MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcohtpylem Structured version   Visualization version   GIF version

Theorem pcohtpylem 24366
Description: Lemma for pcohtpy 24367. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
pcohtpy.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
pcohtpy.5 (𝜑𝐹( ≃ph𝐽)𝐻)
pcohtpy.6 (𝜑𝐺( ≃ph𝐽)𝐾)
pcohtpylem.7 𝑃 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)))
pcohtpylem.8 (𝜑𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻))
pcohtpylem.9 (𝜑𝑁 ∈ (𝐺(PHtpy‘𝐽)𝐾))
Assertion
Ref Expression
pcohtpylem (𝜑𝑃 ∈ ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦)

Proof of Theorem pcohtpylem
Dummy variables 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcohtpy.5 . . . . 5 (𝜑𝐹( ≃ph𝐽)𝐻)
2 isphtpc 24341 . . . . 5 (𝐹( ≃ph𝐽)𝐻 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅))
31, 2sylib 217 . . . 4 (𝜑 → (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅))
43simp1d 1142 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
5 pcohtpy.6 . . . . 5 (𝜑𝐺( ≃ph𝐽)𝐾)
6 isphtpc 24341 . . . . 5 (𝐺( ≃ph𝐽)𝐾 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅))
75, 6sylib 217 . . . 4 (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅))
87simp1d 1142 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
9 pcohtpy.4 . . 3 (𝜑 → (𝐹‘1) = (𝐺‘0))
104, 8, 9pcocn 24364 . 2 (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))
113simp2d 1143 . . 3 (𝜑𝐻 ∈ (II Cn 𝐽))
127simp2d 1143 . . 3 (𝜑𝐾 ∈ (II Cn 𝐽))
13 pcohtpylem.8 . . . . . 6 (𝜑𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻))
144, 11, 13phtpy01 24332 . . . . 5 (𝜑 → ((𝐹‘0) = (𝐻‘0) ∧ (𝐹‘1) = (𝐻‘1)))
1514simprd 496 . . . 4 (𝜑 → (𝐹‘1) = (𝐻‘1))
16 pcohtpylem.9 . . . . . 6 (𝜑𝑁 ∈ (𝐺(PHtpy‘𝐽)𝐾))
178, 12, 16phtpy01 24332 . . . . 5 (𝜑 → ((𝐺‘0) = (𝐾‘0) ∧ (𝐺‘1) = (𝐾‘1)))
1817simpld 495 . . . 4 (𝜑 → (𝐺‘0) = (𝐾‘0))
199, 15, 183eqtr3d 2784 . . 3 (𝜑 → (𝐻‘1) = (𝐾‘0))
2011, 12, 19pcocn 24364 . 2 (𝜑 → (𝐻(*𝑝𝐽)𝐾) ∈ (II Cn 𝐽))
21 pcohtpylem.7 . . 3 𝑃 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)))
22 eqid 2736 . . . 4 (topGen‘ran (,)) = (topGen‘ran (,))
23 eqid 2736 . . . 4 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
24 eqid 2736 . . . 4 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
25 dfii2 24229 . . . 4 II = ((topGen‘ran (,)) ↾t (0[,]1))
26 0red 11154 . . . 4 (𝜑 → 0 ∈ ℝ)
27 1red 11152 . . . 4 (𝜑 → 1 ∈ ℝ)
28 halfre 12363 . . . . . 6 (1 / 2) ∈ ℝ
29 halfge0 12366 . . . . . 6 0 ≤ (1 / 2)
30 1re 11151 . . . . . . 7 1 ∈ ℝ
31 halflt1 12367 . . . . . . 7 (1 / 2) < 1
3228, 30, 31ltleii 11274 . . . . . 6 (1 / 2) ≤ 1
33 elicc01 13375 . . . . . 6 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
3428, 29, 32, 33mpbir3an 1341 . . . . 5 (1 / 2) ∈ (0[,]1)
3534a1i 11 . . . 4 (𝜑 → (1 / 2) ∈ (0[,]1))
36 iitopon 24226 . . . . 5 II ∈ (TopOn‘(0[,]1))
3736a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
389adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (𝐹‘1) = (𝐺‘0))
394, 11, 13phtpyi 24331 . . . . . . . 8 ((𝜑𝑦 ∈ (0[,]1)) → ((0𝑀𝑦) = (𝐹‘0) ∧ (1𝑀𝑦) = (𝐹‘1)))
4039simprd 496 . . . . . . 7 ((𝜑𝑦 ∈ (0[,]1)) → (1𝑀𝑦) = (𝐹‘1))
4140adantrl 714 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (1𝑀𝑦) = (𝐹‘1))
428, 12, 16phtpyi 24331 . . . . . . . 8 ((𝜑𝑦 ∈ (0[,]1)) → ((0𝑁𝑦) = (𝐺‘0) ∧ (1𝑁𝑦) = (𝐺‘1)))
4342simpld 495 . . . . . . 7 ((𝜑𝑦 ∈ (0[,]1)) → (0𝑁𝑦) = (𝐺‘0))
4443adantrl 714 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (0𝑁𝑦) = (𝐺‘0))
4538, 41, 443eqtr4d 2786 . . . . 5 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (1𝑀𝑦) = (0𝑁𝑦))
46 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → 𝑥 = (1 / 2))
4746oveq2d 7369 . . . . . . 7 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (2 · 𝑥) = (2 · (1 / 2)))
48 2cn 12224 . . . . . . . 8 2 ∈ ℂ
