Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemdvsum Structured version   Visualization version   GIF version

Theorem binomcxplemdvsum 40571
Description: Lemma for binomcxp 40573. The derivative of the generalized sum in binomcxplemnn0 40565. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
binomcxplem.e 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
binomcxplem.d 𝐷 = (abs “ (0[,)𝑅))
binomcxplem.p 𝑃 = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘))
Assertion
Ref Expression
binomcxplemdvsum (𝜑 → (ℂ D 𝑃) = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)))
Distinct variable groups:   𝑘,𝑏,𝐹   𝜑,𝑏,𝑘   𝑟,𝑏,𝑘,𝐹   𝑗,𝑘,𝜑   𝐶,𝑗
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑘,𝑟,𝑏)   𝐷(𝑗,𝑘,𝑟,𝑏)   𝑃(𝑗,𝑘,𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑟,𝑏)   𝐸(𝑗,𝑘,𝑟,𝑏)   𝐹(𝑗)

Proof of Theorem binomcxplemdvsum
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomcxplem.s . . . 4 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
2 binomcxplem.p . . . . 5 𝑃 = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘))
3 binomcxplem.d . . . . . . 7 𝐷 = (abs “ (0[,)𝑅))
4 nfcv 2982 . . . . . . . 8 𝑏abs
5 nfcv 2982 . . . . . . . . 9 𝑏0
6 nfcv 2982 . . . . . . . . 9 𝑏[,)
7 binomcxplem.r . . . . . . . . . 10 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
8 nfcv 2982 . . . . . . . . . . . . . 14 𝑏 +
9 nfmpt1 5161 . . . . . . . . . . . . . . . 16 𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
101, 9nfcxfr 2980 . . . . . . . . . . . . . . 15 𝑏𝑆
11 nfcv 2982 . . . . . . . . . . . . . . 15 𝑏𝑟
1210, 11nffv 6679 . . . . . . . . . . . . . 14 𝑏(𝑆𝑟)
135, 8, 12nfseq 13374 . . . . . . . . . . . . 13 𝑏seq0( + , (𝑆𝑟))
1413nfel1 2999 . . . . . . . . . . . 12 𝑏seq0( + , (𝑆𝑟)) ∈ dom ⇝
15 nfcv 2982 . . . . . . . . . . . 12 𝑏
1614, 15nfrab 3392 . . . . . . . . . . 11 𝑏{𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }
17 nfcv 2982 . . . . . . . . . . 11 𝑏*
18 nfcv 2982 . . . . . . . . . . 11 𝑏 <
1916, 17, 18nfsup 8909 . . . . . . . . . 10 𝑏sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
207, 19nfcxfr 2980 . . . . . . . . 9 𝑏𝑅
215, 6, 20nfov 7180 . . . . . . . 8 𝑏(0[,)𝑅)
224, 21nfima 5936 . . . . . . 7 𝑏(abs “ (0[,)𝑅))
233, 22nfcxfr 2980 . . . . . 6 𝑏𝐷
24 nfcv 2982 . . . . . 6 𝑦𝐷
25 nfcv 2982 . . . . . 6 𝑦Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘)
26 nfcv 2982 . . . . . . 7 𝑏0
27 nfcv 2982 . . . . . . . . 9 𝑏𝑦
2810, 27nffv 6679 . . . . . . . 8 𝑏(𝑆𝑦)
29 nfcv 2982 . . . . . . . 8 𝑏𝑚
3028, 29nffv 6679 . . . . . . 7 𝑏((𝑆𝑦)‘𝑚)
3126, 30nfsumw 15042 . . . . . 6 𝑏Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚)
32 simpl 483 . . . . . . . . . 10 ((𝑏 = 𝑦𝑘 ∈ ℕ0) → 𝑏 = 𝑦)
3332fveq2d 6673 . . . . . . . . 9 ((𝑏 = 𝑦𝑘 ∈ ℕ0) → (𝑆𝑏) = (𝑆𝑦))
3433fveq1d 6671 . . . . . . . 8 ((𝑏 = 𝑦𝑘 ∈ ℕ0) → ((𝑆𝑏)‘𝑘) = ((𝑆𝑦)‘𝑘))
3534sumeq2dv 15055 . . . . . . 7 (𝑏 = 𝑦 → Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘) = Σ𝑘 ∈ ℕ0 ((𝑆𝑦)‘𝑘))
36 nfcv 2982 . . . . . . . 8 𝑚((𝑆𝑦)‘𝑘)
37 nfcv 2982 . . . . . . . . . . . 12 𝑘
38 nfmpt1 5161 . . . . . . . . . . . 12 𝑘(𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘)))
3937, 38nfmpt 5160 . . . . . . . . . . 11 𝑘(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
401, 39nfcxfr 2980 . . . . . . . . . 10 𝑘𝑆
41 nfcv 2982 . . . . . . . . . 10 𝑘𝑦
4240, 41nffv 6679 . . . . . . . . 9 𝑘(𝑆𝑦)
43 nfcv 2982 . . . . . . . . 9 𝑘𝑚
4442, 43nffv 6679 . . . . . . . 8 𝑘((𝑆𝑦)‘𝑚)
45 fveq2 6669 . . . . . . . 8 (𝑘 = 𝑚 → ((𝑆𝑦)‘𝑘) = ((𝑆𝑦)‘𝑚))
4636, 44, 45cbvsumi 15049 . . . . . . 7 Σ𝑘 ∈ ℕ0 ((𝑆𝑦)‘𝑘) = Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚)
4735, 46syl6eq 2877 . . . . . 6 (𝑏 = 𝑦 → Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘) = Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚))
4823, 24, 25, 31, 47cbvmptf 5162 . . . . 5 (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆𝑏)‘𝑘)) = (𝑦𝐷 ↦ Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚))
492, 48eqtri 2849 . . . 4 𝑃 = (𝑦𝐷 ↦ Σ𝑚 ∈ ℕ0 ((𝑆𝑦)‘𝑚))
