MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcohtpylem Structured version   Visualization version   GIF version

Theorem pcohtpylem 23622
Description: Lemma for pcohtpy 23623. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
pcohtpy.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
pcohtpy.5 (𝜑𝐹( ≃ph𝐽)𝐻)
pcohtpy.6 (𝜑𝐺( ≃ph𝐽)𝐾)
pcohtpylem.7 𝑃 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)))
pcohtpylem.8 (𝜑𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻))
pcohtpylem.9 (𝜑𝑁 ∈ (𝐺(PHtpy‘𝐽)𝐾))
Assertion
Ref Expression
pcohtpylem (𝜑𝑃 ∈ ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦)

Proof of Theorem pcohtpylem
Dummy variables 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcohtpy.5 . . . . 5 (𝜑𝐹( ≃ph𝐽)𝐻)
2 isphtpc 23597 . . . . 5 (𝐹( ≃ph𝐽)𝐻 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅))
31, 2sylib 220 . . . 4 (𝜑 → (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅))
43simp1d 1138 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
5 pcohtpy.6 . . . . 5 (𝜑𝐺( ≃ph𝐽)𝐾)
6 isphtpc 23597 . . . . 5 (𝐺( ≃ph𝐽)𝐾 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅))
75, 6sylib 220 . . . 4 (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅))
87simp1d 1138 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
9 pcohtpy.4 . . 3 (𝜑 → (𝐹‘1) = (𝐺‘0))
104, 8, 9pcocn 23620 . 2 (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))
113simp2d 1139 . . 3 (𝜑𝐻 ∈ (II Cn 𝐽))
127simp2d 1139 . . 3 (𝜑𝐾 ∈ (II Cn 𝐽))
13 pcohtpylem.8 . . . . . 6 (𝜑𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻))
144, 11, 13phtpy01 23588 . . . . 5 (𝜑 → ((𝐹‘0) = (𝐻‘0) ∧ (𝐹‘1) = (𝐻‘1)))
1514simprd 498 . . . 4 (𝜑 → (𝐹‘1) = (𝐻‘1))
16 pcohtpylem.9 . . . . . 6 (𝜑𝑁 ∈ (𝐺(PHtpy‘𝐽)𝐾))
178, 12, 16phtpy01 23588 . . . . 5 (𝜑 → ((𝐺‘0) = (𝐾‘0) ∧ (𝐺‘1) = (𝐾‘1)))
1817simpld 497 . . . 4 (𝜑 → (𝐺‘0) = (𝐾‘0))
199, 15, 183eqtr3d 2864 . . 3 (𝜑 → (𝐻‘1) = (𝐾‘0))
2011, 12, 19pcocn 23620 . 2 (𝜑 → (𝐻(*𝑝𝐽)𝐾) ∈ (II Cn 𝐽))
21 pcohtpylem.7 . . 3 𝑃 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)))
22 eqid 2821 . . . 4 (topGen‘ran (,)) = (topGen‘ran (,))
23 eqid 2821 . . . 4 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
24 eqid 2821 . . . 4 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
25 dfii2 23489 . . . 4 II = ((topGen‘ran (,)) ↾t (0[,]1))
26 0red 10643 . . . 4 (𝜑 → 0 ∈ ℝ)
27 1red 10641 . . . 4 (𝜑 → 1 ∈ ℝ)
28 halfre 11850 . . . . . 6 (1 / 2) ∈ ℝ
29 halfge0 11853 . . . . . 6 0 ≤ (1 / 2)
30 1re 10640 . . . . . . 7 1 ∈ ℝ
31 halflt1 11854 . . . . . . 7 (1 / 2) < 1
3228, 30, 31ltleii 10762 . . . . . 6 (1 / 2) ≤ 1
33 elicc01 12853 . . . . . 6 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
3428, 29, 32, 33mpbir3an 1337 . . . . 5 (1 / 2) ∈ (0[,]1)
3534a1i 11 . . . 4 (𝜑 → (1 / 2) ∈ (0[,]1))
36 iitopon 23486 . . . . 5 II ∈ (TopOn‘(0[,]1))
3736a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
389adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (𝐹‘1) = (𝐺‘0))
394, 11, 13phtpyi 23587 . . . . . . . 8 ((𝜑𝑦 ∈ (0[,]1)) → ((0𝑀𝑦) = (𝐹‘0) ∧ (1𝑀𝑦) = (𝐹‘1)))
4039simprd 498 . . . . . . 7 ((𝜑𝑦 ∈ (0[,]1)) → (1𝑀𝑦) = (𝐹‘1))
4140adantrl 714 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (1𝑀𝑦) = (𝐹‘1))
428, 12, 16phtpyi 23587 . . . . . . . 8 ((𝜑𝑦 ∈ (0[,]1)) → ((0𝑁𝑦) = (𝐺‘0) ∧ (1𝑁𝑦) = (𝐺‘1)))
4342simpld 497 . . . . . . 7 ((𝜑𝑦 ∈ (0[,]1)) → (0𝑁𝑦) = (𝐺‘0))
4443adantrl 714 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (0𝑁𝑦) = (𝐺‘0))
