MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpvmasum2 Structured version   Visualization version   GIF version

Theorem rpvmasum2 27005
Description: A partial result along the lines of rpvmasum 27019. The sum of the von Mangoldt function over those integers 𝑛𝐴 (mod 𝑁) is asymptotic to (1 − 𝑀)(log𝑥 / ϕ(𝑥)) + 𝑂(1), where 𝑀 is the number of non-principal Dirichlet characters with Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 = 0. Our goal is to show this set is empty. Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
rpvmasum2.u 𝑈 = (Unit‘𝑍)
rpvmasum2.b (𝜑𝐴𝑈)
rpvmasum2.t 𝑇 = (𝐿 “ {𝐴})
rpvmasum2.z1 ((𝜑𝑓𝑊) → 𝐴 = (1r𝑍))
Assertion
Ref Expression
rpvmasum2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1))
Distinct variable groups:   𝑚,𝑛,𝑥,𝑦,𝑓, 1   𝐴,𝑓,𝑚,𝑥,𝑦   𝑓,𝐺   𝑓,𝑁,𝑚,𝑛,𝑥,𝑦   𝜑,𝑓,𝑚,𝑛,𝑥   𝑇,𝑚,𝑛,𝑥,𝑦   𝑈,𝑚,𝑛,𝑥   𝑓,𝑊,𝑥   𝑓,𝑍,𝑚,𝑛,𝑥,𝑦   𝐷,𝑓,𝑚,𝑛,𝑥,𝑦   𝑓,𝐿,𝑚,𝑛,𝑥,𝑦   𝐴,𝑛
Allowed substitution hints:   𝜑(𝑦)   𝑇(𝑓)   𝑈(𝑦,𝑓)   𝐺(𝑥,𝑦,𝑚,𝑛)   𝑊(𝑦,𝑚,𝑛)

Proof of Theorem rpvmasum2
Dummy variables 𝑐 𝑡 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.a . . . . . . 7 (𝜑𝑁 ∈ ℕ)
21adantr 482 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ ℕ)
3 rpvmasum2.g . . . . . . 7 𝐺 = (DChr‘𝑁)
4 rpvmasum2.d . . . . . . 7 𝐷 = (Base‘𝐺)
53, 4dchrfi 26748 . . . . . 6 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
62, 5syl 17 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝐷 ∈ Fin)
7 fzfid 13935 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (1...(⌊‘𝑥)) ∈ Fin)
8 rpvmasum.z . . . . . . . . . . . . 13 𝑍 = (ℤ/nℤ‘𝑁)
9 eqid 2733 . . . . . . . . . . . . 13 (Base‘𝑍) = (Base‘𝑍)
10 simpr 486 . . . . . . . . . . . . 13 ((𝜑𝑓𝐷) → 𝑓𝐷)
113, 8, 4, 9, 10dchrf 26735 . . . . . . . . . . . 12 ((𝜑𝑓𝐷) → 𝑓:(Base‘𝑍)⟶ℂ)
12 rpvmasum2.u . . . . . . . . . . . . . . 15 𝑈 = (Unit‘𝑍)
139, 12unitss 20183 . . . . . . . . . . . . . 14 𝑈 ⊆ (Base‘𝑍)
14 rpvmasum2.b . . . . . . . . . . . . . 14 (𝜑𝐴𝑈)
1513, 14sselid 3980 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ (Base‘𝑍))
1615adantr 482 . . . . . . . . . . . 12 ((𝜑𝑓𝐷) → 𝐴 ∈ (Base‘𝑍))
1711, 16ffvelcdmd 7085 . . . . . . . . . . 11 ((𝜑𝑓𝐷) → (𝑓𝐴) ∈ ℂ)
1817cjcld 15140 . . . . . . . . . 10 ((𝜑𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
1918adantlr 714 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
2019adantrl 715 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → (∗‘(𝑓𝐴)) ∈ ℂ)
2111ad4ant14 751 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → 𝑓:(Base‘𝑍)⟶ℂ)
221nnnn0d 12529 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ0)
23 rpvmasum.l . . . . . . . . . . . . . . . 16 𝐿 = (ℤRHom‘𝑍)
248, 9, 23znzrhfo 21095 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
25 fof 6803 . . . . . . . . . . . . . . 15 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
2622, 24, 253syl 18 . . . . . . . . . . . . . 14 (𝜑𝐿:ℤ⟶(Base‘𝑍))
2726adantr 482 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝐿:ℤ⟶(Base‘𝑍))
28 elfzelz 13498 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ)
29 ffvelcdm 7081 . . . . . . . . . . . . 13 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑛 ∈ ℤ) → (𝐿𝑛) ∈ (Base‘𝑍))
3027, 28, 29syl2an 597 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐿𝑛) ∈ (Base‘𝑍))
3130adantr 482 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (𝐿𝑛) ∈ (Base‘𝑍))
3221, 31ffvelcdmd 7085 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (𝑓‘(𝐿𝑛)) ∈ ℂ)
3332anasss 468 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → (𝑓‘(𝐿𝑛)) ∈ ℂ)
34 elfznn 13527 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
3534adantl 483 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
36 vmacl 26612 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
3735, 36syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
3837, 35nndivred 12263 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
3938recnd 11239 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
4039adantrr 716 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
4133, 40mulcld 11231 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
4220, 41mulcld 11231 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ ℂ)
4342anass1rs 654 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ ℂ)
