MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcohtpylem Structured version   Visualization version   GIF version

Theorem pcohtpylem 24182
Description: Lemma for pcohtpy 24183. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
pcohtpy.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
pcohtpy.5 (𝜑𝐹( ≃ph𝐽)𝐻)
pcohtpy.6 (𝜑𝐺( ≃ph𝐽)𝐾)
pcohtpylem.7 𝑃 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)))
pcohtpylem.8 (𝜑𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻))
pcohtpylem.9 (𝜑𝑁 ∈ (𝐺(PHtpy‘𝐽)𝐾))
Assertion
Ref Expression
pcohtpylem (𝜑𝑃 ∈ ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦)

Proof of Theorem pcohtpylem
Dummy variables 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcohtpy.5 . . . . 5 (𝜑𝐹( ≃ph𝐽)𝐻)
2 isphtpc 24157 . . . . 5 (𝐹( ≃ph𝐽)𝐻 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅))
31, 2sylib 217 . . . 4 (𝜑 → (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅))
43simp1d 1141 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
5 pcohtpy.6 . . . . 5 (𝜑𝐺( ≃ph𝐽)𝐾)
6 isphtpc 24157 . . . . 5 (𝐺( ≃ph𝐽)𝐾 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅))
75, 6sylib 217 . . . 4 (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅))
87simp1d 1141 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
9 pcohtpy.4 . . 3 (𝜑 → (𝐹‘1) = (𝐺‘0))
104, 8, 9pcocn 24180 . 2 (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))
113simp2d 1142 . . 3 (𝜑𝐻 ∈ (II Cn 𝐽))
127simp2d 1142 . . 3 (𝜑𝐾 ∈ (II Cn 𝐽))
13 pcohtpylem.8 . . . . . 6 (𝜑𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻))
144, 11, 13phtpy01 24148 . . . . 5 (𝜑 → ((𝐹‘0) = (𝐻‘0) ∧ (𝐹‘1) = (𝐻‘1)))
1514simprd 496 . . . 4 (𝜑 → (𝐹‘1) = (𝐻‘1))
16 pcohtpylem.9 . . . . . 6 (𝜑𝑁 ∈ (𝐺(PHtpy‘𝐽)𝐾))
178, 12, 16phtpy01 24148 . . . . 5 (𝜑 → ((𝐺‘0) = (𝐾‘0) ∧ (𝐺‘1) = (𝐾‘1)))
1817simpld 495 . . . 4 (𝜑 → (𝐺‘0) = (𝐾‘0))
199, 15, 183eqtr3d 2786 . . 3 (𝜑 → (𝐻‘1) = (𝐾‘0))
2011, 12, 19pcocn 24180 . 2 (𝜑 → (𝐻(*𝑝𝐽)𝐾) ∈ (II Cn 𝐽))
21 pcohtpylem.7 . . 3 𝑃 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)))
22 eqid 2738 . . . 4 (topGen‘ran (,)) = (topGen‘ran (,))
23 eqid 2738 . . . 4 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
24 eqid 2738 . . . 4 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
25 dfii2 24045 . . . 4 II = ((topGen‘ran (,)) ↾t (0[,]1))
26 0red 10978 . . . 4 (𝜑 → 0 ∈ ℝ)
27 1red 10976 . . . 4 (𝜑 → 1 ∈ ℝ)
28 halfre 12187 . . . . . 6 (1 / 2) ∈ ℝ
29 halfge0 12190 . . . . . 6 0 ≤ (1 / 2)
30 1re 10975 . . . . . . 7 1 ∈ ℝ
31 halflt1 12191 . . . . . . 7 (1 / 2) < 1
3228, 30, 31ltleii 11098 . . . . . 6 (1 / 2) ≤ 1
33 elicc01 13198 . . . . . 6 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
3428, 29, 32, 33mpbir3an 1340 . . . . 5 (1 / 2) ∈ (0[,]1)
3534a1i 11 . . . 4 (𝜑 → (1 / 2) ∈ (0[,]1))
36 iitopon 24042 . . . . 5 II ∈ (TopOn‘(0[,]1))
3736a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
389adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (𝐹‘1) = (𝐺‘0))
394, 11, 13phtpyi 24147 . . . . . . . 8 ((𝜑𝑦 ∈ (0[,]1)) → ((0𝑀𝑦) = (𝐹‘0) ∧ (1𝑀𝑦) = (𝐹‘1)))
4039simprd 496 . . . . . . 7 ((𝜑𝑦 ∈ (0[,]1)) → (1𝑀𝑦) = (𝐹‘1))
4140adantrl 713 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (1𝑀𝑦) = (𝐹‘1))
428, 12, 16phtpyi 24147 . . . . . . . 8 ((𝜑𝑦 ∈ (0[,]1)) → ((0𝑁𝑦) = (𝐺‘0) ∧ (1𝑁𝑦) = (𝐺‘1)))
4342simpld 495 . . . . . . 7 ((𝜑𝑦 ∈ (0[,]1)) → (0𝑁𝑦) = (𝐺‘0))
4443adantrl 713 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (0𝑁𝑦) = (𝐺‘0))
