MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpvmasum2 Structured version   Visualization version   GIF version

Theorem rpvmasum2 27450
Description: A partial result along the lines of rpvmasum 27464. The sum of the von Mangoldt function over those integers 𝑛𝐴 (mod 𝑁) is asymptotic to (1 − 𝑀)(log𝑥 / ϕ(𝑥)) + 𝑂(1), where 𝑀 is the number of non-principal Dirichlet characters with Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 = 0. Our goal is to show this set is empty. Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
rpvmasum2.u 𝑈 = (Unit‘𝑍)
rpvmasum2.b (𝜑𝐴𝑈)
rpvmasum2.t 𝑇 = (𝐿 “ {𝐴})
rpvmasum2.z1 ((𝜑𝑓𝑊) → 𝐴 = (1r𝑍))
Assertion
Ref Expression
rpvmasum2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1))
Distinct variable groups:   𝑚,𝑛,𝑥,𝑦,𝑓, 1   𝐴,𝑓,𝑚,𝑥,𝑦   𝑓,𝐺   𝑓,𝑁,𝑚,𝑛,𝑥,𝑦   𝜑,𝑓,𝑚,𝑛,𝑥   𝑇,𝑚,𝑛,𝑥,𝑦   𝑈,𝑚,𝑛,𝑥   𝑓,𝑊,𝑥   𝑓,𝑍,𝑚,𝑛,𝑥,𝑦   𝐷,𝑓,𝑚,𝑛,𝑥,𝑦   𝑓,𝐿,𝑚,𝑛,𝑥,𝑦   𝐴,𝑛
Allowed substitution hints:   𝜑(𝑦)   𝑇(𝑓)   𝑈(𝑦,𝑓)   𝐺(𝑥,𝑦,𝑚,𝑛)   𝑊(𝑦,𝑚,𝑛)

Proof of Theorem rpvmasum2
Dummy variables 𝑐 𝑡 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.a . . . . . . 7 (𝜑𝑁 ∈ ℕ)
21adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ ℕ)
3 rpvmasum2.g . . . . . . 7 𝐺 = (DChr‘𝑁)
4 rpvmasum2.d . . . . . . 7 𝐷 = (Base‘𝐺)
53, 4dchrfi 27193 . . . . . 6 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
62, 5syl 17 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝐷 ∈ Fin)
7 fzfid 13880 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (1...(⌊‘𝑥)) ∈ Fin)
8 rpvmasum.z . . . . . . . . . . . . 13 𝑍 = (ℤ/nℤ‘𝑁)
9 eqid 2731 . . . . . . . . . . . . 13 (Base‘𝑍) = (Base‘𝑍)
10 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑓𝐷) → 𝑓𝐷)
113, 8, 4, 9, 10dchrf 27180 . . . . . . . . . . . 12 ((𝜑𝑓𝐷) → 𝑓:(Base‘𝑍)⟶ℂ)
12 rpvmasum2.u . . . . . . . . . . . . . . 15 𝑈 = (Unit‘𝑍)
139, 12unitss 20294 . . . . . . . . . . . . . 14 𝑈 ⊆ (Base‘𝑍)
14 rpvmasum2.b . . . . . . . . . . . . . 14 (𝜑𝐴𝑈)
1513, 14sselid 3927 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ (Base‘𝑍))
1615adantr 480 . . . . . . . . . . . 12 ((𝜑𝑓𝐷) → 𝐴 ∈ (Base‘𝑍))
1711, 16ffvelcdmd 7018 . . . . . . . . . . 11 ((𝜑𝑓𝐷) → (𝑓𝐴) ∈ ℂ)
1817cjcld 15103 . . . . . . . . . 10 ((𝜑𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
1918adantlr 715 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
2019adantrl 716 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → (∗‘(𝑓𝐴)) ∈ ℂ)
2111ad4ant14 752 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → 𝑓:(Base‘𝑍)⟶ℂ)
221nnnn0d 12442 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ0)
23 rpvmasum.l . . . . . . . . . . . . . . . 16 𝐿 = (ℤRHom‘𝑍)
248, 9, 23znzrhfo 21484 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
25 fof 6735 . . . . . . . . . . . . . . 15 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
2622, 24, 253syl 18 . . . . . . . . . . . . . 14 (𝜑𝐿:ℤ⟶(Base‘𝑍))
2726adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝐿:ℤ⟶(Base‘𝑍))
28 elfzelz 13424 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ)
29 ffvelcdm 7014 . . . . . . . . . . . . 13 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑛 ∈ ℤ) → (𝐿𝑛) ∈ (Base‘𝑍))
3027, 28, 29syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐿𝑛) ∈ (Base‘𝑍))
3130adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (𝐿𝑛) ∈ (Base‘𝑍))
3221, 31ffvelcdmd 7018 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (𝑓‘(𝐿𝑛)) ∈ ℂ)
3332anasss 466 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → (𝑓‘(𝐿𝑛)) ∈ ℂ)
34 elfznn 13453 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
3534adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
36 vmacl 27055 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
3735, 36syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
3837, 35nndivred 12179 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
3938recnd 11140 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
4039adantrr 717 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
4133, 40mulcld 11132 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
4220, 41mulcld 11132 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ ℂ)
4342anass1rs 655 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ ℂ)