447, 43fsumcl 15676 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ ℂ)
45 relogcl 26076 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
4645adantl 483 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
4746recnd 11239 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
4847adantr 482 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (log‘𝑥) ∈ ℂ)
49 ax-1cn 11165 . . . . . . 7 1 ∈ ℂ
50 neg1cn 12323 . . . . . . . 8 -1 ∈ ℂ
51 0cn 11203 . . . . . . . 8 0 ∈ ℂ
5250, 51ifcli 4575 . . . . . . 7 if(𝑓𝑊, -1, 0) ∈ ℂ
5349, 52ifcli 4575 . . . . . 6 if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) ∈ ℂ
54 mulcl 11191 . . . . . 6 (((log‘𝑥) ∈ ℂ ∧ if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) ∈ ℂ) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) ∈ ℂ)
5548, 53, 54sylancl 587 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) ∈ ℂ)
566, 44, 55fsumsub 15731 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
5741anass1rs 654 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
587, 57fsumcl 15676 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
5919, 58, 55subdid 11667 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (((∗‘(𝑓𝐴)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))))
607, 19, 57fsummulc2 15727 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
6153a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) ∈ ℂ)
6219, 48, 61mul12d 11420 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = ((log‘𝑥) · ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
63 ovif2 7504 . . . . . . . . . 10 ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , ((∗‘(𝑓𝐴)) · 1), ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)))
64 fveq1 6888 . . . . . . . . . . . . . . . 16 (𝑓 = 1 → (𝑓𝐴) = ( 1𝐴))
65 rpvmasum2.1 . . . . . . . . . . . . . . . . 17 1 = (0g𝐺)
661ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝑁 ∈ ℕ)
6714ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝐴𝑈)
683, 8, 65, 12, 66, 67dchr1 26750 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ( 1𝐴) = 1)
6964, 68sylan9eqr 2795 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑓𝐴) = 1)
7069fveq2d 6893 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → (∗‘(𝑓𝐴)) = (∗‘1))
71 1re 11211 . . . . . . . . . . . . . . 15 1 ∈ ℝ
72 cjre 15083 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → (∗‘1) = 1)
7371, 72ax-mp 5 . . . . . . . . . . . . . 14 (∗‘1) = 1
7470, 73eqtrdi 2789 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → (∗‘(𝑓𝐴)) = 1)
7574oveq1d 7421 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → ((∗‘(𝑓𝐴)) · 1) = (1 · 1))
76 1t1e1 12371 . . . . . . . . . . . 12 (1 · 1) = 1
7775, 76eqtrdi 2789 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → ((∗‘(𝑓𝐴)) · 1) = 1)
78 df-ne 2942 . . . . . . . . . . . 12 (𝑓1 ↔ ¬ 𝑓 = 1 )
79 ovif2 7504 . . . . . . . . . . . . 13 ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, ((∗‘(𝑓𝐴)) · -1), ((∗‘(𝑓𝐴)) · 0))
80 rpvmasum2.z1 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓𝑊) → 𝐴 = (1r𝑍))
8180fveq2d 6893 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓𝑊) → (𝑓𝐴) = (𝑓‘(1r𝑍)))
8281ad5ant15 758 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (𝑓𝐴) = (𝑓‘(1r𝑍)))
833, 8, 4dchrmhm 26734 . . . . . . . . . . . . . . . . . . . . . . 23 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
84 simpr 486 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝑓𝐷)
8583, 84sselid 3980 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝑓 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
86 eqid 2733 . . . . . . . . . . . . . . . . . . . . . . . 24 (mulGrp‘𝑍) = (mulGrp‘𝑍)
87 eqid 2733 . . . . . . . . . . . . . . . . . . . . . . . 24 (1r𝑍) = (1r𝑍)
8886, 87ringidval 20001 . . . . . . . . . . . . . . . . . . . . . . 23 (1r𝑍) = (0g‘(mulGrp‘𝑍))
89 eqid 2733 . . . . . . . . . . . . . . . . . . . . . . . 24 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
90 cnfld1 20963 . . . . . . . . . . . . . . . . . . . . . . . 24 1 = (1r‘ℂfld)
9189, 90ringidval 20001 . . . . . . . . . . . . . . . . . . . . . . 23 1 = (0g‘(mulGrp‘ℂfld))
9288, 91mhm0 18677 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑓‘(1r𝑍)) = 1)
9385, 92syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (𝑓‘(1r𝑍)) = 1)
