MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  copco Structured version   Visualization version   GIF version

Theorem copco 23627
Description: The composition of a concatenation of paths with a continuous function. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
pcoval2.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
copco.6 (𝜑𝐻 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
copco (𝜑 → (𝐻 ∘ (𝐹(*𝑝𝐽)𝐺)) = ((𝐻𝐹)(*𝑝𝐾)(𝐻𝐺)))

Proof of Theorem copco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . . . . . . 7 (𝜑𝐹 ∈ (II Cn 𝐽))
2 iiuni 23490 . . . . . . . 8 (0[,]1) = II
3 eqid 2801 . . . . . . . 8 𝐽 = 𝐽
42, 3cnf 21855 . . . . . . 7 (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶ 𝐽)
51, 4syl 17 . . . . . 6 (𝜑𝐹:(0[,]1)⟶ 𝐽)
6 elii1 23544 . . . . . . 7 (𝑥 ∈ (0[,](1 / 2)) ↔ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)))
7 iihalf1 23540 . . . . . . 7 (𝑥 ∈ (0[,](1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
86, 7sylbir 238 . . . . . 6 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
9 fvco3 6741 . . . . . 6 ((𝐹:(0[,]1)⟶ 𝐽 ∧ (2 · 𝑥) ∈ (0[,]1)) → ((𝐻𝐹)‘(2 · 𝑥)) = (𝐻‘(𝐹‘(2 · 𝑥))))
105, 8, 9syl2an 598 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2))) → ((𝐻𝐹)‘(2 · 𝑥)) = (𝐻‘(𝐹‘(2 · 𝑥))))
1110anassrs 471 . . . 4 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → ((𝐻𝐹)‘(2 · 𝑥)) = (𝐻‘(𝐹‘(2 · 𝑥))))
12 pcoval.3 . . . . . . 7 (𝜑𝐺 ∈ (II Cn 𝐽))
132, 3cnf 21855 . . . . . . 7 (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶ 𝐽)
1412, 13syl 17 . . . . . 6 (𝜑𝐺:(0[,]1)⟶ 𝐽)
15 elii2 23545 . . . . . . 7 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → 𝑥 ∈ ((1 / 2)[,]1))
16 iihalf2 23542 . . . . . . 7 (𝑥 ∈ ((1 / 2)[,]1) → ((2 · 𝑥) − 1) ∈ (0[,]1))
1715, 16syl 17 . . . . . 6 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((2 · 𝑥) − 1) ∈ (0[,]1))
18 fvco3 6741 . . . . . 6 ((𝐺:(0[,]1)⟶ 𝐽 ∧ ((2 · 𝑥) − 1) ∈ (0[,]1)) → ((𝐻𝐺)‘((2 · 𝑥) − 1)) = (𝐻‘(𝐺‘((2 · 𝑥) − 1))))
1914, 17, 18syl2an 598 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → ((𝐻𝐺)‘((2 · 𝑥) − 1)) = (𝐻‘(𝐺‘((2 · 𝑥) − 1))))
2019anassrs 471 . . . 4 (((𝜑𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((𝐻𝐺)‘((2 · 𝑥) − 1)) = (𝐻‘(𝐺‘((2 · 𝑥) − 1))))
2111, 20ifeq12da 4460 . . 3 ((𝜑𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), ((𝐻𝐹)‘(2 · 𝑥)), ((𝐻𝐺)‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐻‘(𝐹‘(2 · 𝑥))), (𝐻‘(𝐺‘((2 · 𝑥) − 1)))))
2221mpteq2dva 5128 . 2 (𝜑 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((𝐻𝐹)‘(2 · 𝑥)), ((𝐻𝐺)‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐻‘(𝐹‘(2 · 𝑥))), (𝐻‘(𝐺‘((2 · 𝑥) − 1))))))
23 copco.6 . . . 4 (𝜑𝐻 ∈ (𝐽 Cn 𝐾))
24 cnco 21875 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (𝐽 Cn 𝐾)) → (𝐻𝐹) ∈ (II Cn 𝐾))
251, 23, 24syl2anc 587 . . 3 (𝜑 → (𝐻𝐹) ∈ (II Cn 𝐾))
