Step | Hyp | Ref
| Expression |
1 | | pcohtpy.5 |
. . . . 5
⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐻) |
2 | | isphtpc 24157 |
. . . . 5
⊢ (𝐹(
≃ph‘𝐽)𝐻 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅)) |
3 | 1, 2 | sylib 217 |
. . . 4
⊢ (𝜑 → (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅)) |
4 | 3 | simp1d 1141 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
5 | | pcohtpy.6 |
. . . . 5
⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐾) |
6 | | isphtpc 24157 |
. . . . 5
⊢ (𝐺(
≃ph‘𝐽)𝐾 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅)) |
7 | 5, 6 | sylib 217 |
. . . 4
⊢ (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅)) |
8 | 7 | simp1d 1141 |
. . 3
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
9 | | pcohtpy.4 |
. . 3
⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) |
10 | 4, 8, 9 | pcocn 24180 |
. 2
⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) ∈ (II Cn 𝐽)) |
11 | 3 | simp2d 1142 |
. . 3
⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) |
12 | 7 | simp2d 1142 |
. . 3
⊢ (𝜑 → 𝐾 ∈ (II Cn 𝐽)) |
13 | | pcohtpylem.8 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻)) |
14 | 4, 11, 13 | phtpy01 24148 |
. . . . 5
⊢ (𝜑 → ((𝐹‘0) = (𝐻‘0) ∧ (𝐹‘1) = (𝐻‘1))) |
15 | 14 | simprd 496 |
. . . 4
⊢ (𝜑 → (𝐹‘1) = (𝐻‘1)) |
16 | | pcohtpylem.9 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (𝐺(PHtpy‘𝐽)𝐾)) |
17 | 8, 12, 16 | phtpy01 24148 |
. . . . 5
⊢ (𝜑 → ((𝐺‘0) = (𝐾‘0) ∧ (𝐺‘1) = (𝐾‘1))) |
18 | 17 | simpld 495 |
. . . 4
⊢ (𝜑 → (𝐺‘0) = (𝐾‘0)) |
19 | 9, 15, 18 | 3eqtr3d 2786 |
. . 3
⊢ (𝜑 → (𝐻‘1) = (𝐾‘0)) |
20 | 11, 12, 19 | pcocn 24180 |
. 2
⊢ (𝜑 → (𝐻(*𝑝‘𝐽)𝐾) ∈ (II Cn 𝐽)) |
21 | | pcohtpylem.7 |
. . 3
⊢ 𝑃 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦))) |
22 | | eqid 2738 |
. . . 4
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
23 | | eqid 2738 |
. . . 4
⊢
((topGen‘ran (,)) ↾t (0[,](1 / 2))) =
((topGen‘ran (,)) ↾t (0[,](1 / 2))) |
24 | | eqid 2738 |
. . . 4
⊢
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) =
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) |
25 | | dfii2 24045 |
. . . 4
⊢ II =
((topGen‘ran (,)) ↾t (0[,]1)) |
26 | | 0red 10978 |
. . . 4
⊢ (𝜑 → 0 ∈
ℝ) |
27 | | 1red 10976 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ) |
28 | | halfre 12187 |
. . . . . 6
⊢ (1 / 2)
∈ ℝ |
29 | | halfge0 12190 |
. . . . . 6
⊢ 0 ≤ (1
/ 2) |
30 | | 1re 10975 |
. . . . . . 7
⊢ 1 ∈
ℝ |
31 | | halflt1 12191 |
. . . . . . 7
⊢ (1 / 2)
< 1 |
32 | 28, 30, 31 | ltleii 11098 |
. . . . . 6
⊢ (1 / 2)
≤ 1 |
33 | | elicc01 13198 |
. . . . . 6
⊢ ((1 / 2)
∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 /
2) ≤ 1)) |
34 | 28, 29, 32, 33 | mpbir3an 1340 |
. . . . 5
⊢ (1 / 2)
∈ (0[,]1) |
35 | 34 | a1i 11 |
. . . 4
⊢ (𝜑 → (1 / 2) ∈
(0[,]1)) |
36 | | iitopon 24042 |
. . . . 5
⊢ II ∈
(TopOn‘(0[,]1)) |
37 | 36 | a1i 11 |
. . . 4
⊢ (𝜑 → II ∈
(TopOn‘(0[,]1))) |
38 | 9 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (𝐹‘1) = (𝐺‘0)) |
39 | 4, 11, 13 | phtpyi 24147 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0[,]1)) → ((0𝑀𝑦) = (𝐹‘0) ∧ (1𝑀𝑦) = (𝐹‘1))) |
40 | 39 | simprd 496 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0[,]1)) → (1𝑀𝑦) = (𝐹‘1)) |