4538, 41, 443eqtr4d 2788 . . . . 5 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (1𝑀𝑦) = (0𝑁𝑦))
46 simprl 768 . . . . . . . 8 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → 𝑥 = (1 / 2))
4746oveq2d 7291 . . . . . . 7 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (2 · 𝑥) = (2 · (1 / 2)))
48 2cn 12048 . . . . . . . 8 2 ∈ ℂ
49 2ne0 12077 . . . . . . . 8 2 ≠ 0
5048, 49recidi 11706 . . . . . . 7 (2 · (1 / 2)) = 1
5147, 50eqtrdi 2794 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (2 · 𝑥) = 1)
5251oveq1d 7290 . . . . 5 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥)𝑀𝑦) = (1𝑀𝑦))
5351oveq1d 7290 . . . . . . 7 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥) − 1) = (1 − 1))
54 1m1e0 12045 . . . . . . 7 (1 − 1) = 0
5553, 54eqtrdi 2794 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥) − 1) = 0)
5655oveq1d 7290 . . . . 5 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (((2 · 𝑥) − 1)𝑁𝑦) = (0𝑁𝑦))
5745, 52, 563eqtr4d 2788 . . . 4 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥)𝑀𝑦) = (((2 · 𝑥) − 1)𝑁𝑦))
58 retopon 23927 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
59 0re 10977 . . . . . . . 8 0 ∈ ℝ
60 iccssre 13161 . . . . . . . 8 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
6159, 28, 60mp2an 689 . . . . . . 7 (0[,](1 / 2)) ⊆ ℝ
62 resttopon 22312 . . . . . . 7 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
6358, 61, 62mp2an 689 . . . . . 6 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
6463a1i 11 . . . . 5 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
6564, 37cnmpt1st 22819 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 2)))))
6623iihalf1cn 24095 . . . . . . 7 (𝑧 ∈ (0[,](1 / 2)) ↦ (2 · 𝑧)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
6766a1i 11 . . . . . 6 (𝜑 → (𝑧 ∈ (0[,](1 / 2)) ↦ (2 · 𝑧)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
68 oveq2 7283 . . . . . 6 (𝑧 = 𝑥 → (2 · 𝑧) = (2 · 𝑥))
6964, 37, 65, 64, 67, 68cnmpt21 22822 . . . . 5 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ (2 · 𝑥)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
7064, 37cnmpt2nd 22820 . . . . 5 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
714, 11phtpycn 24146 . . . . . 6 (𝜑 → (𝐹(PHtpy‘𝐽)𝐻) ⊆ ((II ×t II) Cn 𝐽))
7271, 13sseldd 3922 . . . . 5 (𝜑𝑀 ∈ ((II ×t II) Cn 𝐽))
7364, 37, 69, 70, 72cnmpt22f 22826 . . . 4 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ ((2 · 𝑥)𝑀𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn 𝐽))
74 iccssre 13161 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
7528, 30, 74mp2an 689 . . . . . . 7 ((1 / 2)[,]1) ⊆ ℝ
76 resttopon 22312 . . . . . . 7 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
7758, 75, 76mp2an 689 . . . . . 6 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
7877a1i 11 . . . . 5 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
7978, 37cnmpt1st 22819 . . . . . 6 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
8024iihalf2cn 24097 . . . . . . 7 (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑧) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II)
8180a1i 11 . . . . . 6 (𝜑 → (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑧) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
8268oveq1d 7290 . . . . . 6 (𝑧 = 𝑥 → ((2 · 𝑧) − 1) = ((2 · 𝑥) − 1))
8378, 37, 79, 78, 81, 82cnmpt21 22822 . . . . 5 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ ((2 · 𝑥) − 1)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