4538, 41, 443eqtr4d 2866 . . . . 5 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (1𝑀𝑦) = (0𝑁𝑦))
46 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → 𝑥 = (1 / 2))
4746oveq2d 7171 . . . . . . 7 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (2 · 𝑥) = (2 · (1 / 2)))
48 2cn 11711 . . . . . . . 8 2 ∈ ℂ
49 2ne0 11740 . . . . . . . 8 2 ≠ 0
5048, 49recidi 11370 . . . . . . 7 (2 · (1 / 2)) = 1
5147, 50syl6eq 2872 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (2 · 𝑥) = 1)
5251oveq1d 7170 . . . . 5 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥)𝑀𝑦) = (1𝑀𝑦))
5351oveq1d 7170 . . . . . . 7 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥) − 1) = (1 − 1))
54 1m1e0 11708 . . . . . . 7 (1 − 1) = 0
5553, 54syl6eq 2872 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥) − 1) = 0)
5655oveq1d 7170 . . . . 5 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (((2 · 𝑥) − 1)𝑁𝑦) = (0𝑁𝑦))
5745, 52, 563eqtr4d 2866 . . . 4 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥)𝑀𝑦) = (((2 · 𝑥) − 1)𝑁𝑦))
58 retopon 23371 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
59 0re 10642 . . . . . . . 8 0 ∈ ℝ
60 iccssre 12817 . . . . . . . 8 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
6159, 28, 60mp2an 690 . . . . . . 7 (0[,](1 / 2)) ⊆ ℝ
62 resttopon 21768 . . . . . . 7 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
6358, 61, 62mp2an 690 . . . . . 6 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
6463a1i 11 . . . . 5 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
6564, 37cnmpt1st 22275 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 2)))))
6623iihalf1cn 23535 . . . . . . 7 (𝑧 ∈ (0[,](1 / 2)) ↦ (2 · 𝑧)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
6766a1i 11 . . . . . 6 (𝜑 → (𝑧 ∈ (0[,](1 / 2)) ↦ (2 · 𝑧)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
68 oveq2 7163 . . . . . 6 (𝑧 = 𝑥 → (2 · 𝑧) = (2 · 𝑥))
6964, 37, 65, 64, 67, 68cnmpt21 22278 . . . . 5 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ (2 · 𝑥)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
7064, 37cnmpt2nd 22276 . . . . 5 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
714, 11phtpycn 23586 . . . . . 6 (𝜑 → (𝐹(PHtpy‘𝐽)𝐻) ⊆ ((II ×t II) Cn 𝐽))
7271, 13sseldd 3967 . . . . 5 (𝜑𝑀 ∈ ((II ×t II) Cn 𝐽))
7364, 37, 69, 70, 72cnmpt22f 22282 . . . 4 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ ((2 · 𝑥)𝑀𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn 𝐽))
74 iccssre 12817 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
7528, 30, 74mp2an 690 . . . . . . 7 ((1 / 2)[,]1) ⊆ ℝ
76 resttopon 21768 . . . . . . 7 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
7758, 75, 76mp2an 690 . . . . . 6 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
7877a1i 11 . . . . 5 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
7978, 37cnmpt1st 22275 . . . . . 6 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
8024iihalf2cn 23537 . . . . . . 7 (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑧) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II)
8180a1i 11 . . . . . 6 (𝜑 → (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑧) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
8268oveq1d 7170 . . . . . 6 (𝑧 = 𝑥 → ((2 · 𝑧) − 1) = ((2 · 𝑥) − 1))
8378, 37, 79, 78, 81, 82cnmpt21 22278 . . . . 5 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ ((2 · 𝑥) − 1)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
8478, 37cnmpt2nd 22276 . . . . 5 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