41 | 40 | adantrl 713 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (1𝑀𝑦) = (𝐹‘1)) |
42 | 8, 12, 16 | phtpyi 24147 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0[,]1)) → ((0𝑁𝑦) = (𝐺‘0) ∧ (1𝑁𝑦) = (𝐺‘1))) |
43 | 42 | simpld 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0[,]1)) → (0𝑁𝑦) = (𝐺‘0)) |
44 | 43 | adantrl 713 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (0𝑁𝑦) = (𝐺‘0)) |
45 | 38, 41, 44 | 3eqtr4d 2788 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (1𝑀𝑦) = (0𝑁𝑦)) |
46 | | simprl 768 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → 𝑥 = (1 / 2)) |
47 | 46 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (2 · 𝑥) = (2 · (1 /
2))) |
48 | | 2cn 12048 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
49 | | 2ne0 12077 |
. . . . . . . 8
⊢ 2 ≠
0 |
50 | 48, 49 | recidi 11706 |
. . . . . . 7
⊢ (2
· (1 / 2)) = 1 |
51 | 47, 50 | eqtrdi 2794 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (2 · 𝑥) = 1) |
52 | 51 | oveq1d 7290 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥)𝑀𝑦) = (1𝑀𝑦)) |
53 | 51 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥) − 1) = (1 −
1)) |
54 | | 1m1e0 12045 |
. . . . . . 7
⊢ (1
− 1) = 0 |
55 | 53, 54 | eqtrdi 2794 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥) − 1) =
0) |
56 | 55 | oveq1d 7290 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (((2 · 𝑥) − 1)𝑁𝑦) = (0𝑁𝑦)) |
57 | 45, 52, 56 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥)𝑀𝑦) = (((2 · 𝑥) − 1)𝑁𝑦)) |
58 | | retopon 23927 |
. . . . . . 7
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
59 | | 0re 10977 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
60 | | iccssre 13161 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆
ℝ) |
61 | 59, 28, 60 | mp2an 689 |
. . . . . . 7
⊢ (0[,](1 /
2)) ⊆ ℝ |
62 | | resttopon 22312 |
. . . . . . 7
⊢
(((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 /
2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1
/ 2))) ∈ (TopOn‘(0[,](1 / 2)))) |
63 | 58, 61, 62 | mp2an 689 |
. . . . . 6
⊢
((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈
(TopOn‘(0[,](1 / 2))) |
64 | 63 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((topGen‘ran (,))
↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 /
2)))) |
65 | 64, 37 | cnmpt1st 22819 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((((topGen‘ran (,))
↾t (0[,](1 / 2))) ×t II) Cn
((topGen‘ran (,)) ↾t (0[,](1 / 2))))) |
66 | 23 | iihalf1cn 24095 |
. . . . . . 7
⊢ (𝑧 ∈ (0[,](1 / 2)) ↦ (2
· 𝑧)) ∈
(((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn
II) |
67 | 66 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ (0[,](1 / 2)) ↦ (2 ·
𝑧)) ∈
(((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn
II)) |
68 | | oveq2 7283 |
. . . . . 6
⊢ (𝑧 = 𝑥 → (2 · 𝑧) = (2 · 𝑥)) |
69 | 64, 37, 65, 64, 67, 68 | cnmpt21 22822 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ (2 · 𝑥)) ∈ ((((topGen‘ran
(,)) ↾t (0[,](1 / 2))) ×t II) Cn
II)) |
70 | 64, 37 | cnmpt2nd 22820 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,))
↾t (0[,](1 / 2))) ×t II) Cn
II)) |
71 | 4, 11 | phtpycn 24146 |
. . . . . 6
⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐻) ⊆ ((II ×t II) Cn
𝐽)) |
72 | 71, 13 | sseldd 3922 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ((II ×t II) Cn
𝐽)) |
73 | 64, 37, 69, 70, 72 | cnmpt22f 22826 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ ((2 · 𝑥)𝑀𝑦)) ∈ ((((topGen‘ran (,))
↾t (0[,](1 / 2))) ×t II) Cn 𝐽)) |
74 | | iccssre 13161 |
. . . . . . . 8
⊢ (((1 / 2)
∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆
ℝ) |
75 | 28, 30, 74 | mp2an 689 |
. . . . . . 7
⊢ ((1 /
2)[,]1) ⊆ ℝ |
76 | | resttopon 22312 |
. . . . . . 7
⊢
(((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 /
2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1
/ 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))) |
77 | 58, 75, 76 | mp2an 689 |
. . . . . 6
⊢
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈
(TopOn‘((1 / 2)[,]1)) |
78 | 77 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((topGen‘ran (,))
↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 /
2)[,]1))) |
79 | 78, 37 | cnmpt1st 22819 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((((topGen‘ran (,))
↾t ((1 / 2)[,]1)) ×t II) Cn
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)))) |
80 | 24 | iihalf2cn 24097 |
. . . . . . 7
⊢ (𝑧 ∈ ((1 / 2)[,]1) ↦
((2 · 𝑧) − 1))
∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn
II) |
81 | 80 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 ·
𝑧) − 1)) ∈
(((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn
II)) |
82 | 68 | oveq1d 7290 |
. . . . . 6
⊢ (𝑧 = 𝑥 → ((2 · 𝑧) − 1) = ((2 · 𝑥) − 1)) |
83 | 78, 37, 79, 78, 81, 82 | cnmpt21 22822 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ ((2 · 𝑥) − 1)) ∈
((((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
×t II) Cn II)) |
84 | 78, 37 | cnmpt2nd 22820 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,))
↾t ((1 / 2)[,]1)) ×t II) Cn
II)) |
85 | 8, 12 | phtpycn 24146 |
. . . . . 6
⊢ (𝜑 → (𝐺(PHtpy‘𝐽)𝐾) ⊆ ((II ×t II) Cn
𝐽)) |
86 | 85, 16 | sseldd 3922 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ((II ×t II) Cn
𝐽)) |
87 | 78, 37, 83, 84, 86 | cnmpt22f 22826 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ (((2 · 𝑥) − 1)𝑁𝑦)) ∈ ((((topGen‘ran (,))
↾t ((1 / 2)[,]1)) ×t II) Cn 𝐽)) |
88 | 22, 23, 24, 25, 26, 27, 35, 37, 57, 73, 87 | cnmpopc 24091 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦))) ∈ ((II ×t II) Cn
𝐽)) |
89 | 21, 88 | eqeltrid 2843 |
. 2
⊢ (𝜑 → 𝑃 ∈ ((II ×t II) Cn
𝐽)) |
90 | | simpll 764 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → 𝜑) |
91 | | elii1 24098 |
. . . . . . . 8
⊢ (𝑠 ∈ (0[,](1 / 2)) ↔
(𝑠 ∈ (0[,]1) ∧
𝑠 ≤ (1 /
2))) |
92 | | iihalf1 24094 |
. . . . . . . 8
⊢ (𝑠 ∈ (0[,](1 / 2)) → (2
· 𝑠) ∈
(0[,]1)) |
93 | 91, 92 | sylbir 234 |
. . . . . . 7
⊢ ((𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)) → (2
· 𝑠) ∈
(0[,]1)) |
94 | 93 | adantll 711 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈
(0[,]1)) |
95 | 4, 11 | phtpyhtpy 24145 |
. . . . . . . 8
⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐻) ⊆ (𝐹(II Htpy 𝐽)𝐻)) |
96 | 95, 13 | sseldd 3922 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (𝐹(II Htpy 𝐽)𝐻)) |
97 | 37, 4, 11, 96 | htpyi 24137 |