8478, 37cnmpt2nd 22820 . . . . 5 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
858, 12phtpycn 24146 . . . . . 6 (𝜑 → (𝐺(PHtpy‘𝐽)𝐾) ⊆ ((II ×t II) Cn 𝐽))
8685, 16sseldd 3922 . . . . 5 (𝜑𝑁 ∈ ((II ×t II) Cn 𝐽))
8778, 37, 83, 84, 86cnmpt22f 22826 . . . 4 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ (((2 · 𝑥) − 1)𝑁𝑦)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn 𝐽))
8822, 23, 24, 25, 26, 27, 35, 37, 57, 73, 87cnmpopc 24091 . . 3 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦))) ∈ ((II ×t II) Cn 𝐽))
8921, 88eqeltrid 2843 . 2 (𝜑𝑃 ∈ ((II ×t II) Cn 𝐽))
90 simpll 764 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → 𝜑)
91 elii1 24098 . . . . . . . 8 (𝑠 ∈ (0[,](1 / 2)) ↔ (𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)))
92 iihalf1 24094 . . . . . . . 8 (𝑠 ∈ (0[,](1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
9391, 92sylbir 234 . . . . . . 7 ((𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
9493adantll 711 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
954, 11phtpyhtpy 24145 . . . . . . . 8 (𝜑 → (𝐹(PHtpy‘𝐽)𝐻) ⊆ (𝐹(II Htpy 𝐽)𝐻))
9695, 13sseldd 3922 . . . . . . 7 (𝜑𝑀 ∈ (𝐹(II Htpy 𝐽)𝐻))
9737, 4, 11, 96htpyi 24137 . . . . . 6 ((𝜑 ∧ (2 · 𝑠) ∈ (0[,]1)) → (((2 · 𝑠)𝑀0) = (𝐹‘(2 · 𝑠)) ∧ ((2 · 𝑠)𝑀1) = (𝐻‘(2 · 𝑠))))
9890, 94, 97syl2anc 584 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (((2 · 𝑠)𝑀0) = (𝐹‘(2 · 𝑠)) ∧ ((2 · 𝑠)𝑀1) = (𝐻‘(2 · 𝑠))))
9998simpld 495 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠)𝑀0) = (𝐹‘(2 · 𝑠)))
100 simpll 764 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝜑)
101 elii2 24099 . . . . . . . 8 ((𝑠 ∈ (0[,]1) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝑠 ∈ ((1 / 2)[,]1))
102101adantll 711 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝑠 ∈ ((1 / 2)[,]1))
103 iihalf2 24096 . . . . . . 7 (𝑠 ∈ ((1 / 2)[,]1) → ((2 · 𝑠) − 1) ∈ (0[,]1))
104102, 103syl 17 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠) − 1) ∈ (0[,]1))
1058, 12phtpyhtpy 24145 . . . . . . . 8 (𝜑 → (𝐺(PHtpy‘𝐽)𝐾) ⊆ (𝐺(II Htpy 𝐽)𝐾))
106105, 16sseldd 3922 . . . . . . 7 (𝜑𝑁 ∈ (𝐺(II Htpy 𝐽)𝐾))
10737, 8, 12, 106htpyi 24137 . . . . . 6 ((𝜑 ∧ ((2 · 𝑠) − 1) ∈ (0[,]1)) → ((((2 · 𝑠) − 1)𝑁0) = (𝐺‘((2 · 𝑠) − 1)) ∧ (((2 · 𝑠) − 1)𝑁1) = (𝐾‘((2 · 𝑠) − 1))))
108100, 104, 107syl2anc 584 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((((2 · 𝑠) − 1)𝑁0) = (𝐺‘((2 · 𝑠) − 1)) ∧ (((2 · 𝑠) − 1)𝑁1) = (𝐾‘((2 · 𝑠) − 1))))
109108simpld 495 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (((2 · 𝑠) − 1)𝑁0) = (𝐺‘((2 · 𝑠) − 1)))
11099, 109ifeq12da 4492 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) = if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))))
111 simpr 485 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
112 0elunit 13201 . . . 4 0 ∈ (0[,]1)
113 simpl 483 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → 𝑥 = 𝑠)
114113breq1d 5084 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (𝑥 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2)))
115113oveq2d 7291 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → (2 · 𝑥) = (2 · 𝑠))
116 simpr 485 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → 𝑦 = 0)
117115, 116oveq12d 7293 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → ((2 · 𝑥)𝑀𝑦) = ((2 · 𝑠)𝑀0))
118115oveq1d 7290 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → ((2 · 𝑥) − 1) = ((2 · 𝑠) − 1))