9493ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (𝑓‘(1r𝑍)) = 1)
9582, 94eqtrd 2773 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (𝑓𝐴) = 1)
9695fveq2d 6893 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (∗‘(𝑓𝐴)) = (∗‘1))
9796, 73eqtrdi 2789 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (∗‘(𝑓𝐴)) = 1)
9897oveq1d 7421 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → ((∗‘(𝑓𝐴)) · -1) = (1 · -1))
9950mullidi 11216 . . . . . . . . . . . . . . . 16 (1 · -1) = -1
10098, 99eqtrdi 2789 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → ((∗‘(𝑓𝐴)) · -1) = -1)
101100ifeq1da 4559 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → if(𝑓𝑊, ((∗‘(𝑓𝐴)) · -1), ((∗‘(𝑓𝐴)) · 0)) = if(𝑓𝑊, -1, ((∗‘(𝑓𝐴)) · 0)))
10219adantr 482 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → (∗‘(𝑓𝐴)) ∈ ℂ)
103102mul01d 11410 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → ((∗‘(𝑓𝐴)) · 0) = 0)
104103ifeq2d 4548 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → if(𝑓𝑊, -1, ((∗‘(𝑓𝐴)) · 0)) = if(𝑓𝑊, -1, 0))
105101, 104eqtrd 2773 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → if(𝑓𝑊, ((∗‘(𝑓𝐴)) · -1), ((∗‘(𝑓𝐴)) · 0)) = if(𝑓𝑊, -1, 0))
10679, 105eqtrid 2785 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
10778, 106sylan2br 596 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ ¬ 𝑓 = 1 ) → ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
10877, 107ifeq12da 4561 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → if(𝑓 = 1 , ((∗‘(𝑓𝐴)) · 1), ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))
10963, 108eqtrid 2785 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))
110109oveq2d 7422 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((log‘𝑥) · ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))
11162, 110eqtrd 2773 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))
11260, 111oveq12d 7424 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (((∗‘(𝑓𝐴)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
11359, 112eqtrd 2773 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
114113sumeq2dv 15646 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = Σ𝑓𝐷𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
115 fzfid 13935 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
116 inss1 4228 . . . . . . . . 9 ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))
117 ssfi 9170 . . . . . . . . 9 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
118115, 116, 117sylancl 587 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
1192phicld 16702 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℕ)
120119nncnd 12225 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℂ)
121116a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥)))
122121sselda 3982 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑛 ∈ (1...(⌊‘𝑥)))
123122, 39syldan 592 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
124118, 120, 123fsummulc2 15727 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)))
125120adantr 482 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ϕ‘𝑁) ∈ ℂ)
126125, 39mulcld 11231 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
127122, 126syldan 592 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
128127ralrimiva 3147 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∀𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
129115olcd 873 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ⊆ (ℤ‘1) ∨ (1...(⌊‘𝑥)) ∈ Fin))
130 sumss2 15669 . . . . . . . 8 (((((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥)) ∧ ∀𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ) ∧ ((1...(⌊‘𝑥)) ⊆ (ℤ‘1) ∨ (1...(⌊‘𝑥)) ∈ Fin)) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0))
131121, 128, 129, 130syl21anc 837 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0))
132 elin 3964 . . . . . . . . . . . . 13 (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ↔ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑛𝑇))
133132baib 537 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ↔ 𝑛𝑇))
134133adantl 483 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ↔ 𝑛𝑇))
135 rpvmasum2.t . . . . . . . . . . . . 13 𝑇 = (𝐿 “ {𝐴})