50 ovexd 7185 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ V)
51 binomcxplem.f . . . . . 6 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
5251a1i 11 . . . . 5 (𝜑𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
5351a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
54 simpr 485 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
5554oveq2d 7166 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘))
56 simpr 485 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
57 binomcxp.c . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
5857adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
5958, 56bcccl 40555 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ ℂ)
6053, 55, 56, 59fvmptd 6773 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐶C𝑐𝑘))
6160, 59eqeltrd 2918 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
6250, 52, 61fmpt2d 6885 . . . 4 (𝜑𝐹:ℕ0⟶ℂ)
63 nfcv 2982 . . . . . . 7 𝑟
64 nfcv 2982 . . . . . . 7 𝑧
65 nfv 1908 . . . . . . 7 𝑧seq0( + , (𝑆𝑟)) ∈ dom ⇝
66 nfcv 2982 . . . . . . . . 9 𝑟0
67 nfcv 2982 . . . . . . . . 9 𝑟 +
68 nfcv 2982 . . . . . . . . . . 11 𝑟(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
691, 68nfcxfr 2980 . . . . . . . . . 10 𝑟𝑆
70 nfcv 2982 . . . . . . . . . 10 𝑟𝑧
7169, 70nffv 6679 . . . . . . . . 9 𝑟(𝑆𝑧)
7266, 67, 71nfseq 13374 . . . . . . . 8 𝑟seq0( + , (𝑆𝑧))
7372nfel1 2999 . . . . . . 7 𝑟seq0( + , (𝑆𝑧)) ∈ dom ⇝
74 fveq2 6669 . . . . . . . . 9 (𝑟 = 𝑧 → (𝑆𝑟) = (𝑆𝑧))
7574seqeq3d 13372 . . . . . . . 8 (𝑟 = 𝑧 → seq0( + , (𝑆𝑟)) = seq0( + , (𝑆𝑧)))
7675eleq1d 2902 . . . . . . 7 (𝑟 = 𝑧 → (seq0( + , (𝑆𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝑆𝑧)) ∈ dom ⇝ ))
7763, 64, 65, 73, 76cbvrab 3496 . . . . . 6 {𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }
7877supeq1i 8905 . . . . 5 sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }, ℝ*, < )
797, 78eqtri 2849 . . . 4 𝑅 = sup({𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }, ℝ*, < )
801fveq1i 6670 . . . . . . . . . . 11 (𝑆𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)
81 seqeq3 13369 . . . . . . . . . . 11 ((𝑆𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧) → seq0( + , (𝑆𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)))
8280, 81ax-mp 5 . . . . . . . . . 10 seq0( + , (𝑆𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧))
8382eleq1i 2908 . . . . . . . . 9 (seq0( + , (𝑆𝑧)) ∈ dom ⇝ ↔ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ )
8483rabbii 3479 . . . . . . . 8 {𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }
8584supeq1i 8905 . . . . . . 7 sup({𝑧 ∈ ℝ ∣ seq0( + , (𝑆𝑧)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )
867, 78, 853eqtrri 2854 . . . . . 6 sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) = 𝑅
8786eleq1i 2908 . . . . 5 (sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ ↔ 𝑅 ∈ ℝ)
8886oveq2i 7161 . . . . . 6 ((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) = ((abs‘𝑥) + 𝑅)
8988oveq1i 7160 . . . . 5 (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2) = (((abs‘𝑥) + 𝑅) / 2)
90 eqid 2826 . . . . 5 ((abs‘𝑥) + 1) = ((abs‘𝑥) + 1)
9187, 89, 90ifbieq12i 4496 . . . 4 if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1)) = if(𝑅 ∈ ℝ, (((abs‘𝑥) + 𝑅) / 2), ((abs‘𝑥) + 1))
92 oveq1 7157 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑏 → (𝑤𝑘) = (𝑏𝑘))
9392oveq2d 7166 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑏 → ((𝐹𝑘) · (𝑤𝑘)) = ((𝐹𝑘) · (𝑏𝑘)))
9493mpteq2dv 5159 . . . . . . . . . . . . . . 15 (𝑤 = 𝑏 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
9594cbvmptv 5166 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘)))) = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
9695fveq1i 6670 . . . . . . . . . . . . 13 ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)
97 seqeq3 13369 . . . . . . . . . . . . 13 (((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧) → seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)))