858, 12phtpycn 23586 . . . . . 6 (𝜑 → (𝐺(PHtpy‘𝐽)𝐾) ⊆ ((II ×t II) Cn 𝐽))
8685, 16sseldd 3967 . . . . 5 (𝜑𝑁 ∈ ((II ×t II) Cn 𝐽))
8778, 37, 83, 84, 86cnmpt22f 22282 . . . 4 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ (((2 · 𝑥) − 1)𝑁𝑦)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn 𝐽))
8822, 23, 24, 25, 26, 27, 35, 37, 57, 73, 87cnmpopc 23531 . . 3 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦))) ∈ ((II ×t II) Cn 𝐽))
8921, 88eqeltrid 2917 . 2 (𝜑𝑃 ∈ ((II ×t II) Cn 𝐽))
90 simpll 765 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → 𝜑)
91 elii1 23538 . . . . . . . 8 (𝑠 ∈ (0[,](1 / 2)) ↔ (𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)))
92 iihalf1 23534 . . . . . . . 8 (𝑠 ∈ (0[,](1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
9391, 92sylbir 237 . . . . . . 7 ((𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
9493adantll 712 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
954, 11phtpyhtpy 23585 . . . . . . . 8 (𝜑 → (𝐹(PHtpy‘𝐽)𝐻) ⊆ (𝐹(II Htpy 𝐽)𝐻))
9695, 13sseldd 3967 . . . . . . 7 (𝜑𝑀 ∈ (𝐹(II Htpy 𝐽)𝐻))
9737, 4, 11, 96htpyi 23577 . . . . . 6 ((𝜑 ∧ (2 · 𝑠) ∈ (0[,]1)) → (((2 · 𝑠)𝑀0) = (𝐹‘(2 · 𝑠)) ∧ ((2 · 𝑠)𝑀1) = (𝐻‘(2 · 𝑠))))
9890, 94, 97syl2anc 586 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (((2 · 𝑠)𝑀0) = (𝐹‘(2 · 𝑠)) ∧ ((2 · 𝑠)𝑀1) = (𝐻‘(2 · 𝑠))))
9998simpld 497 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠)𝑀0) = (𝐹‘(2 · 𝑠)))
100 simpll 765 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝜑)
101 elii2 23539 . . . . . . . 8 ((𝑠 ∈ (0[,]1) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝑠 ∈ ((1 / 2)[,]1))
102101adantll 712 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝑠 ∈ ((1 / 2)[,]1))
103 iihalf2 23536 . . . . . . 7 (𝑠 ∈ ((1 / 2)[,]1) → ((2 · 𝑠) − 1) ∈ (0[,]1))
104102, 103syl 17 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠) − 1) ∈ (0[,]1))
1058, 12phtpyhtpy 23585 . . . . . . . 8 (𝜑 → (𝐺(PHtpy‘𝐽)𝐾) ⊆ (𝐺(II Htpy 𝐽)𝐾))
106105, 16sseldd 3967 . . . . . . 7 (𝜑𝑁 ∈ (𝐺(II Htpy 𝐽)𝐾))
10737, 8, 12, 106htpyi 23577 . . . . . 6 ((𝜑 ∧ ((2 · 𝑠) − 1) ∈ (0[,]1)) → ((((2 · 𝑠) − 1)𝑁0) = (𝐺‘((2 · 𝑠) − 1)) ∧ (((2 · 𝑠) − 1)𝑁1) = (𝐾‘((2 · 𝑠) − 1))))
108100, 104, 107syl2anc 586 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((((2 · 𝑠) − 1)𝑁0) = (𝐺‘((2 · 𝑠) − 1)) ∧ (((2 · 𝑠) − 1)𝑁1) = (𝐾‘((2 · 𝑠) − 1))))
109108simpld 497 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (((2 · 𝑠) − 1)𝑁0) = (𝐺‘((2 · 𝑠) − 1)))
11099, 109ifeq12da 4498 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) = if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))))
111 simpr 487 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
112 0elunit 12854 . . . 4 0 ∈ (0[,]1)
113 simpl 485 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → 𝑥 = 𝑠)
114113breq1d 5075 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (𝑥 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2)))
115113oveq2d 7171 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → (2 · 𝑥) = (2 · 𝑠))
116 simpr 487 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → 𝑦 = 0)
117115, 116oveq12d 7173 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → ((2 · 𝑥)𝑀𝑦) = ((2 · 𝑠)𝑀0))
118115oveq1d 7170 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → ((2 · 𝑥) − 1) = ((2 · 𝑠) − 1))
119118, 116oveq12d 7173 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (((2 · 𝑥) − 1)𝑁𝑦) = (((2 · 𝑠) − 1)𝑁0))