136135eleq2i 2826 . . . . . . . . . . . 12 (𝑛𝑇𝑛 ∈ (𝐿 “ {𝐴}))
13727ffnd 6716 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝐿 Fn ℤ)
138 fniniseg 7059 . . . . . . . . . . . . . 14 (𝐿 Fn ℤ → (𝑛 ∈ (𝐿 “ {𝐴}) ↔ (𝑛 ∈ ℤ ∧ (𝐿𝑛) = 𝐴)))
139138baibd 541 . . . . . . . . . . . . 13 ((𝐿 Fn ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ∈ (𝐿 “ {𝐴}) ↔ (𝐿𝑛) = 𝐴))
140137, 28, 139syl2an 597 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ (𝐿 “ {𝐴}) ↔ (𝐿𝑛) = 𝐴))
141136, 140bitrid 283 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛𝑇 ↔ (𝐿𝑛) = 𝐴))
142134, 141bitr2d 280 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐿𝑛) = 𝐴𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)))
14339mul02d 11409 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (0 · ((Λ‘𝑛) / 𝑛)) = 0)
144142, 143ifbieq2d 4554 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → if((𝐿𝑛) = 𝐴, ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), (0 · ((Λ‘𝑛) / 𝑛))) = if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0))
145 ovif 7503 . . . . . . . . . 10 (if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0) · ((Λ‘𝑛) / 𝑛)) = if((𝐿𝑛) = 𝐴, ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), (0 · ((Λ‘𝑛) / 𝑛)))
1461ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑁 ∈ ℕ)
147146, 5syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐷 ∈ Fin)
14818ad4ant14 751 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
14932, 148mulcld 11231 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) ∈ ℂ)
150147, 39, 149fsummulc1 15728 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑓𝐷 ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)))
15114ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴𝑈)
1523, 4, 8, 9, 12, 146, 30, 151sum2dchr 26767 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑓𝐷 ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) = if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0))
153152oveq1d 7421 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑓𝐷 ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = (if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0) · ((Λ‘𝑛) / 𝑛)))
15439adantr 482 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
155 mulass 11195 . . . . . . . . . . . . . 14 (((𝑓‘(𝐿𝑛)) ∈ ℂ ∧ (∗‘(𝑓𝐴)) ∈ ℂ ∧ ((Λ‘𝑛) / 𝑛) ∈ ℂ) → (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = ((𝑓‘(𝐿𝑛)) · ((∗‘(𝑓𝐴)) · ((Λ‘𝑛) / 𝑛))))
156 mul12 11376 . . . . . . . . . . . . . 14 (((𝑓‘(𝐿𝑛)) ∈ ℂ ∧ (∗‘(𝑓𝐴)) ∈ ℂ ∧ ((Λ‘𝑛) / 𝑛) ∈ ℂ) → ((𝑓‘(𝐿𝑛)) · ((∗‘(𝑓𝐴)) · ((Λ‘𝑛) / 𝑛))) = ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
157155, 156eqtrd 2773 . . . . . . . . . . . . 13 (((𝑓‘(𝐿𝑛)) ∈ ℂ ∧ (∗‘(𝑓𝐴)) ∈ ℂ ∧ ((Λ‘𝑛) / 𝑛) ∈ ℂ) → (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
15832, 148, 154, 157syl3anc 1372 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
159158sumeq2dv 15646 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑓𝐷 (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
160150, 153, 1593eqtr3d 2781 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0) · ((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
161145, 160eqtr3id 2787 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → if((𝐿𝑛) = 𝐴, ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), (0 · ((Λ‘𝑛) / 𝑛))) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
162144, 161eqtr3d 2775 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
163162sumeq2dv 15646 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
164124, 131, 1633eqtrd 2777 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
165115, 6, 42fsumcom 15718 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) = Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
166164, 165eqtrd 2773 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
1673dchrabl 26747 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
168 ablgrp 19648 . . . . . . . . . 10 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
1694, 65grpidcl 18847 . . . . . . . . . 10 (𝐺 ∈ Grp → 1𝐷)
1702, 167, 168, 1694syl 19 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 1𝐷)
17147mulridd 11228 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · 1) = (log‘𝑥))