9896, 97ax-mp 5 . . . . . . . . . . . 12 seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧))
9998eleq1i 2908 . . . . . . . . . . 11 (seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ ↔ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ )
10099rabbii 3479 . . . . . . . . . 10 {𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }
101100supeq1i 8905 . . . . . . . . 9 sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )
102101eleq1i 2908 . . . . . . . 8 (sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ ↔ sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ)
103101oveq2i 7161 . . . . . . . . 9 ((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) = ((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ))
104103oveq1i 7160 . . . . . . . 8 (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2) = (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2)
105102, 104, 90ifbieq12i 4496 . . . . . . 7 if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1)) = if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))
106105oveq2i 7161 . . . . . 6 ((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) = ((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1)))
107106oveq1i 7160 . . . . 5 (((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2) = (((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2)
108107oveq2i 7161 . . . 4 (0(ball‘(abs ∘ − ))(((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑤𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2)) = (0(ball‘(abs ∘ − ))(((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*, < )) / 2), ((abs‘𝑥) + 1))) / 2))
1091, 49, 62, 79, 3, 91, 108pserdv2 24952 . . 3 (𝜑 → (ℂ D 𝑃) = (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1)))))
110 cnvimass 5948 . . . . . . . 8 (abs “ (0[,)𝑅)) ⊆ dom abs
1113, 110eqsstri 4005 . . . . . . 7 𝐷 ⊆ dom abs
112 absf 14692 . . . . . . . 8 abs:ℂ⟶ℝ
113112fdmi 6523 . . . . . . 7 dom abs = ℂ
114111, 113sseqtri 4007 . . . . . 6 𝐷 ⊆ ℂ
115114sseli 3967 . . . . 5 (𝑦𝐷𝑦 ∈ ℂ)
116 binomcxplem.e . . . . . . . . . 10 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
117116a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))))))
118 simplr 765 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → 𝑏 = 𝑦)
119118oveq1d 7165 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → (𝑏↑(𝑘 − 1)) = (𝑦↑(𝑘 − 1)))
120119oveq2d 7166 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))) = ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1))))
121120mpteq2dva 5158 . . . . . . . . 9 (((𝜑𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))))
122 simpr 485 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
123 nnex 11638 . . . . . . . . . . 11 ℕ ∈ V
124123mptex 6983 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))) ∈ V
125124a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))) ∈ V)
126117, 121, 122, 125fvmptd 6773 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → (𝐸𝑦) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))))
127126adantr 481 . . . . . . 7 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → (𝐸𝑦) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1)))))
128 simpr 485 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → 𝑘 = 𝑛)
129128fveq2d 6673 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑘) = (𝐹𝑛))
130128, 129oveq12d 7168 . . . . . . . 8 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑘 · (𝐹𝑘)) = (𝑛 · (𝐹𝑛)))
131128oveq1d 7165 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑘 − 1) = (𝑛 − 1))
132131oveq2d 7166 . . . . . . . 8 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑦↑(𝑘 − 1)) = (𝑦↑(𝑛 − 1)))
133130, 132oveq12d 7168 . . . . . . 7 ((((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → ((𝑘 · (𝐹𝑘)) · (𝑦↑(𝑘 − 1))) = ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
134 simpr 485 . . . . . . 7 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