447, 43fsumcl 15640 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ ℂ)
45 relogcl 26511 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
4645adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
4746recnd 11140 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
4847adantr 480 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (log‘𝑥) ∈ ℂ)
49 ax-1cn 11064 . . . . . . 7 1 ∈ ℂ
50 neg1cn 12110 . . . . . . . 8 -1 ∈ ℂ
51 0cn 11104 . . . . . . . 8 0 ∈ ℂ
5250, 51ifcli 4520 . . . . . . 7 if(𝑓𝑊, -1, 0) ∈ ℂ
5349, 52ifcli 4520 . . . . . 6 if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) ∈ ℂ
54 mulcl 11090 . . . . . 6 (((log‘𝑥) ∈ ℂ ∧ if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) ∈ ℂ) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) ∈ ℂ)
5548, 53, 54sylancl 586 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) ∈ ℂ)
566, 44, 55fsumsub 15695 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
5741anass1rs 655 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
587, 57fsumcl 15640 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
5919, 58, 55subdid 11573 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (((∗‘(𝑓𝐴)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))))
607, 19, 57fsummulc2 15691 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
6153a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) ∈ ℂ)
6219, 48, 61mul12d 11322 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = ((log‘𝑥) · ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
63 ovif2 7445 . . . . . . . . . 10 ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , ((∗‘(𝑓𝐴)) · 1), ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)))
64 fveq1 6821 . . . . . . . . . . . . . . . 16 (𝑓 = 1 → (𝑓𝐴) = ( 1𝐴))
65 rpvmasum2.1 . . . . . . . . . . . . . . . . 17 1 = (0g𝐺)
661ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝑁 ∈ ℕ)
6714ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝐴𝑈)
683, 8, 65, 12, 66, 67dchr1 27195 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ( 1𝐴) = 1)
6964, 68sylan9eqr 2788 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑓𝐴) = 1)
7069fveq2d 6826 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → (∗‘(𝑓𝐴)) = (∗‘1))
71 1re 11112 . . . . . . . . . . . . . . 15 1 ∈ ℝ
72 cjre 15046 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → (∗‘1) = 1)
7371, 72ax-mp 5 . . . . . . . . . . . . . 14 (∗‘1) = 1
7470, 73eqtrdi 2782 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → (∗‘(𝑓𝐴)) = 1)
7574oveq1d 7361 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → ((∗‘(𝑓𝐴)) · 1) = (1 · 1))
76 1t1e1 12282 . . . . . . . . . . . 12 (1 · 1) = 1
7775, 76eqtrdi 2782 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → ((∗‘(𝑓𝐴)) · 1) = 1)
78 df-ne 2929 . . . . . . . . . . . 12 (𝑓1 ↔ ¬ 𝑓 = 1 )
79 ovif2 7445 . . . . . . . . . . . . 13 ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, ((∗‘(𝑓𝐴)) · -1), ((∗‘(𝑓𝐴)) · 0))
80 rpvmasum2.z1 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓𝑊) → 𝐴 = (1r𝑍))
8180fveq2d 6826 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓𝑊) → (𝑓𝐴) = (𝑓‘(1r𝑍)))
8281ad5ant15 758 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (𝑓𝐴) = (𝑓‘(1r𝑍)))
833, 8, 4dchrmhm 27179 . . . . . . . . . . . . . . . . . . . . . . 23 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
84 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝑓𝐷)
8583, 84sselid 3927 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝑓 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
86 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . 24 (mulGrp‘𝑍) = (mulGrp‘𝑍)
87 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . 24 (1r𝑍) = (1r𝑍)
8886, 87ringidval 20101 . . . . . . . . . . . . . . . . . . . . . . 23 (1r𝑍) = (0g‘(mulGrp‘𝑍))
89 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . 24 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
90 cnfld1 21330 . . . . . . . . . . . . . . . . . . . . . . . 24 1 = (1r‘ℂfld)
9189, 90ringidval 20101 . . . . . . . . . . . . . . . . . . . . . . 23 1 = (0g‘(mulGrp‘ℂfld))
9288, 91mhm0 18702 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑓‘(1r𝑍)) = 1)
9385, 92syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (𝑓‘(1r𝑍)) = 1)