119118, 116oveq12d 7293 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (((2 · 𝑥) − 1)𝑁𝑦) = (((2 · 𝑠) − 1)𝑁0))
120114, 117, 119ifbieq12d 4487 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)))
121 ovex 7308 . . . . . 6 ((2 · 𝑠)𝑀0) ∈ V
122 ovex 7308 . . . . . 6 (((2 · 𝑠) − 1)𝑁0) ∈ V
123121, 122ifex 4509 . . . . 5 if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) ∈ V
124120, 21, 123ovmpoa 7428 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → (𝑠𝑃0) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)))
125111, 112, 124sylancl 586 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃0) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)))
1264, 8pcovalg 24175 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑠) = if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))))
127110, 125, 1263eqtr4d 2788 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃0) = ((𝐹(*𝑝𝐽)𝐺)‘𝑠))
12898simprd 496 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠)𝑀1) = (𝐻‘(2 · 𝑠)))
129108simprd 496 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (((2 · 𝑠) − 1)𝑁1) = (𝐾‘((2 · 𝑠) − 1)))
130128, 129ifeq12da 4492 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) = if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))))
131 1elunit 13202 . . . 4 1 ∈ (0[,]1)
132 simpl 483 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → 𝑥 = 𝑠)
133132breq1d 5084 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (𝑥 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2)))
134132oveq2d 7291 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → (2 · 𝑥) = (2 · 𝑠))
135 simpr 485 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → 𝑦 = 1)
136134, 135oveq12d 7293 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → ((2 · 𝑥)𝑀𝑦) = ((2 · 𝑠)𝑀1))
137134oveq1d 7290 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ((2 · 𝑥) − 1) = ((2 · 𝑠) − 1))
138137, 135oveq12d 7293 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (((2 · 𝑥) − 1)𝑁𝑦) = (((2 · 𝑠) − 1)𝑁1))
139133, 136, 138ifbieq12d 4487 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)))
140 ovex 7308 . . . . . 6 ((2 · 𝑠)𝑀1) ∈ V
141 ovex 7308 . . . . . 6 (((2 · 𝑠) − 1)𝑁1) ∈ V
142140, 141ifex 4509 . . . . 5 if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) ∈ V
143139, 21, 142ovmpoa 7428 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → (𝑠𝑃1) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)))
144111, 131, 143sylancl 586 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃1) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)))
14511, 12pcovalg 24175 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐻(*𝑝𝐽)𝐾)‘𝑠) = if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))))
146130, 144, 1453eqtr4d 2788 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃1) = ((𝐻(*𝑝𝐽)𝐾)‘𝑠))
1474, 11, 13phtpyi 24147 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝑀𝑠) = (𝐹‘0) ∧ (1𝑀𝑠) = (𝐹‘1)))
148147simpld 495 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = (𝐹‘0))
149 simpl 483 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 = 0)
150149, 29eqbrtrdi 5113 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 ≤ (1 / 2))
151150iftrued 4467 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = ((2 · 𝑥)𝑀𝑦))
152149oveq2d 7291 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = (2 · 0))
153 2t0e0 12142 . . . . . . . 8 (2 · 0) = 0
154152, 153eqtrdi 2794 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = 0)
