Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifbieq2d | Structured version Visualization version GIF version |
Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
ifbieq2d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
ifbieq2d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifbieq2d | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq2d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ifbid 4483 | . 2 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐴)) |
3 | ifbieq2d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | ifeq2d 4480 | . 2 ⊢ (𝜑 → if(𝜒, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵)) |
5 | 2, 4 | eqtrd 2779 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜒, 𝐶, 𝐵)) |
Copyright terms: Public domain | W3C validator |