9493ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (𝑓‘(1r𝑍)) = 1)
9582, 94eqtrd 2766 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (𝑓𝐴) = 1)
9695fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (∗‘(𝑓𝐴)) = (∗‘1))
9796, 73eqtrdi 2782 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (∗‘(𝑓𝐴)) = 1)
9897oveq1d 7361 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → ((∗‘(𝑓𝐴)) · -1) = (1 · -1))
9950mullidi 11117 . . . . . . . . . . . . . . . 16 (1 · -1) = -1
10098, 99eqtrdi 2782 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → ((∗‘(𝑓𝐴)) · -1) = -1)
101100ifeq1da 4504 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → if(𝑓𝑊, ((∗‘(𝑓𝐴)) · -1), ((∗‘(𝑓𝐴)) · 0)) = if(𝑓𝑊, -1, ((∗‘(𝑓𝐴)) · 0)))
10219adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → (∗‘(𝑓𝐴)) ∈ ℂ)
103102mul01d 11312 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → ((∗‘(𝑓𝐴)) · 0) = 0)
104103ifeq2d 4493 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → if(𝑓𝑊, -1, ((∗‘(𝑓𝐴)) · 0)) = if(𝑓𝑊, -1, 0))
105101, 104eqtrd 2766 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → if(𝑓𝑊, ((∗‘(𝑓𝐴)) · -1), ((∗‘(𝑓𝐴)) · 0)) = if(𝑓𝑊, -1, 0))
10679, 105eqtrid 2778 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
10778, 106sylan2br 595 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ ¬ 𝑓 = 1 ) → ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
10877, 107ifeq12da 4506 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → if(𝑓 = 1 , ((∗‘(𝑓𝐴)) · 1), ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))
10963, 108eqtrid 2778 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))
110109oveq2d 7362 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((log‘𝑥) · ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))
11162, 110eqtrd 2766 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))
11260, 111oveq12d 7364 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (((∗‘(𝑓𝐴)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
11359, 112eqtrd 2766 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
114113sumeq2dv 15609 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = Σ𝑓𝐷𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
115 fzfid 13880 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
116 inss1 4184 . . . . . . . . 9 ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))
117 ssfi 9082 . . . . . . . . 9 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
118115, 116, 117sylancl 586 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
1192phicld 16683 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℕ)
120119nncnd 12141 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℂ)
121116a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥)))
122121sselda 3929 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑛 ∈ (1...(⌊‘𝑥)))
123122, 39syldan 591 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
124118, 120, 123fsummulc2 15691 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)))
125120adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ϕ‘𝑁) ∈ ℂ)
126125, 39mulcld 11132 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
127122, 126syldan 591 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
128127ralrimiva 3124 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∀𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
129115olcd 874 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ⊆ (ℤ‘1) ∨ (1...(⌊‘𝑥)) ∈ Fin))
130 sumss2 15633 . . . . . . . 8 (((((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥)) ∧ ∀𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ) ∧ ((1...(⌊‘𝑥)) ⊆ (ℤ‘1) ∨ (1...(⌊‘𝑥)) ∈ Fin)) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0))
131121, 128, 129, 130syl21anc 837 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0))
132 elin 3913 . . . . . . . . . . . . 13 (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ↔ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑛𝑇))
133132baib 535 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ↔ 𝑛𝑇))
134133adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ↔ 𝑛𝑇))
135 rpvmasum2.t . . . . . . . . . . . . 13 𝑇 = (𝐿 “ {𝐴})
136135eleq2i 2823 . . . . . . . . . . . 12 (𝑛𝑇𝑛 ∈ (𝐿 “ {𝐴}))
