
. . . 4
⊢ (𝑦 = 𝑏 → Σ𝑛 ∈ ℕ ((𝐸‘𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝐸‘𝑏)‘𝑛)) |
| 153 | | fveq2 6881 |
. . . . 5
⊢ (𝑛 = 𝑘 → ((𝐸‘𝑏)‘𝑛) = ((𝐸‘𝑏)‘𝑘)) |
| 154 | | nfmpt1 5225 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1)))) |
| 155 | 38, 154 | nfmpt 5224 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) |
| 156 | 116, 155 | nfcxfr 2897 |
. . . . . . 7
⊢
Ⅎ𝑘𝐸 |
| 157 | | nfcv 2899 |
. . . . . . 7
⊢
Ⅎ𝑘𝑏 |
| 158 | 156, 157 | nffv 6891 |
. . . . . 6
⊢
Ⅎ𝑘(𝐸‘𝑏) |
| 159 | | nfcv 2899 |
. . . . . 6
⊢
Ⅎ𝑘𝑛 |
| 160 | 158, 159 | nffv 6891 |
. . . . 5
⊢
Ⅎ𝑘((𝐸‘𝑏)‘𝑛) |
| 161 | | nfcv 2899 |
. . . . 5
⊢
Ⅎ𝑛((𝐸‘𝑏)‘𝑘) |
| 162 | 153, 160,
161 | cbvsum 15716 |
. . . 4
⊢
Σ𝑛 ∈
ℕ ((𝐸‘𝑏)‘𝑛) = Σ𝑘 ∈ ℕ ((𝐸‘𝑏)‘𝑘) |
| 163 | 152, 162 | eqtrdi 2787 |
. . 3
⊢ (𝑦 = 𝑏 → Σ𝑛 ∈ ℕ ((𝐸‘𝑦)‘𝑛) = Σ𝑘 ∈ ℕ ((𝐸‘𝑏)‘𝑘)) |
| 164 | 24, 23, 147, 148, 163 | cbvmptf 5226 |
. 2
⊢ (𝑦 ∈ 𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸‘𝑦)‘𝑛)) = (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸‘𝑏)‘𝑘)) |
| 165 | 140, 164 | eqtrdi 2787 |
1
⊢ (𝜑 → (ℂ D 𝑃) = (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸‘𝑏)‘𝑘))) |