172171, 47eqeltrd 2834 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · 1) ∈ ℂ)
173 iftrue 4534 . . . . . . . . . . 11 (𝑓 = 1 → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = 1)
174173oveq2d 7422 . . . . . . . . . 10 (𝑓 = 1 → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · 1))
175174sumsn 15689 . . . . . . . . 9 (( 1𝐷 ∧ ((log‘𝑥) · 1) ∈ ℂ) → Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · 1))
176170, 172, 175syl2anc 585 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · 1))
177 eldifsn 4790 . . . . . . . . . . 11 (𝑓 ∈ (𝐷 ∖ { 1 }) ↔ (𝑓𝐷𝑓1 ))
178 ifnefalse 4540 . . . . . . . . . . . . . . 15 (𝑓1 → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
179178ad2antll 728 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
180 negeq 11449 . . . . . . . . . . . . . . 15 (if(𝑓𝑊, 1, 0) = 1 → -if(𝑓𝑊, 1, 0) = -1)
181 negeq 11449 . . . . . . . . . . . . . . . 16 (if(𝑓𝑊, 1, 0) = 0 → -if(𝑓𝑊, 1, 0) = -0)
182 neg0 11503 . . . . . . . . . . . . . . . 16 -0 = 0
183181, 182eqtrdi 2789 . . . . . . . . . . . . . . 15 (if(𝑓𝑊, 1, 0) = 0 → -if(𝑓𝑊, 1, 0) = 0)
184180, 183ifsb 4541 . . . . . . . . . . . . . 14 -if(𝑓𝑊, 1, 0) = if(𝑓𝑊, -1, 0)
185179, 184eqtr4di 2791 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = -if(𝑓𝑊, 1, 0))
186185oveq2d 7422 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · -if(𝑓𝑊, 1, 0)))
18747adantr 482 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → (log‘𝑥) ∈ ℂ)
18849, 51ifcli 4575 . . . . . . . . . . . . 13 if(𝑓𝑊, 1, 0) ∈ ℂ
189 mulneg2 11648 . . . . . . . . . . . . 13 (((log‘𝑥) ∈ ℂ ∧ if(𝑓𝑊, 1, 0) ∈ ℂ) → ((log‘𝑥) · -if(𝑓𝑊, 1, 0)) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
190187, 188, 189sylancl 587 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → ((log‘𝑥) · -if(𝑓𝑊, 1, 0)) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
191186, 190eqtrd 2773 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
192177, 191sylan2b 595 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
193192sumeq2dv 15646 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = Σ𝑓 ∈ (𝐷 ∖ { 1 })-((log‘𝑥) · if(𝑓𝑊, 1, 0)))
194 diffi 9176 . . . . . . . . . . 11 (𝐷 ∈ Fin → (𝐷 ∖ { 1 }) ∈ Fin)
1956, 194syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝐷 ∖ { 1 }) ∈ Fin)
19647adantr 482 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → (log‘𝑥) ∈ ℂ)
197 mulcl 11191 . . . . . . . . . . 11 (((log‘𝑥) ∈ ℂ ∧ if(𝑓𝑊, 1, 0) ∈ ℂ) → ((log‘𝑥) · if(𝑓𝑊, 1, 0)) ∈ ℂ)
198196, 188, 197sylancl 587 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → ((log‘𝑥) · if(𝑓𝑊, 1, 0)) ∈ ℂ)
199195, 198fsumneg 15730 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })-((log‘𝑥) · if(𝑓𝑊, 1, 0)) = -Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)))
200188a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → if(𝑓𝑊, 1, 0) ∈ ℂ)
201195, 47, 200fsummulc2 15727 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0)) = Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)))
202 rpvmasum2.w . . . . . . . . . . . . . . . . 17 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
203202ssrab3 4080 . . . . . . . . . . . . . . . 16 𝑊 ⊆ (𝐷 ∖ { 1 })
204 difss 4131 . . . . . . . . . . . . . . . 16 (𝐷 ∖ { 1 }) ⊆ 𝐷
205203, 204sstri 3991 . . . . . . . . . . . . . . 15 𝑊𝐷
206 ssfi 9170 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑊𝐷) → 𝑊 ∈ Fin)
2076, 205, 206sylancl 587 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑊 ∈ Fin)
208 fsumconst 15733 . . . . . . . . . . . . . 14 ((𝑊 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑓𝑊 1 = ((♯‘𝑊) · 1))
209207, 49, 208sylancl 587 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝑊 1 = ((♯‘𝑊) · 1))
210203a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑊 ⊆ (𝐷 ∖ { 1 }))
21149a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℂ)
212211ralrimivw 3151 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ∀𝑓𝑊 1 ∈ ℂ)
213195olcd 873 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((𝐷 ∖ { 1 }) ⊆ (ℤ‘1) ∨ (𝐷 ∖ { 1 }) ∈ Fin))
214 sumss2 15669 . . . . . . . . . . . . . 14 (((𝑊 ⊆ (𝐷 ∖ { 1 }) ∧ ∀𝑓𝑊 1 ∈ ℂ) ∧ ((𝐷 ∖ { 1 }) ⊆ (ℤ‘1) ∨ (𝐷 ∖ { 1 }) ∈ Fin)) → Σ𝑓𝑊 1 = Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0))