. . . . . 6
⊢ ((𝜑 ∧ (2 · 𝑠) ∈ (0[,]1)) → (((2
· 𝑠)𝑀0) = (𝐹‘(2 · 𝑠)) ∧ ((2 · 𝑠)𝑀1) = (𝐻‘(2 · 𝑠)))) |
98 | 90, 94, 97 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (((2 · 𝑠)𝑀0) = (𝐹‘(2 · 𝑠)) ∧ ((2 · 𝑠)𝑀1) = (𝐻‘(2 · 𝑠)))) |
99 | 98 | simpld 495 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠)𝑀0) = (𝐹‘(2 · 𝑠))) |
100 | | simpll 764 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝜑) |
101 | | elii2 24099 |
. . . . . . . 8
⊢ ((𝑠 ∈ (0[,]1) ∧ ¬
𝑠 ≤ (1 / 2)) →
𝑠 ∈ ((1 /
2)[,]1)) |
102 | 101 | adantll 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝑠 ∈ ((1 /
2)[,]1)) |
103 | | iihalf2 24096 |
. . . . . . 7
⊢ (𝑠 ∈ ((1 / 2)[,]1) → ((2
· 𝑠) − 1)
∈ (0[,]1)) |
104 | 102, 103 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((2
· 𝑠) − 1)
∈ (0[,]1)) |
105 | 8, 12 | phtpyhtpy 24145 |
. . . . . . . 8
⊢ (𝜑 → (𝐺(PHtpy‘𝐽)𝐾) ⊆ (𝐺(II Htpy 𝐽)𝐾)) |
106 | 105, 16 | sseldd 3922 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (𝐺(II Htpy 𝐽)𝐾)) |
107 | 37, 8, 12, 106 | htpyi 24137 |
. . . . . 6
⊢ ((𝜑 ∧ ((2 · 𝑠) − 1) ∈ (0[,]1))
→ ((((2 · 𝑠)
− 1)𝑁0) = (𝐺‘((2 · 𝑠) − 1)) ∧ (((2
· 𝑠) − 1)𝑁1) = (𝐾‘((2 · 𝑠) − 1)))) |
108 | 100, 104,
107 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((((2
· 𝑠) − 1)𝑁0) = (𝐺‘((2 · 𝑠) − 1)) ∧ (((2 · 𝑠) − 1)𝑁1) = (𝐾‘((2 · 𝑠) − 1)))) |
109 | 108 | simpld 495 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (((2
· 𝑠) − 1)𝑁0) = (𝐺‘((2 · 𝑠) − 1))) |
110 | 99, 109 | ifeq12da 4492 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) = if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1)))) |
111 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1)) |
112 | | 0elunit 13201 |
. . . 4
⊢ 0 ∈
(0[,]1) |
113 | | simpl 483 |
. . . . . . 7
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → 𝑥 = 𝑠) |
114 | 113 | breq1d 5084 |
. . . . . 6
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → (𝑥 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2))) |
115 | 113 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → (2 · 𝑥) = (2 · 𝑠)) |
116 | | simpr 485 |
. . . . . . 7
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → 𝑦 = 0) |
117 | 115, 116 | oveq12d 7293 |
. . . . . 6
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → ((2 · 𝑥)𝑀𝑦) = ((2 · 𝑠)𝑀0)) |
118 | 115 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → ((2 · 𝑥) − 1) = ((2 · 𝑠) − 1)) |
119 | 118, 116 | oveq12d 7293 |
. . . . . 6
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → (((2 · 𝑥) − 1)𝑁𝑦) = (((2 · 𝑠) − 1)𝑁0)) |
120 | 114, 117,
119 | ifbieq12d 4487 |
. . . . 5
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0))) |
121 | | ovex 7308 |
. . . . . 6
⊢ ((2
· 𝑠)𝑀0) ∈ V |
122 | | ovex 7308 |
. . . . . 6
⊢ (((2
· 𝑠) − 1)𝑁0) ∈ V |
123 | 121, 122 | ifex 4509 |
. . . . 5
⊢ if(𝑠 ≤ (1 / 2), ((2 ·
𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) ∈ V |
124 | 120, 21, 123 | ovmpoa 7428 |
. . . 4
⊢ ((𝑠 ∈ (0[,]1) ∧ 0 ∈
(0[,]1)) → (𝑠𝑃0) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0))) |
125 | 111, 112,
124 | sylancl 586 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝑃0) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0))) |