49 2ne0 12253 . . . . . . . 8 2 ≠ 0
5048, 49recidi 11882 . . . . . . 7 (2 · (1 / 2)) = 1
5147, 50eqtrdi 2792 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (2 · 𝑥) = 1)
5251oveq1d 7368 . . . . 5 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥)𝑀𝑦) = (1𝑀𝑦))
5351oveq1d 7368 . . . . . . 7 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥) − 1) = (1 − 1))
54 1m1e0 12221 . . . . . . 7 (1 − 1) = 0
5553, 54eqtrdi 2792 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥) − 1) = 0)
5655oveq1d 7368 . . . . 5 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (((2 · 𝑥) − 1)𝑁𝑦) = (0𝑁𝑦))
5745, 52, 563eqtr4d 2786 . . . 4 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥)𝑀𝑦) = (((2 · 𝑥) − 1)𝑁𝑦))
58 retopon 24111 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
59 0re 11153 . . . . . . . 8 0 ∈ ℝ
60 iccssre 13338 . . . . . . . 8 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
6159, 28, 60mp2an 690 . . . . . . 7 (0[,](1 / 2)) ⊆ ℝ
62 resttopon 22496 . . . . . . 7 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
6358, 61, 62mp2an 690 . . . . . 6 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
6463a1i 11 . . . . 5 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
6564, 37cnmpt1st 23003 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 2)))))
6623iihalf1cn 24279 . . . . . . 7 (𝑧 ∈ (0[,](1 / 2)) ↦ (2 · 𝑧)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
6766a1i 11 . . . . . 6 (𝜑 → (𝑧 ∈ (0[,](1 / 2)) ↦ (2 · 𝑧)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
68 oveq2 7361 . . . . . 6 (𝑧 = 𝑥 → (2 · 𝑧) = (2 · 𝑥))
6964, 37, 65, 64, 67, 68cnmpt21 23006 . . . . 5 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ (2 · 𝑥)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
7064, 37cnmpt2nd 23004 . . . . 5 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
714, 11phtpycn 24330 . . . . . 6 (𝜑 → (𝐹(PHtpy‘𝐽)𝐻) ⊆ ((II ×t II) Cn 𝐽))
7271, 13sseldd 3943 . . . . 5 (𝜑𝑀 ∈ ((II ×t II) Cn 𝐽))
7364, 37, 69, 70, 72cnmpt22f 23010 . . . 4 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ ((2 · 𝑥)𝑀𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn 𝐽))
74 iccssre 13338 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
7528, 30, 74mp2an 690 . . . . . . 7 ((1 / 2)[,]1) ⊆ ℝ
76 resttopon 22496 . . . . . . 7 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
7758, 75, 76mp2an 690 . . . . . 6 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
7877a1i 11 . . . . 5 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
7978, 37cnmpt1st 23003 . . . . . 6 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
8024iihalf2cn 24281 . . . . . . 7 (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑧) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II)
8180a1i 11 . . . . . 6 (𝜑 → (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑧) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
8268oveq1d 7368 . . . . . 6 (𝑧 = 𝑥 → ((2 · 𝑧) − 1) = ((2 · 𝑥) − 1))
8378, 37, 79, 78, 81, 82cnmpt21 23006 . . . . 5 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ ((2 · 𝑥) − 1)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
8478, 37cnmpt2nd 23004 . . . . 5 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
858, 12phtpycn 24330 . . . . . 6 (𝜑 → (𝐺(PHtpy‘𝐽)𝐾) ⊆ ((II ×t II) Cn 𝐽))
8685, 16sseldd 3943 . . . . 5 (𝜑𝑁 ∈ ((II ×t II) Cn 𝐽))
8778, 37, 83, 84, 86cnmpt22f 23010 . . . 4 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ (((2 · 𝑥) − 1)𝑁𝑦)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn 𝐽))
8822, 23, 24, 25, 26, 27, 35, 37, 57, 73, 87cnmpopc 24275 . . 3 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦))) ∈ ((II ×t II) Cn 𝐽))
8921, 88eqeltrid 2842 . 2 (𝜑𝑃 ∈ ((II ×t II) Cn 𝐽))
90 simpll 765 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → 𝜑)