13727ffnd 6652 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝐿 Fn ℤ)
138 fniniseg 6993 . . . . . . . . . . . . . 14 (𝐿 Fn ℤ → (𝑛 ∈ (𝐿 “ {𝐴}) ↔ (𝑛 ∈ ℤ ∧ (𝐿𝑛) = 𝐴)))
139138baibd 539 . . . . . . . . . . . . 13 ((𝐿 Fn ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ∈ (𝐿 “ {𝐴}) ↔ (𝐿𝑛) = 𝐴))
140137, 28, 139syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ (𝐿 “ {𝐴}) ↔ (𝐿𝑛) = 𝐴))
141136, 140bitrid 283 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛𝑇 ↔ (𝐿𝑛) = 𝐴))
142134, 141bitr2d 280 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐿𝑛) = 𝐴𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)))
14339mul02d 11311 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (0 · ((Λ‘𝑛) / 𝑛)) = 0)
144142, 143ifbieq2d 4499 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → if((𝐿𝑛) = 𝐴, ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), (0 · ((Λ‘𝑛) / 𝑛))) = if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0))
145 ovif 7444 . . . . . . . . . 10 (if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0) · ((Λ‘𝑛) / 𝑛)) = if((𝐿𝑛) = 𝐴, ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), (0 · ((Λ‘𝑛) / 𝑛)))
1461ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑁 ∈ ℕ)
147146, 5syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐷 ∈ Fin)
14818ad4ant14 752 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
14932, 148mulcld 11132 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) ∈ ℂ)
150147, 39, 149fsummulc1 15692 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑓𝐷 ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)))
15114ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴𝑈)
1523, 4, 8, 9, 12, 146, 30, 151sum2dchr 27212 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑓𝐷 ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) = if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0))
153152oveq1d 7361 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑓𝐷 ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = (if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0) · ((Λ‘𝑛) / 𝑛)))
15439adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
155 mulass 11094 . . . . . . . . . . . . . 14 (((𝑓‘(𝐿𝑛)) ∈ ℂ ∧ (∗‘(𝑓𝐴)) ∈ ℂ ∧ ((Λ‘𝑛) / 𝑛) ∈ ℂ) → (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = ((𝑓‘(𝐿𝑛)) · ((∗‘(𝑓𝐴)) · ((Λ‘𝑛) / 𝑛))))
156 mul12 11278 . . . . . . . . . . . . . 14 (((𝑓‘(𝐿𝑛)) ∈ ℂ ∧ (∗‘(𝑓𝐴)) ∈ ℂ ∧ ((Λ‘𝑛) / 𝑛) ∈ ℂ) → ((𝑓‘(𝐿𝑛)) · ((∗‘(𝑓𝐴)) · ((Λ‘𝑛) / 𝑛))) = ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
157155, 156eqtrd 2766 . . . . . . . . . . . . 13 (((𝑓‘(𝐿𝑛)) ∈ ℂ ∧ (∗‘(𝑓𝐴)) ∈ ℂ ∧ ((Λ‘𝑛) / 𝑛) ∈ ℂ) → (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
15832, 148, 154, 157syl3anc 1373 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
159158sumeq2dv 15609 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑓𝐷 (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
160150, 153, 1593eqtr3d 2774 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0) · ((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
161145, 160eqtr3id 2780 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → if((𝐿𝑛) = 𝐴, ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), (0 · ((Λ‘𝑛) / 𝑛))) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
162144, 161eqtr3d 2768 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
163162sumeq2dv 15609 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
164124, 131, 1633eqtrd 2770 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
165115, 6, 42fsumcom 15682 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) = Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
166164, 165eqtrd 2766 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
1673dchrabl 27192 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
168 ablgrp 19697 . . . . . . . . . 10 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
1694, 65grpidcl 18878 . . . . . . . . . 10 (𝐺 ∈ Grp → 1𝐷)
1702, 167, 168, 1694syl 19 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 1𝐷)
17147mulridd 11129 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · 1) = (log‘𝑥))
172171, 47eqeltrd 2831 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · 1) ∈ ℂ)