215210, 212, 213, 214syl21anc 837 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝑊 1 = Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0))
216 hashcl 14313 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Fin → (♯‘𝑊) ∈ ℕ0)
217207, 216syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (♯‘𝑊) ∈ ℕ0)
218217nn0cnd 12531 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (♯‘𝑊) ∈ ℂ)
219218mulridd 11228 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → ((♯‘𝑊) · 1) = (♯‘𝑊))
220209, 215, 2193eqtr3d 2781 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0) = (♯‘𝑊))
221220oveq2d 7422 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0)) = ((log‘𝑥) · (♯‘𝑊)))
222201, 221eqtr3d 2775 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)) = ((log‘𝑥) · (♯‘𝑊)))
223222negeqd 11451 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → -Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)) = -((log‘𝑥) · (♯‘𝑊)))
224193, 199, 2233eqtrd 2777 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = -((log‘𝑥) · (♯‘𝑊)))
225176, 224oveq12d 7424 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) + Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (((log‘𝑥) · 1) + -((log‘𝑥) · (♯‘𝑊))))
22647, 218mulcld 11231 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (♯‘𝑊)) ∈ ℂ)
227172, 226negsubd 11574 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (((log‘𝑥) · 1) + -((log‘𝑥) · (♯‘𝑊))) = (((log‘𝑥) · 1) − ((log‘𝑥) · (♯‘𝑊))))
228225, 227eqtrd 2773 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) + Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (((log‘𝑥) · 1) − ((log‘𝑥) · (♯‘𝑊))))
229 disjdif 4471 . . . . . . . 8 ({ 1 } ∩ (𝐷 ∖ { 1 })) = ∅
230229a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ({ 1 } ∩ (𝐷 ∖ { 1 })) = ∅)
231 undif2 4476 . . . . . . . 8 ({ 1 } ∪ (𝐷 ∖ { 1 })) = ({ 1 } ∪ 𝐷)
232170snssd 4812 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → { 1 } ⊆ 𝐷)
233 ssequn1 4180 . . . . . . . . 9 ({ 1 } ⊆ 𝐷 ↔ ({ 1 } ∪ 𝐷) = 𝐷)
234232, 233sylib 217 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ({ 1 } ∪ 𝐷) = 𝐷)
235231, 234eqtr2id 2786 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝐷 = ({ 1 } ∪ (𝐷 ∖ { 1 })))
236230, 235, 6, 55fsumsplit 15684 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = (Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) + Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
23747, 211, 218subdid 11667 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘𝑊))) = (((log‘𝑥) · 1) − ((log‘𝑥) · (♯‘𝑊))))
238228, 236, 2373eqtr4rd 2784 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘𝑊))) = Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))
239166, 238oveq12d 7424 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) = (Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
24056, 114, 2393eqtr4d 2783 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
241240mpteq2dva 5248 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))) = (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
242 rpssre 12978 . . . 4 + ⊆ ℝ
243242a1i 11 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
2441, 5syl 17 . . 3 (𝜑𝐷 ∈ Fin)
24517adantlr 714 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (𝑓𝐴) ∈ ℂ)
246245cjcld 15140 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
24758, 55subcld 11568 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) ∈ ℂ)
248246, 247mulcld 11231 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ ℂ)
249248anasss 468 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑓𝐷)) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ ℂ)
25018adantr 482 . . . 4 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (∗‘(𝑓𝐴)) ∈ ℂ)
251247an32s 651 . . . 4 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) ∈ ℂ)
252 o1const 15561 . . . . 5 ((ℝ+ ⊆ ℝ ∧ (∗‘(𝑓𝐴)) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (∗‘(𝑓𝐴))) ∈ 𝑂(1))
253242, 18, 252sylancr 588 . . . 4 ((𝜑𝑓𝐷) → (𝑥 ∈ ℝ+ ↦ (∗‘(𝑓𝐴))) ∈ 𝑂(1))
254 fveq1 6888 . . . . . . . . . . . 12 (𝑓 = 1 → (𝑓‘(𝐿𝑛)) = ( 1 ‘(𝐿𝑛)))
255254oveq1d 7421 . . . . . . . . . . 11 (𝑓 = 1 → ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = (( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
256255sumeq2sdv 15647 . . . . . . . . . 10 (𝑓 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