91 elii1 24282 . . . . . . . 8 (𝑠 ∈ (0[,](1 / 2)) ↔ (𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)))
92 iihalf1 24278 . . . . . . . 8 (𝑠 ∈ (0[,](1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
9391, 92sylbir 234 . . . . . . 7 ((𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
9493adantll 712 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
954, 11phtpyhtpy 24329 . . . . . . . 8 (𝜑 → (𝐹(PHtpy‘𝐽)𝐻) ⊆ (𝐹(II Htpy 𝐽)𝐻))
9695, 13sseldd 3943 . . . . . . 7 (𝜑𝑀 ∈ (𝐹(II Htpy 𝐽)𝐻))
9737, 4, 11, 96htpyi 24321 . . . . . 6 ((𝜑 ∧ (2 · 𝑠) ∈ (0[,]1)) → (((2 · 𝑠)𝑀0) = (𝐹‘(2 · 𝑠)) ∧ ((2 · 𝑠)𝑀1) = (𝐻‘(2 · 𝑠))))
9890, 94, 97syl2anc 584 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (((2 · 𝑠)𝑀0) = (𝐹‘(2 · 𝑠)) ∧ ((2 · 𝑠)𝑀1) = (𝐻‘(2 · 𝑠))))
9998simpld 495 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠)𝑀0) = (𝐹‘(2 · 𝑠)))
100 simpll 765 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝜑)
101 elii2 24283 . . . . . . . 8 ((𝑠 ∈ (0[,]1) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝑠 ∈ ((1 / 2)[,]1))
102101adantll 712 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝑠 ∈ ((1 / 2)[,]1))
103 iihalf2 24280 . . . . . . 7 (𝑠 ∈ ((1 / 2)[,]1) → ((2 · 𝑠) − 1) ∈ (0[,]1))
104102, 103syl 17 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠) − 1) ∈ (0[,]1))
1058, 12phtpyhtpy 24329 . . . . . . . 8 (𝜑 → (𝐺(PHtpy‘𝐽)𝐾) ⊆ (𝐺(II Htpy 𝐽)𝐾))
106105, 16sseldd 3943 . . . . . . 7 (𝜑𝑁 ∈ (𝐺(II Htpy 𝐽)𝐾))
10737, 8, 12, 106htpyi 24321 . . . . . 6 ((𝜑 ∧ ((2 · 𝑠) − 1) ∈ (0[,]1)) → ((((2 · 𝑠) − 1)𝑁0) = (𝐺‘((2 · 𝑠) − 1)) ∧ (((2 · 𝑠) − 1)𝑁1) = (𝐾‘((2 · 𝑠) − 1))))
108100, 104, 107syl2anc 584 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((((2 · 𝑠) − 1)𝑁0) = (𝐺‘((2 · 𝑠) − 1)) ∧ (((2 · 𝑠) − 1)𝑁1) = (𝐾‘((2 · 𝑠) − 1))))
109108simpld 495 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (((2 · 𝑠) − 1)𝑁0) = (𝐺‘((2 · 𝑠) − 1)))
11099, 109ifeq12da 4517 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) = if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))))
111 simpr 485 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
112 0elunit 13378 . . . 4 0 ∈ (0[,]1)
113 simpl 483 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → 𝑥 = 𝑠)
114113breq1d 5113 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (𝑥 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2)))
115113oveq2d 7369 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → (2 · 𝑥) = (2 · 𝑠))
116 simpr 485 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → 𝑦 = 0)
117115, 116oveq12d 7371 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → ((2 · 𝑥)𝑀𝑦) = ((2 · 𝑠)𝑀0))
118115oveq1d 7368 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → ((2 · 𝑥) − 1) = ((2 · 𝑠) − 1))
119118, 116oveq12d 7371 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (((2 · 𝑥) − 1)𝑁𝑦) = (((2 · 𝑠) − 1)𝑁0))
120114, 117, 119ifbieq12d 4512 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)))
121 ovex 7386 . . . . . 6 ((2 · 𝑠)𝑀0) ∈ V
122 ovex 7386 . . . . . 6 (((2 · 𝑠) − 1)𝑁0) ∈ V
123121, 122ifex 4534 . . . . 5 if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) ∈ V
124120, 21, 123ovmpoa 7506 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → (𝑠𝑃0) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)))
125111, 112, 124sylancl 586 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃0) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)))
1264, 8pcovalg 24359 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑠) = if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))))
127110, 125, 1263eqtr4d 2786 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃0) = ((𝐹(*𝑝𝐽)𝐺)‘𝑠))
12898simprd 496 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠)𝑀1) = (𝐻‘(2 · 𝑠)))