155 simpr 485 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
156154, 155oveq12d 7293 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → ((2 · 𝑥)𝑀𝑦) = (0𝑀𝑠))
157151, 156eqtrd 2778 . . . . 5 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = (0𝑀𝑠))
158 ovex 7308 . . . . 5 (0𝑀𝑠) ∈ V
159157, 21, 158ovmpoa 7428 . . . 4 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝑃𝑠) = (0𝑀𝑠))
160112, 111, 159sylancr 587 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑃𝑠) = (0𝑀𝑠))
1614, 8pco0 24177 . . . 4 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘0) = (𝐹‘0))
162161adantr 481 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘0) = (𝐹‘0))
163148, 160, 1623eqtr4d 2788 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑃𝑠) = ((𝐹(*𝑝𝐽)𝐺)‘0))
1648, 12, 16phtpyi 24147 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝑁𝑠) = (𝐺‘0) ∧ (1𝑁𝑠) = (𝐺‘1)))
165164simprd 496 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑁𝑠) = (𝐺‘1))
16628, 30ltnlei 11096 . . . . . . . . 9 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
16731, 166mpbi 229 . . . . . . . 8 ¬ 1 ≤ (1 / 2)
168 simpl 483 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑥 = 1)
169168breq1d 5084 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
170167, 169mtbiri 327 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ¬ 𝑥 ≤ (1 / 2))
171170iffalsed 4470 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = (((2 · 𝑥) − 1)𝑁𝑦))
172168oveq2d 7291 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = (2 · 1))
173 2t1e2 12136 . . . . . . . . . 10 (2 · 1) = 2
174172, 173eqtrdi 2794 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = 2)
175174oveq1d 7290 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((2 · 𝑥) − 1) = (2 − 1))
176 2m1e1 12099 . . . . . . . 8 (2 − 1) = 1
177175, 176eqtrdi 2794 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((2 · 𝑥) − 1) = 1)
178 simpr 485 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
179177, 178oveq12d 7293 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (((2 · 𝑥) − 1)𝑁𝑦) = (1𝑁𝑠))
180171, 179eqtrd 2778 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = (1𝑁𝑠))
181 ovex 7308 . . . . 5 (1𝑁𝑠) ∈ V
182180, 21, 181ovmpoa 7428 . . . 4 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝑃𝑠) = (1𝑁𝑠))
183131, 111, 182sylancr 587 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑃𝑠) = (1𝑁𝑠))
1844, 8pco1 24178 . . . 4 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘1) = (𝐺‘1))
185184adantr 481 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘1) = (𝐺‘1))
186165, 183, 1853eqtr4d 2788 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑃𝑠) = ((𝐹(*𝑝𝐽)𝐺)‘1))
18710, 20, 89, 127, 146, 163, 186isphtpy2d 24150 1 (𝜑𝑃 ∈ ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wss 3887  c0 4256  ifcif 4459   class class class wbr 5074  cmpt 5157  ran crn 5590  cfv 6433  (class class class)co 7275  cmpo 7277  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  (,)cioo 13079  [,]cicc 13082  t crest 17131  topGenctg 17148  TopOnctopon 22059   Cn ccn 22375   ×t ctx 22711  IIcii 24038   Htpy chtpy 24130  PHtpycphtpy 24131  phcphtpc 24132  *𝑝cpco 24163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-cn 22378  df-cnp 22379  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475  df-ii 24040  df-htpy 24133  df-phtpy 24134  df-phtpc 24155  df-pco 24168
This theorem is referenced by:  pcohtpy  24183
  Copyright terms: Public domain W3C validator