126 | 4, 8 | pcovalg 24175 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑠) = if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1)))) |
127 | 110, 125,
126 | 3eqtr4d 2788 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝑃0) = ((𝐹(*𝑝‘𝐽)𝐺)‘𝑠)) |
128 | 98 | simprd 496 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠)𝑀1) = (𝐻‘(2 · 𝑠))) |
129 | 108 | simprd 496 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (((2
· 𝑠) − 1)𝑁1) = (𝐾‘((2 · 𝑠) − 1))) |
130 | 128, 129 | ifeq12da 4492 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) = if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1)))) |
131 | | 1elunit 13202 |
. . . 4
⊢ 1 ∈
(0[,]1) |
132 | | simpl 483 |
. . . . . . 7
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → 𝑥 = 𝑠) |
133 | 132 | breq1d 5084 |
. . . . . 6
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → (𝑥 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2))) |
134 | 132 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → (2 · 𝑥) = (2 · 𝑠)) |
135 | | simpr 485 |
. . . . . . 7
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → 𝑦 = 1) |
136 | 134, 135 | oveq12d 7293 |
. . . . . 6
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → ((2 · 𝑥)𝑀𝑦) = ((2 · 𝑠)𝑀1)) |
137 | 134 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → ((2 · 𝑥) − 1) = ((2 · 𝑠) − 1)) |
138 | 137, 135 | oveq12d 7293 |
. . . . . 6
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → (((2 · 𝑥) − 1)𝑁𝑦) = (((2 · 𝑠) − 1)𝑁1)) |
139 | 133, 136,
138 | ifbieq12d 4487 |
. . . . 5
⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1))) |
140 | | ovex 7308 |
. . . . . 6
⊢ ((2
· 𝑠)𝑀1) ∈ V |
141 | | ovex 7308 |
. . . . . 6
⊢ (((2
· 𝑠) − 1)𝑁1) ∈ V |
142 | 140, 141 | ifex 4509 |
. . . . 5
⊢ if(𝑠 ≤ (1 / 2), ((2 ·
𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) ∈ V |
143 | 139, 21, 142 | ovmpoa 7428 |
. . . 4
⊢ ((𝑠 ∈ (0[,]1) ∧ 1 ∈
(0[,]1)) → (𝑠𝑃1) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1))) |
144 | 111, 131,
143 | sylancl 586 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝑃1) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1))) |
145 | 11, 12 | pcovalg 24175 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝐻(*𝑝‘𝐽)𝐾)‘𝑠) = if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1)))) |
146 | 130, 144,
145 | 3eqtr4d 2788 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝑃1) = ((𝐻(*𝑝‘𝐽)𝐾)‘𝑠)) |
147 | 4, 11, 13 | phtpyi 24147 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((0𝑀𝑠) = (𝐹‘0) ∧ (1𝑀𝑠) = (𝐹‘1))) |
148 | 147 | simpld 495 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = (𝐹‘0)) |
149 | | simpl 483 |
. . . . . . . 8
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 = 0) |
150 | 149, 29 | eqbrtrdi 5113 |
. . . . . . 7
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 ≤ (1 / 2)) |
151 | 150 | iftrued 4467 |
. . . . . 6
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = ((2 · 𝑥)𝑀𝑦)) |
152 | 149 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = (2 · 0)) |
153 | | 2t0e0 12142 |
. . . . . . . 8
⊢ (2
· 0) = 0 |
154 | 152, 153 | eqtrdi 2794 |
. . . . . . 7
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = 0) |
155 | | simpr 485 |
. . . . . . 7