129108simprd 496 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (((2 · 𝑠) − 1)𝑁1) = (𝐾‘((2 · 𝑠) − 1)))
130128, 129ifeq12da 4517 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) = if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))))
131 1elunit 13379 . . . 4 1 ∈ (0[,]1)
132 simpl 483 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → 𝑥 = 𝑠)
133132breq1d 5113 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (𝑥 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2)))
134132oveq2d 7369 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → (2 · 𝑥) = (2 · 𝑠))
135 simpr 485 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → 𝑦 = 1)
136134, 135oveq12d 7371 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → ((2 · 𝑥)𝑀𝑦) = ((2 · 𝑠)𝑀1))
137134oveq1d 7368 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ((2 · 𝑥) − 1) = ((2 · 𝑠) − 1))
138137, 135oveq12d 7371 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (((2 · 𝑥) − 1)𝑁𝑦) = (((2 · 𝑠) − 1)𝑁1))
139133, 136, 138ifbieq12d 4512 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)))
140 ovex 7386 . . . . . 6 ((2 · 𝑠)𝑀1) ∈ V
141 ovex 7386 . . . . . 6 (((2 · 𝑠) − 1)𝑁1) ∈ V
142140, 141ifex 4534 . . . . 5 if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) ∈ V
143139, 21, 142ovmpoa 7506 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → (𝑠𝑃1) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)))
144111, 131, 143sylancl 586 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃1) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)))
14511, 12pcovalg 24359 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐻(*𝑝𝐽)𝐾)‘𝑠) = if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))))
146130, 144, 1453eqtr4d 2786 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃1) = ((𝐻(*𝑝𝐽)𝐾)‘𝑠))
1474, 11, 13phtpyi 24331 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝑀𝑠) = (𝐹‘0) ∧ (1𝑀𝑠) = (𝐹‘1)))
148147simpld 495 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = (𝐹‘0))
149 simpl 483 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 = 0)
150149, 29eqbrtrdi 5142 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 ≤ (1 / 2))
151150iftrued 4492 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = ((2 · 𝑥)𝑀𝑦))
152149oveq2d 7369 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = (2 · 0))
153 2t0e0 12318 . . . . . . . 8 (2 · 0) = 0
154152, 153eqtrdi 2792 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = 0)
155 simpr 485 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
156154, 155oveq12d 7371 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → ((2 · 𝑥)𝑀𝑦) = (0𝑀𝑠))
157151, 156eqtrd 2776 . . . . 5 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = (0𝑀𝑠))
158 ovex 7386 . . . . 5 (0𝑀𝑠) ∈ V
159157, 21, 158ovmpoa 7506 . . . 4 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝑃𝑠) = (0𝑀𝑠))
160112, 111, 159sylancr 587 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑃𝑠) = (0𝑀𝑠))
1614, 8pco0 24361 . . . 4 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘0) = (𝐹‘0))
162161adantr 481 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘0) = (𝐹‘0))
163148, 160, 1623eqtr4d 2786 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑃𝑠) = ((𝐹(*𝑝𝐽)𝐺)‘0))
1648, 12, 16phtpyi 24331 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝑁𝑠) = (𝐺‘0) ∧ (1𝑁𝑠) = (𝐺‘1)))
165164simprd 496 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑁𝑠) = (𝐺‘1))
16628, 30ltnlei 11272 . . . . . . . . 9 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
16731, 166mpbi 229 . . . . . . . 8 ¬ 1 ≤ (1 / 2)
168 simpl 483 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑥 = 1)
169168breq1d 5113 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
170167, 169mtbiri 326 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ¬ 𝑥 ≤ (1 / 2))