173 iftrue 4478 . . . . . . . . . . 11 (𝑓 = 1 → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = 1)
174173oveq2d 7362 . . . . . . . . . 10 (𝑓 = 1 → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · 1))
175174sumsn 15653 . . . . . . . . 9 (( 1𝐷 ∧ ((log‘𝑥) · 1) ∈ ℂ) → Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · 1))
176170, 172, 175syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · 1))
177 eldifsn 4735 . . . . . . . . . . 11 (𝑓 ∈ (𝐷 ∖ { 1 }) ↔ (𝑓𝐷𝑓1 ))
178 ifnefalse 4484 . . . . . . . . . . . . . . 15 (𝑓1 → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
179178ad2antll 729 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
180 negeq 11352 . . . . . . . . . . . . . . 15 (if(𝑓𝑊, 1, 0) = 1 → -if(𝑓𝑊, 1, 0) = -1)
181 negeq 11352 . . . . . . . . . . . . . . . 16 (if(𝑓𝑊, 1, 0) = 0 → -if(𝑓𝑊, 1, 0) = -0)
182 neg0 11407 . . . . . . . . . . . . . . . 16 -0 = 0
183181, 182eqtrdi 2782 . . . . . . . . . . . . . . 15 (if(𝑓𝑊, 1, 0) = 0 → -if(𝑓𝑊, 1, 0) = 0)
184180, 183ifsb 4486 . . . . . . . . . . . . . 14 -if(𝑓𝑊, 1, 0) = if(𝑓𝑊, -1, 0)
185179, 184eqtr4di 2784 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = -if(𝑓𝑊, 1, 0))
186185oveq2d 7362 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · -if(𝑓𝑊, 1, 0)))
18747adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → (log‘𝑥) ∈ ℂ)
18849, 51ifcli 4520 . . . . . . . . . . . . 13 if(𝑓𝑊, 1, 0) ∈ ℂ
189 mulneg2 11554 . . . . . . . . . . . . 13 (((log‘𝑥) ∈ ℂ ∧ if(𝑓𝑊, 1, 0) ∈ ℂ) → ((log‘𝑥) · -if(𝑓𝑊, 1, 0)) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
190187, 188, 189sylancl 586 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → ((log‘𝑥) · -if(𝑓𝑊, 1, 0)) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
191186, 190eqtrd 2766 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
192177, 191sylan2b 594 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
193192sumeq2dv 15609 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = Σ𝑓 ∈ (𝐷 ∖ { 1 })-((log‘𝑥) · if(𝑓𝑊, 1, 0)))
194 diffi 9084 . . . . . . . . . . 11 (𝐷 ∈ Fin → (𝐷 ∖ { 1 }) ∈ Fin)
1956, 194syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝐷 ∖ { 1 }) ∈ Fin)
19647adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → (log‘𝑥) ∈ ℂ)
197 mulcl 11090 . . . . . . . . . . 11 (((log‘𝑥) ∈ ℂ ∧ if(𝑓𝑊, 1, 0) ∈ ℂ) → ((log‘𝑥) · if(𝑓𝑊, 1, 0)) ∈ ℂ)
198196, 188, 197sylancl 586 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → ((log‘𝑥) · if(𝑓𝑊, 1, 0)) ∈ ℂ)
199195, 198fsumneg 15694 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })-((log‘𝑥) · if(𝑓𝑊, 1, 0)) = -Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)))
200188a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → if(𝑓𝑊, 1, 0) ∈ ℂ)
201195, 47, 200fsummulc2 15691 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0)) = Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)))
202 rpvmasum2.w . . . . . . . . . . . . . . . . 17 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
203202ssrab3 4029 . . . . . . . . . . . . . . . 16 𝑊 ⊆ (𝐷 ∖ { 1 })
204 difss 4083 . . . . . . . . . . . . . . . 16 (𝐷 ∖ { 1 }) ⊆ 𝐷
205203, 204sstri 3939 . . . . . . . . . . . . . . 15 𝑊𝐷
206 ssfi 9082 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑊𝐷) → 𝑊 ∈ Fin)
2076, 205, 206sylancl 586 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑊 ∈ Fin)
208 fsumconst 15697 . . . . . . . . . . . . . 14 ((𝑊 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑓𝑊 1 = ((♯‘𝑊) · 1))
209207, 49, 208sylancl 586 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝑊 1 = ((♯‘𝑊) · 1))
210203a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑊 ⊆ (𝐷 ∖ { 1 }))
21149a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℂ)
212211ralrimivw 3128 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ∀𝑓𝑊 1 ∈ ℂ)
213195olcd 874 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((𝐷 ∖ { 1 }) ⊆ (ℤ‘1) ∨ (𝐷 ∖ { 1 }) ∈ Fin))
214 sumss2 15633 . . . . . . . . . . . . . 14 (((𝑊 ⊆ (𝐷 ∖ { 1 }) ∧ ∀𝑓𝑊 1 ∈ ℂ) ∧ ((𝐷 ∖ { 1 }) ⊆ (ℤ‘1) ∨ (𝐷 ∖ { 1 }) ∈ Fin)) → Σ𝑓𝑊 1 = Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0))
215210, 212, 213, 214syl21anc 837 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝑊 1 = Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0))