26 cnco 21875 . . . 4 ((𝐺 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (𝐽 Cn 𝐾)) → (𝐻𝐺) ∈ (II Cn 𝐾))
2712, 23, 26syl2anc 587 . . 3 (𝜑 → (𝐻𝐺) ∈ (II Cn 𝐾))
2825, 27pcoval 23620 . 2 (𝜑 → ((𝐻𝐹)(*𝑝𝐾)(𝐻𝐺)) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((𝐻𝐹)‘(2 · 𝑥)), ((𝐻𝐺)‘((2 · 𝑥) − 1)))))
291, 12pcoval 23620 . . . . . 6 (𝜑 → (𝐹(*𝑝𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
30 pcoval2.4 . . . . . . 7 (𝜑 → (𝐹‘1) = (𝐺‘0))
311, 12, 30pcocn 23626 . . . . . 6 (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))
3229, 31eqeltrrd 2894 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) ∈ (II Cn 𝐽))
332, 3cnf 21855 . . . . 5 ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) ∈ (II Cn 𝐽) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))):(0[,]1)⟶ 𝐽)
3432, 33syl 17 . . . 4 (𝜑 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))):(0[,]1)⟶ 𝐽)
35 eqid 2801 . . . . 5 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))
3635fmpt 6855 . . . 4 (∀𝑥 ∈ (0[,]1)if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) ∈ 𝐽 ↔ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))):(0[,]1)⟶ 𝐽)
3734, 36sylibr 237 . . 3 (𝜑 → ∀𝑥 ∈ (0[,]1)if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) ∈ 𝐽)
38 eqid 2801 . . . . . 6 𝐾 = 𝐾
393, 38cnf 21855 . . . . 5 (𝐻 ∈ (𝐽 Cn 𝐾) → 𝐻: 𝐽 𝐾)
4023, 39syl 17 . . . 4 (𝜑𝐻: 𝐽 𝐾)
4140feqmptd 6712 . . 3 (𝜑𝐻 = (𝑦 𝐽 ↦ (𝐻𝑦)))
42 fveq2 6649 . . . 4 (𝑦 = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) → (𝐻𝑦) = (𝐻‘if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))))
43 fvif 6665 . . . 4 (𝐻‘if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1)))) = if(𝑥 ≤ (1 / 2), (𝐻‘(𝐹‘(2 · 𝑥))), (𝐻‘(𝐺‘((2 · 𝑥) − 1))))
4442, 43eqtrdi 2852 . . 3 (𝑦 = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))) → (𝐻𝑦) = if(𝑥 ≤ (1 / 2), (𝐻‘(𝐹‘(2 · 𝑥))), (𝐻‘(𝐺‘((2 · 𝑥) − 1)))))
4537, 29, 41, 44fmptcof 6873 . 2 (𝜑 → (𝐻 ∘ (𝐹(*𝑝𝐽)𝐺)) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐻‘(𝐹‘(2 · 𝑥))), (𝐻‘(𝐺‘((2 · 𝑥) − 1))))))
4622, 28, 453eqtr4rd 2847 1 (𝜑 → (𝐻 ∘ (𝐹(*𝑝𝐽)𝐺)) = ((𝐻𝐹)(*𝑝𝐾)(𝐻𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2112  wral 3109  ifcif 4428   cuni 4803   class class class wbr 5033  cmpt 5113  ccom 5527  wf 6324  cfv 6328  (class class class)co 7139  0cc0 10530  1c1 10531   · cmul 10535  cle 10669  cmin 10863   / cdiv 11290  2c2 11684  [,]cicc 12733   Cn ccn 21833  IIcii 23484  *𝑝cpco 23609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-icc 12737  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-cn 21836  df-cnp 21837  df-tx 22171  df-hmeo 22364  df-xms 22931  df-ms 22932  df-tms 22933  df-ii 23486  df-pco 23614
This theorem is referenced by:  pi1coghm  23670  cvmlift3lem6  32685
  Copyright terms: Public domain W3C validator