120114, 117, 119ifbieq12d 4493 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)))
121 ovex 7188 . . . . . 6 ((2 · 𝑠)𝑀0) ∈ V
122 ovex 7188 . . . . . 6 (((2 · 𝑠) − 1)𝑁0) ∈ V
123121, 122ifex 4514 . . . . 5 if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) ∈ V
124120, 21, 123ovmpoa 7304 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → (𝑠𝑃0) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)))
125111, 112, 124sylancl 588 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃0) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)))
1264, 8pcovalg 23615 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑠) = if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))))
127110, 125, 1263eqtr4d 2866 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃0) = ((𝐹(*𝑝𝐽)𝐺)‘𝑠))
12898simprd 498 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠)𝑀1) = (𝐻‘(2 · 𝑠)))
129108simprd 498 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (((2 · 𝑠) − 1)𝑁1) = (𝐾‘((2 · 𝑠) − 1)))
130128, 129ifeq12da 4498 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) = if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))))
131 1elunit 12855 . . . 4 1 ∈ (0[,]1)
132 simpl 485 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → 𝑥 = 𝑠)
133132breq1d 5075 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (𝑥 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2)))
134132oveq2d 7171 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → (2 · 𝑥) = (2 · 𝑠))
135 simpr 487 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → 𝑦 = 1)
136134, 135oveq12d 7173 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → ((2 · 𝑥)𝑀𝑦) = ((2 · 𝑠)𝑀1))
137134oveq1d 7170 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ((2 · 𝑥) − 1) = ((2 · 𝑠) − 1))
138137, 135oveq12d 7173 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (((2 · 𝑥) − 1)𝑁𝑦) = (((2 · 𝑠) − 1)𝑁1))
139133, 136, 138ifbieq12d 4493 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)))
140 ovex 7188 . . . . . 6 ((2 · 𝑠)𝑀1) ∈ V
141 ovex 7188 . . . . . 6 (((2 · 𝑠) − 1)𝑁1) ∈ V
142140, 141ifex 4514 . . . . 5 if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) ∈ V
143139, 21, 142ovmpoa 7304 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → (𝑠𝑃1) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)))
144111, 131, 143sylancl 588 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃1) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)))
14511, 12pcovalg 23615 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐻(*𝑝𝐽)𝐾)‘𝑠) = if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))))
146130, 144, 1453eqtr4d 2866 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃1) = ((𝐻(*𝑝𝐽)𝐾)‘𝑠))
1474, 11, 13phtpyi 23587 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝑀𝑠) = (𝐹‘0) ∧ (1𝑀𝑠) = (𝐹‘1)))
148147simpld 497 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = (𝐹‘0))
149 simpl 485 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 = 0)
150149, 29eqbrtrdi 5104 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 ≤ (1 / 2))
151150iftrued 4474 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = ((2 · 𝑥)𝑀𝑦))
152149oveq2d 7171 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = (2 · 0))
153 2t0e0 11805 . . . . . . . 8 (2 · 0) = 0
154152, 153syl6eq 2872 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = 0)
155 simpr 487 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
156154, 155oveq12d 7173 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → ((2 · 𝑥)𝑀𝑦) = (0𝑀𝑠))