216 hashcl 14263 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Fin → (♯‘𝑊) ∈ ℕ0)
217207, 216syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (♯‘𝑊) ∈ ℕ0)
218217nn0cnd 12444 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (♯‘𝑊) ∈ ℂ)
219218mulridd 11129 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → ((♯‘𝑊) · 1) = (♯‘𝑊))
220209, 215, 2193eqtr3d 2774 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0) = (♯‘𝑊))
221220oveq2d 7362 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0)) = ((log‘𝑥) · (♯‘𝑊)))
222201, 221eqtr3d 2768 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)) = ((log‘𝑥) · (♯‘𝑊)))
223222negeqd 11354 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → -Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)) = -((log‘𝑥) · (♯‘𝑊)))
224193, 199, 2233eqtrd 2770 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = -((log‘𝑥) · (♯‘𝑊)))
225176, 224oveq12d 7364 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) + Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (((log‘𝑥) · 1) + -((log‘𝑥) · (♯‘𝑊))))
22647, 218mulcld 11132 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (♯‘𝑊)) ∈ ℂ)
227172, 226negsubd 11478 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (((log‘𝑥) · 1) + -((log‘𝑥) · (♯‘𝑊))) = (((log‘𝑥) · 1) − ((log‘𝑥) · (♯‘𝑊))))
228225, 227eqtrd 2766 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) + Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (((log‘𝑥) · 1) − ((log‘𝑥) · (♯‘𝑊))))
229 disjdif 4419 . . . . . . . 8 ({ 1 } ∩ (𝐷 ∖ { 1 })) = ∅
230229a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ({ 1 } ∩ (𝐷 ∖ { 1 })) = ∅)
231 undif2 4424 . . . . . . . 8 ({ 1 } ∪ (𝐷 ∖ { 1 })) = ({ 1 } ∪ 𝐷)
232170snssd 4758 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → { 1 } ⊆ 𝐷)
233 ssequn1 4133 . . . . . . . . 9 ({ 1 } ⊆ 𝐷 ↔ ({ 1 } ∪ 𝐷) = 𝐷)
234232, 233sylib 218 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ({ 1 } ∪ 𝐷) = 𝐷)
235231, 234eqtr2id 2779 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝐷 = ({ 1 } ∪ (𝐷 ∖ { 1 })))
236230, 235, 6, 55fsumsplit 15648 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = (Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) + Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
23747, 211, 218subdid 11573 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘𝑊))) = (((log‘𝑥) · 1) − ((log‘𝑥) · (♯‘𝑊))))
238228, 236, 2373eqtr4rd 2777 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘𝑊))) = Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))
239166, 238oveq12d 7364 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) = (Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
24056, 114, 2393eqtr4d 2776 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
241240mpteq2dva 5182 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))) = (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
242 rpssre 12898 . . . 4 + ⊆ ℝ
243242a1i 11 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
2441, 5syl 17 . . 3 (𝜑𝐷 ∈ Fin)
24517adantlr 715 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (𝑓𝐴) ∈ ℂ)
246245cjcld 15103 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
24758, 55subcld 11472 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) ∈ ℂ)
248246, 247mulcld 11132 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ ℂ)
249248anasss 466 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑓𝐷)) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ ℂ)
25018adantr 480 . . . 4 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (∗‘(𝑓𝐴)) ∈ ℂ)
251247an32s 652 . . . 4 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) ∈ ℂ)
252 o1const 15527 . . . . 5 ((ℝ+ ⊆ ℝ ∧ (∗‘(𝑓𝐴)) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (∗‘(𝑓𝐴))) ∈ 𝑂(1))
253242, 18, 252sylancr 587 . . . 4 ((𝜑𝑓𝐷) → (𝑥 ∈ ℝ+ ↦ (∗‘(𝑓𝐴))) ∈ 𝑂(1))
254 fveq1 6821 . . . . . . . . . . . 12 (𝑓 = 1 → (𝑓‘(𝐿𝑛)) = ( 1 ‘(𝐿𝑛)))
255254oveq1d 7361 . . . . . . . . . . 11 (𝑓 = 1 → ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = (( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
256255sumeq2sdv 15610 . . . . . . . . . 10 (𝑓 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