135 ovexd 7185 . . . . . . 7 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))) ∈ V)
136127, 133, 134, 135fvmptd 6773 . . . . . 6 (((𝜑𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → ((𝐸𝑦)‘𝑛) = ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
137136sumeq2dv 15055 . . . . 5 ((𝜑𝑦 ∈ ℂ) → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
138115, 137sylan2 592 . . . 4 ((𝜑𝑦𝐷) → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1))))
139138mpteq2dva 5158 . . 3 (𝜑 → (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)) = (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝑛 · (𝐹𝑛)) · (𝑦↑(𝑛 − 1)))))
140109, 139eqtr4d 2864 . 2 (𝜑 → (ℂ D 𝑃) = (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)))
141 nfcv 2982 . . . 4 𝑏
142 nfmpt1 5161 . . . . . . 7 𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
143116, 142nfcxfr 2980 . . . . . 6 𝑏𝐸
144143, 27nffv 6679 . . . . 5 𝑏(𝐸𝑦)
145 nfcv 2982 . . . . 5 𝑏𝑛
146144, 145nffv 6679 . . . 4 𝑏((𝐸𝑦)‘𝑛)
147141, 146nfsumw 15042 . . 3 𝑏Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)
148 nfcv 2982 . . 3 𝑦Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)
149 simpl 483 . . . . . . 7 ((𝑦 = 𝑏𝑛 ∈ ℕ) → 𝑦 = 𝑏)
150149fveq2d 6673 . . . . . 6 ((𝑦 = 𝑏𝑛 ∈ ℕ) → (𝐸𝑦) = (𝐸𝑏))
151150fveq1d 6671 . . . . 5 ((𝑦 = 𝑏𝑛 ∈ ℕ) → ((𝐸𝑦)‘𝑛) = ((𝐸𝑏)‘𝑛))
152151sumeq2dv 15055 . . . 4 (𝑦 = 𝑏 → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝐸𝑏)‘𝑛))
153 nfmpt1 5161 . . . . . . . . 9 𝑘(𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1))))
15437, 153nfmpt 5160 . . . . . . . 8 𝑘(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹𝑘)) · (𝑏↑(𝑘 − 1)))))
155116, 154nfcxfr 2980 . . . . . . 7 𝑘𝐸
156 nfcv 2982 . . . . . . 7 𝑘𝑏
157155, 156nffv 6679 . . . . . 6 𝑘(𝐸𝑏)
158 nfcv 2982 . . . . . 6 𝑘𝑛
159157, 158nffv 6679 . . . . 5 𝑘((𝐸𝑏)‘𝑛)
160 nfcv 2982 . . . . 5 𝑛((𝐸𝑏)‘𝑘)
161 fveq2 6669 . . . . 5 (𝑛 = 𝑘 → ((𝐸𝑏)‘𝑛) = ((𝐸𝑏)‘𝑘))
162159, 160, 161cbvsumi 15049 . . . 4 Σ𝑛 ∈ ℕ ((𝐸𝑏)‘𝑛) = Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)
163152, 162syl6eq 2877 . . 3 (𝑦 = 𝑏 → Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛) = Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘))
16424, 23, 147, 148, 163cbvmptf 5162 . 2 (𝑦𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸𝑦)‘𝑛)) = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘))
165140, 164syl6eq 2877 1 (𝜑 → (ℂ D 𝑃) = (𝑏𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸𝑏)‘𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  {crab 3147  Vcvv 3500  ifcif 4470   class class class wbr 5063  cmpt 5143  ccnv 5553  dom cdm 5554  cima 5557  ccom 5558  cfv 6354  (class class class)co 7150  supcsup 8898  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  *cxr 10668   < clt 10669  cmin 10864   / cdiv 11291  cn 11632  2c2 11686  0cn0 11891  +crp 12384  [,)cico 12735  seqcseq 13364  cexp 13424  abscabs 14588  cli 14836  Σcsu 15037  ballcbl 20467   D cdv 24395  C𝑐cbcc 40552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8284  df-map 8403  df-pm 8404  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ico 12739  df-icc 12740  df-fz 12888  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13425  df-fac 13629  df-hash 13686  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-prod 15255  df-fallfac 15356  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18170  df-cntz 18392  df-cmn 18844  df-psmet 20472  df-xmet 20473  df-met 20474  df-bl 20475  df-mopn 20476  df-fbas 20477  df-fg 20478  df-cnfld 20481  df-top 21437  df-topon 21454  df-topsp 21476  df-bases 21489  df-cld 21562  df-ntr 21563  df-cls 21564  df-nei 21641  df-lp 21679  df-perf 21680  df-cn 21770  df-cnp 21771  df-haus 21858  df-cmp 21930  df-tx 22105  df-hmeo 22298  df-fil 22389  df-fm 22481  df-flim 22482  df-flf 22483  df-xms 22864  df-ms 22865  df-tms 22866  df-cncf 23420  df-limc 24398  df-dv 24399  df-ulm 24899  df-bcc 40553
This theorem is referenced by:  binomcxplemnotnn0  40572
  Copyright terms: Public domain W3C validator