157151, 156eqtrd 2856 . . . . 5 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = (0𝑀𝑠))
158 ovex 7188 . . . . 5 (0𝑀𝑠) ∈ V
159157, 21, 158ovmpoa 7304 . . . 4 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝑃𝑠) = (0𝑀𝑠))
160112, 111, 159sylancr 589 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑃𝑠) = (0𝑀𝑠))
1614, 8pco0 23617 . . . 4 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘0) = (𝐹‘0))
162161adantr 483 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘0) = (𝐹‘0))
163148, 160, 1623eqtr4d 2866 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑃𝑠) = ((𝐹(*𝑝𝐽)𝐺)‘0))
1648, 12, 16phtpyi 23587 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝑁𝑠) = (𝐺‘0) ∧ (1𝑁𝑠) = (𝐺‘1)))
165164simprd 498 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑁𝑠) = (𝐺‘1))
16628, 30ltnlei 10760 . . . . . . . . 9 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
16731, 166mpbi 232 . . . . . . . 8 ¬ 1 ≤ (1 / 2)
168 simpl 485 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑥 = 1)
169168breq1d 5075 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
170167, 169mtbiri 329 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ¬ 𝑥 ≤ (1 / 2))
171170iffalsed 4477 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = (((2 · 𝑥) − 1)𝑁𝑦))
172168oveq2d 7171 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = (2 · 1))
173 2t1e2 11799 . . . . . . . . . 10 (2 · 1) = 2
174172, 173syl6eq 2872 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = 2)
175174oveq1d 7170 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((2 · 𝑥) − 1) = (2 − 1))
176 2m1e1 11762 . . . . . . . 8 (2 − 1) = 1
177175, 176syl6eq 2872 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((2 · 𝑥) − 1) = 1)
178 simpr 487 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
179177, 178oveq12d 7173 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (((2 · 𝑥) − 1)𝑁𝑦) = (1𝑁𝑠))
180171, 179eqtrd 2856 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = (1𝑁𝑠))
181 ovex 7188 . . . . 5 (1𝑁𝑠) ∈ V
182180, 21, 181ovmpoa 7304 . . . 4 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝑃𝑠) = (1𝑁𝑠))
183131, 111, 182sylancr 589 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑃𝑠) = (1𝑁𝑠))
1844, 8pco1 23618 . . . 4 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘1) = (𝐺‘1))
185184adantr 483 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘1) = (𝐺‘1))
186165, 183, 1853eqtr4d 2866 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑃𝑠) = ((𝐹(*𝑝𝐽)𝐺)‘1))
18710, 20, 89, 127, 146, 163, 186isphtpy2d 23590 1 (𝜑𝑃 ∈ ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wss 3935  c0 4290  ifcif 4466   class class class wbr 5065  cmpt 5145  ran crn 5555  cfv 6354  (class class class)co 7155  cmpo 7157  cr 10535  0cc0 10536  1c1 10537   · cmul 10541   < clt 10674  cle 10675  cmin 10869   / cdiv 11296  2c2 11691  (,)cioo 12737  [,]cicc 12740  t crest 16693  topGenctg 16710  TopOnctopon 21517   Cn ccn 21831   ×t ctx 22167  IIcii 23482   Htpy chtpy 23570  PHtpycphtpy 23571  phcphtpc 23572  *𝑝cpco 23603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-icc 12744  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-cn 21834  df-cnp 21835  df-tx 22169  df-hmeo 22362  df-xms 22929  df-ms 22930  df-tms 22931  df-ii 23484  df-htpy 23573  df-phtpy 23574  df-phtpc 23595  df-pco 23608
This theorem is referenced by:  pcohtpy  23623
  Copyright terms: Public domain W3C validator