257256, 174oveq12d 7364 . . . . . . . . 9 (𝑓 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · 1)))
258257adantl 481 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · 1)))
25945recnd 11140 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
260259mulridd 11129 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((log‘𝑥) · 1) = (log‘𝑥))
261260oveq2d 7362 . . . . . . . 8 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · 1)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
262258, 261sylan9eq 2786 . . . . . . 7 ((((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
263262mpteq2dva 5182 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))))
2648, 23, 1, 3, 4, 65rpvmasumlem 27425 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
265264ad2antrr 726 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
266263, 265eqeltrd 2831 . . . . 5 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ 𝑂(1))
267178oveq2d 7362 . . . . . . . . . 10 (𝑓1 → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · if(𝑓𝑊, -1, 0)))
268267oveq2d 7362 . . . . . . . . 9 (𝑓1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓𝑊, -1, 0))))
26947adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
270 mulcom 11092 . . . . . . . . . . . . . . 15 (((log‘𝑥) ∈ ℂ ∧ -1 ∈ ℂ) → ((log‘𝑥) · -1) = (-1 · (log‘𝑥)))
271269, 50, 270sylancl 586 . . . . . . . . . . . . . 14 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · -1) = (-1 · (log‘𝑥)))
272269mulm1d 11569 . . . . . . . . . . . . . 14 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (-1 · (log‘𝑥)) = -(log‘𝑥))
273271, 272eqtrd 2766 . . . . . . . . . . . . 13 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · -1) = -(log‘𝑥))
274269mul01d 11312 . . . . . . . . . . . . 13 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · 0) = 0)
275273, 274ifeq12d 4494 . . . . . . . . . . . 12 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → if(𝑓𝑊, ((log‘𝑥) · -1), ((log‘𝑥) · 0)) = if(𝑓𝑊, -(log‘𝑥), 0))
276 ovif2 7445 . . . . . . . . . . . 12 ((log‘𝑥) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, ((log‘𝑥) · -1), ((log‘𝑥) · 0))
277 negeq 11352 . . . . . . . . . . . . 13 (if(𝑓𝑊, (log‘𝑥), 0) = (log‘𝑥) → -if(𝑓𝑊, (log‘𝑥), 0) = -(log‘𝑥))
278 negeq 11352 . . . . . . . . . . . . . 14 (if(𝑓𝑊, (log‘𝑥), 0) = 0 → -if(𝑓𝑊, (log‘𝑥), 0) = -0)
279278, 182eqtrdi 2782 . . . . . . . . . . . . 13 (if(𝑓𝑊, (log‘𝑥), 0) = 0 → -if(𝑓𝑊, (log‘𝑥), 0) = 0)
280277, 279ifsb 4486 . . . . . . . . . . . 12 -if(𝑓𝑊, (log‘𝑥), 0) = if(𝑓𝑊, -(log‘𝑥), 0)
281275, 276, 2803eqtr4g 2791 . . . . . . . . . . 11 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · if(𝑓𝑊, -1, 0)) = -if(𝑓𝑊, (log‘𝑥), 0))
282281oveq2d 7362 . . . . . . . . . 10 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓𝑊, -1, 0))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − -if(𝑓𝑊, (log‘𝑥), 0)))
28358an32s 652 . . . . . . . . . . 11 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
284 ifcl 4518 . . . . . . . . . . . 12 (((log‘𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑓𝑊, (log‘𝑥), 0) ∈ ℂ)
285269, 51, 284sylancl 586 . . . . . . . . . . 11 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → if(𝑓𝑊, (log‘𝑥), 0) ∈ ℂ)
286283, 285subnegd 11479 . . . . . . . . . 10 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − -if(𝑓𝑊, (log‘𝑥), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
287282, 286eqtrd 2766 . . . . . . . . 9 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓𝑊, -1, 0))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
288268, 287sylan9eqr 2788 . . . . . . . 8 ((((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) ∧ 𝑓1 ) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
289288an32s 652 . . . . . . 7 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
290289mpteq2dva 5182 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))))
2911ad2antrr 726 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → 𝑁 ∈ ℕ)
292 simplr 768 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → 𝑓𝐷)
293 simpr 484 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → 𝑓1 )
294 eqid 2731 . . . . . . . 8 (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)) = (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))