257256, 174oveq12d 7424 . . . . . . . . 9 (𝑓 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · 1)))
258257adantl 483 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · 1)))
25945recnd 11239 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
260259mulridd 11228 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((log‘𝑥) · 1) = (log‘𝑥))
261260oveq2d 7422 . . . . . . . 8 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · 1)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
262258, 261sylan9eq 2793 . . . . . . 7 ((((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
263262mpteq2dva 5248 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))))
2648, 23, 1, 3, 4, 65rpvmasumlem 26980 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
265264ad2antrr 725 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
266263, 265eqeltrd 2834 . . . . 5 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ 𝑂(1))
267178oveq2d 7422 . . . . . . . . . 10 (𝑓1 → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · if(𝑓𝑊, -1, 0)))
268267oveq2d 7422 . . . . . . . . 9 (𝑓1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓𝑊, -1, 0))))
26947adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
270 mulcom 11193 . . . . . . . . . . . . . . 15 (((log‘𝑥) ∈ ℂ ∧ -1 ∈ ℂ) → ((log‘𝑥) · -1) = (-1 · (log‘𝑥)))
271269, 50, 270sylancl 587 . . . . . . . . . . . . . 14 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · -1) = (-1 · (log‘𝑥)))
272269mulm1d 11663 . . . . . . . . . . . . . 14 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (-1 · (log‘𝑥)) = -(log‘𝑥))
273271, 272eqtrd 2773 . . . . . . . . . . . . 13 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · -1) = -(log‘𝑥))
274269mul01d 11410 . . . . . . . . . . . . 13 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · 0) = 0)
275273, 274ifeq12d 4549 . . . . . . . . . . . 12 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → if(𝑓𝑊, ((log‘𝑥) · -1), ((log‘𝑥) · 0)) = if(𝑓𝑊, -(log‘𝑥), 0))
276 ovif2 7504 . . . . . . . . . . . 12 ((log‘𝑥) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, ((log‘𝑥) · -1), ((log‘𝑥) · 0))
277 negeq 11449 . . . . . . . . . . . . 13 (if(𝑓𝑊, (log‘𝑥), 0) = (log‘𝑥) → -if(𝑓𝑊, (log‘𝑥), 0) = -(log‘𝑥))
278 negeq 11449 . . . . . . . . . . . . . 14 (if(𝑓𝑊, (log‘𝑥), 0) = 0 → -if(𝑓𝑊, (log‘𝑥), 0) = -0)
279278, 182eqtrdi 2789 . . . . . . . . . . . . 13 (if(𝑓𝑊, (log‘𝑥), 0) = 0 → -if(𝑓𝑊, (log‘𝑥), 0) = 0)
280277, 279ifsb 4541 . . . . . . . . . . . 12 -if(𝑓𝑊, (log‘𝑥), 0) = if(𝑓𝑊, -(log‘𝑥), 0)
281275, 276, 2803eqtr4g 2798 . . . . . . . . . . 11 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · if(𝑓𝑊, -1, 0)) = -if(𝑓𝑊, (log‘𝑥), 0))
282281oveq2d 7422 . . . . . . . . . 10 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓𝑊, -1, 0))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − -if(𝑓𝑊, (log‘𝑥), 0)))
28358an32s 651 . . . . . . . . . . 11 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
284 ifcl 4573 . . . . . . . . . . . 12 (((log‘𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑓𝑊, (log‘𝑥), 0) ∈ ℂ)
285269, 51, 284sylancl 587 . . . . . . . . . . 11 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → if(𝑓𝑊, (log‘𝑥), 0) ∈ ℂ)
286283, 285subnegd 11575 . . . . . . . . . 10 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − -if(𝑓𝑊, (log‘𝑥), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
287282, 286eqtrd 2773 . . . . . . . . 9 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓𝑊, -1, 0))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
288268, 287sylan9eqr 2795 . . . . . . . 8 ((((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) ∧ 𝑓1 ) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
289288an32s 651 . . . . . . 7 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
290289mpteq2dva 5248 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))))
2911ad2antrr 725 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → 𝑁 ∈ ℕ)
292 simplr 768 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → 𝑓𝐷)
293 simpr 486 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → 𝑓1 )
294 eqid 2733 . . . . . . . 8 (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)) = (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))