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠) |
156 | 154, 155 | oveq12d 7293 |
. . . . . 6
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → ((2 · 𝑥)𝑀𝑦) = (0𝑀𝑠)) |
157 | 151, 156 | eqtrd 2778 |
. . . . 5
⊢ ((𝑥 = 0 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = (0𝑀𝑠)) |
158 | | ovex 7308 |
. . . . 5
⊢ (0𝑀𝑠) ∈ V |
159 | 157, 21, 158 | ovmpoa 7428 |
. . . 4
⊢ ((0
∈ (0[,]1) ∧ 𝑠
∈ (0[,]1)) → (0𝑃𝑠) = (0𝑀𝑠)) |
160 | 112, 111,
159 | sylancr 587 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝑃𝑠) = (0𝑀𝑠)) |
161 | 4, 8 | pco0 24177 |
. . . 4
⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘0)) |
162 | 161 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘0)) |
163 | 148, 160,
162 | 3eqtr4d 2788 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝑃𝑠) = ((𝐹(*𝑝‘𝐽)𝐺)‘0)) |
164 | 8, 12, 16 | phtpyi 24147 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((0𝑁𝑠) = (𝐺‘0) ∧ (1𝑁𝑠) = (𝐺‘1))) |
165 | 164 | simprd 496 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝑁𝑠) = (𝐺‘1)) |
166 | 28, 30 | ltnlei 11096 |
. . . . . . . . 9
⊢ ((1 / 2)
< 1 ↔ ¬ 1 ≤ (1 / 2)) |
167 | 31, 166 | mpbi 229 |
. . . . . . . 8
⊢ ¬ 1
≤ (1 / 2) |
168 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑥 = 1) |
169 | 168 | breq1d 5084 |
. . . . . . . 8
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 /
2))) |
170 | 167, 169 | mtbiri 327 |
. . . . . . 7
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ¬ 𝑥 ≤ (1 / 2)) |
171 | 170 | iffalsed 4470 |
. . . . . 6
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = (((2 · 𝑥) − 1)𝑁𝑦)) |
172 | 168 | oveq2d 7291 |
. . . . . . . . . 10
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = (2 · 1)) |
173 | | 2t1e2 12136 |
. . . . . . . . . 10
⊢ (2
· 1) = 2 |
174 | 172, 173 | eqtrdi 2794 |
. . . . . . . . 9
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = 2) |
175 | 174 | oveq1d 7290 |
. . . . . . . 8
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((2 · 𝑥) − 1) = (2 −
1)) |
176 | | 2m1e1 12099 |
. . . . . . . 8
⊢ (2
− 1) = 1 |
177 | 175, 176 | eqtrdi 2794 |
. . . . . . 7
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((2 · 𝑥) − 1) = 1) |
178 | | simpr 485 |
. . . . . . 7
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠) |
179 | 177, 178 | oveq12d 7293 |
. . . . . 6
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (((2 · 𝑥) − 1)𝑁𝑦) = (1𝑁𝑠)) |
180 | 171, 179 | eqtrd 2778 |
. . . . 5
⊢ ((𝑥 = 1 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = (1𝑁𝑠)) |
181 | | ovex 7308 |
. . . . 5
⊢ (1𝑁𝑠) ∈ V |
182 | 180, 21, 181 | ovmpoa 7428 |
. . . 4
⊢ ((1
∈ (0[,]1) ∧ 𝑠
∈ (0[,]1)) → (1𝑃𝑠) = (1𝑁𝑠)) |
183 | 131, 111,
182 | sylancr 587 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝑃𝑠) = (1𝑁𝑠)) |
184 | 4, 8 | pco1 24178 |
. . . 4
⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = (𝐺‘1)) |
185 | 184 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = (𝐺‘1)) |
186 | 165, 183,
185 | 3eqtr4d 2788 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝑃𝑠) = ((𝐹(*𝑝‘𝐽)𝐺)‘1)) |
187 | 10, 20, 89, 127, 146, 163, 186 | isphtpy2d 24150 |
1
⊢ (𝜑 → 𝑃 ∈ ((𝐹(*𝑝‘𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝‘𝐽)𝐾))) |