2958, 23, 291, 3, 4, 65, 292, 293, 294dchrmusumlema 27431 . . . . . . 7 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))
2961adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑓𝐷) → 𝑁 ∈ ℕ)
297296ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑁 ∈ ℕ)
298292adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑓𝐷)
299 simplr 768 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑓1 )
300 simprl 770 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑐 ∈ (0[,)+∞))
301 simprrl 780 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡)
302 simprrr 781 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦))
3038, 23, 297, 3, 4, 65, 298, 299, 294, 300, 301, 302, 202dchrvmaeq0 27442 . . . . . . . . . . 11 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑓𝑊𝑡 = 0))
304 ifbi 4495 . . . . . . . . . . . . 13 ((𝑓𝑊𝑡 = 0) → if(𝑓𝑊, (log‘𝑥), 0) = if(𝑡 = 0, (log‘𝑥), 0))
305304oveq2d 7362 . . . . . . . . . . . 12 ((𝑓𝑊𝑡 = 0) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0)))
306305mpteq2dv 5183 . . . . . . . . . . 11 ((𝑓𝑊𝑡 = 0) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0))))
307303, 306syl 17 . . . . . . . . . 10 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0))))
3088, 23, 297, 3, 4, 65, 298, 299, 294, 300, 301, 302dchrvmasumif 27441 . . . . . . . . . 10 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0))) ∈ 𝑂(1))
309307, 308eqeltrd 2831 . . . . . . . . 9 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1))
310309rexlimdvaa 3134 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1)))
311310exlimdv 1934 . . . . . . 7 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1)))
312295, 311mpd 15 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1))
313290, 312eqeltrd 2831 . . . . 5 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ 𝑂(1))
314266, 313pm2.61dane 3015 . . . 4 ((𝜑𝑓𝐷) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ 𝑂(1))
315250, 251, 253, 314o1mul2 15532 . . 3 ((𝜑𝑓𝐷) → (𝑥 ∈ ℝ+ ↦ ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))) ∈ 𝑂(1))
316243, 244, 249, 315fsumo1 15719 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))) ∈ 𝑂(1))
317241, 316eqeltrrd 2832 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4280  ifcif 4472  {csn 4573   class class class wbr 5089  cmpt 5170  ccnv 5613  cima 5617   Fn wfn 6476  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  +∞cpnf 11143  cle 11147  cmin 11344  -cneg 11345   / cdiv 11774  cn 12125  0cn0 12381  cz 12468  cuz 12732  +crp 12890  [,)cico 13247  ...cfz 13407  cfl 13694  seqcseq 13908  chash 14237  ccj 15003  abscabs 15141  cli 15391  𝑂(1)co1 15393  Σcsu 15593  ϕcphi 16675  Basecbs 17120  0gc0g 17343   MndHom cmhm 18689  Grpcgrp 18846  Abelcabl 19693  mulGrpcmgp 20058  1rcur 20099  Unitcui 20273  fldccnfld 21291  ℤRHomczrh 21436  ℤ/nczn 21439  logclog 26490  Λcvma 27029  DChrcdchr 27170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-rpss 7656  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14504  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-o1 15397  df-lo1 15398  df-sum 15594  df-ef 15974  df-e 15975  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-qus 17413  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-nsg 19037  df-eqg 19038  df-ghm 19125  df-gim 19171  df-ga 19202  df-cntz 19229  df-oppg 19258  df-od 19440  df-gex 19441  df-pgp 19442  df-lsm 19548  df-pj1 19549  df-cmn 19694  df-abl 19695  df-cyg 19790  df-dprd 19909  df-dpj 19910  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-drng 20646  df-lmod 20795  df-lss 20865  df-lsp 20905  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-2idl 21187  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-zring 21384  df-zrh 21440  df-zn 21443  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-0p 25598  df-limc 25794  df-dv 25795  df-ply 26120  df-idp 26121  df-coe 26122  df-dgr 26123  df-quot 26226  df-ulm 26313  df-log 26492  df-cxp 26493  df-atan 26804  df-em 26930  df-cht 27034  df-vma 27035  df-chp 27036  df-ppi 27037  df-mu 27038  df-dchr 27171
This theorem is referenced by:  dchrisum0re  27451  rpvmasum  27464
  Copyright terms: Public domain W3C validator