171170iffalsed 4495 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = (((2 · 𝑥) − 1)𝑁𝑦))
172168oveq2d 7369 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = (2 · 1))
173 2t1e2 12312 . . . . . . . . . 10 (2 · 1) = 2
174172, 173eqtrdi 2792 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = 2)
175174oveq1d 7368 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((2 · 𝑥) − 1) = (2 − 1))
176 2m1e1 12275 . . . . . . . 8 (2 − 1) = 1
177175, 176eqtrdi 2792 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((2 · 𝑥) − 1) = 1)
178 simpr 485 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
179177, 178oveq12d 7371 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (((2 · 𝑥) − 1)𝑁𝑦) = (1𝑁𝑠))
180171, 179eqtrd 2776 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = (1𝑁𝑠))
181 ovex 7386 . . . . 5 (1𝑁𝑠) ∈ V
182180, 21, 181ovmpoa 7506 . . . 4 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝑃𝑠) = (1𝑁𝑠))
183131, 111, 182sylancr 587 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑃𝑠) = (1𝑁𝑠))
1844, 8pco1 24362 . . . 4 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘1) = (𝐺‘1))
185184adantr 481 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘1) = (𝐺‘1))
186165, 183, 1853eqtr4d 2786 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑃𝑠) = ((𝐹(*𝑝𝐽)𝐺)‘1))
18710, 20, 89, 127, 146, 163, 186isphtpy2d 24334 1 (𝜑𝑃 ∈ ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2941  wss 3908  c0 4280  ifcif 4484   class class class wbr 5103  cmpt 5186  ran crn 5632  cfv 6493  (class class class)co 7353  cmpo 7355  cr 11046  0cc0 11047  1c1 11048   · cmul 11052   < clt 11185  cle 11186  cmin 11381   / cdiv 11808  2c2 12204  (,)cioo 13256  [,]cicc 13259  t crest 17294  topGenctg 17311  TopOnctopon 22243   Cn ccn 22559   ×t ctx 22895  IIcii 24222   Htpy chtpy 24314  PHtpycphtpy 24315  phcphtpc 24316  *𝑝cpco 24347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125  ax-mulf 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7613  df-om 7799  df-1st 7917  df-2nd 7918  df-supp 8089  df-frecs 8208  df-wrecs 8239  df-recs 8313  df-rdg 8352  df-1o 8408  df-2o 8409  df-er 8644  df-map 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9302  df-fi 9343  df-sup 9374  df-inf 9375  df-oi 9442  df-card 9871  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-div 11809  df-nn 12150  df-2 12212  df-3 12213  df-4 12214  df-5 12215  df-6 12216  df-7 12217  df-8 12218  df-9 12219  df-n0 12410  df-z 12496  df-dec 12615  df-uz 12760  df-q 12866  df-rp 12908  df-xneg 13025  df-xadd 13026  df-xmul 13027  df-ioo 13260  df-icc 13263  df-fz 13417  df-fzo 13560  df-seq 13899  df-exp 13960  df-hash 14223  df-cj 14976  df-re 14977  df-im 14978  df-sqrt 15112  df-abs 15113  df-struct 17011  df-sets 17028  df-slot 17046  df-ndx 17058  df-base 17076  df-ress 17105  df-plusg 17138  df-mulr 17139  df-starv 17140  df-sca 17141  df-vsca 17142  df-ip 17143  df-tset 17144  df-ple 17145  df-ds 17147  df-unif 17148  df-hom 17149  df-cco 17150  df-rest 17296  df-topn 17297  df-0g 17315  df-gsum 17316  df-topgen 17317  df-pt 17318  df-prds 17321  df-xrs 17376  df-qtop 17381  df-imas 17382  df-xps 17384  df-mre 17458  df-mrc 17459  df-acs 17461  df-mgm 18489  df-sgrp 18538  df-mnd 18549  df-submnd 18594  df-mulg 18864  df-cntz 19088  df-cmn 19555  df-psmet 20773  df-xmet 20774  df-met 20775  df-bl 20776  df-mopn 20777  df-cnfld 20782  df-top 22227  df-topon 22244  df-topsp 22266  df-bases 22280  df-cld 22354  df-cn 22562  df-cnp 22563  df-tx 22897  df-hmeo 23090  df-xms 23657  df-ms 23658  df-tms 23659  df-ii 24224  df-htpy 24317  df-phtpy 24318  df-phtpc 24339  df-pco 24352
This theorem is referenced by:  pcohtpy  24367
  Copyright terms: Public domain W3C validator