2958, 23, 291, 3, 4, 65, 292, 293, 294dchrmusumlema 26986 . . . . . . 7 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))
2961adantr 482 . . . . . . . . . . . . 13 ((𝜑𝑓𝐷) → 𝑁 ∈ ℕ)
297296ad2antrr 725 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑁 ∈ ℕ)
298292adantr 482 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑓𝐷)
299 simplr 768 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑓1 )
300 simprl 770 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑐 ∈ (0[,)+∞))
301 simprrl 780 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡)
302 simprrr 781 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦))
3038, 23, 297, 3, 4, 65, 298, 299, 294, 300, 301, 302, 202dchrvmaeq0 26997 . . . . . . . . . . 11 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑓𝑊𝑡 = 0))
304 ifbi 4550 . . . . . . . . . . . . 13 ((𝑓𝑊𝑡 = 0) → if(𝑓𝑊, (log‘𝑥), 0) = if(𝑡 = 0, (log‘𝑥), 0))
305304oveq2d 7422 . . . . . . . . . . . 12 ((𝑓𝑊𝑡 = 0) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0)))
306305mpteq2dv 5250 . . . . . . . . . . 11 ((𝑓𝑊𝑡 = 0) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0))))
307303, 306syl 17 . . . . . . . . . 10 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0))))
3088, 23, 297, 3, 4, 65, 298, 299, 294, 300, 301, 302dchrvmasumif 26996 . . . . . . . . . 10 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0))) ∈ 𝑂(1))
309307, 308eqeltrd 2834 . . . . . . . . 9 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1))
310309rexlimdvaa 3157 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1)))
311310exlimdv 1937 . . . . . . 7 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1)))
312295, 311mpd 15 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1))
313290, 312eqeltrd 2834 . . . . 5 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ 𝑂(1))
314266, 313pm2.61dane 3030 . . . 4 ((𝜑𝑓𝐷) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ 𝑂(1))
315250, 251, 253, 314o1mul2 15566 . . 3 ((𝜑𝑓𝐷) → (𝑥 ∈ ℝ+ ↦ ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))) ∈ 𝑂(1))
316243, 244, 249, 315fsumo1 15755 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))) ∈ 𝑂(1))
317241, 316eqeltrrd 2835 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wne 2941  wral 3062  wrex 3071  {crab 3433  cdif 3945  cun 3946  cin 3947  wss 3948  c0 4322  ifcif 4528  {csn 4628   class class class wbr 5148  cmpt 5231  ccnv 5675  cima 5679   Fn wfn 6536  wf 6537  ontowfo 6539  cfv 6541  (class class class)co 7406  Fincfn 8936  cc 11105  cr 11106  0cc0 11107  1c1 11108   + caddc 11110   · cmul 11112  +∞cpnf 11242  cle 11246  cmin 11441  -cneg 11442   / cdiv 11868  cn 12209  0cn0 12469  cz 12555  cuz 12819  +crp 12971  [,)cico 13323  ...cfz 13481  cfl 13752  seqcseq 13963  chash 14287  ccj 15040  abscabs 15178  cli 15425  𝑂(1)co1 15427  Σcsu 15629  ϕcphi 16694  Basecbs 17141  0gc0g 17382   MndHom cmhm 18666  Grpcgrp 18816  Abelcabl 19644  mulGrpcmgp 19982  1rcur 19999  Unitcui 20162  fldccnfld 20937  ℤRHomczrh 21041  ℤ/nczn 21044  logclog 26055  Λcvma 26586  DChrcdchr 26725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186  ax-mulf 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-of 7667  df-rpss 7710  df-om 7853  df-1st 7972  df-2nd 7973  df-supp 8144  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-2o 8464  df-oadd 8467  df-omul 8468  df-er 8700  df-ec 8702  df-qs 8706  df-map 8819  df-pm 8820  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-dju 9893  df-card 9931  df-acn 9934  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-xnn0 12542  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ioc 13326  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-mod 13832  df-seq 13964  df-exp 14025  df-fac 14231  df-bc 14260  df-hash 14288  df-word 14462  df-concat 14518  df-s1 14543  df-shft 15011  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-limsup 15412  df-clim 15429  df-rlim 15430  df-o1 15431  df-lo1 15432  df-sum 15630  df-ef 16008  df-e 16009  df-sin 16010  df-cos 16011  df-tan 16012  df-pi 16013  df-dvds 16195  df-gcd 16433  df-prm 16606  df-phi 16696  df-pc 16767  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-mulr 17208  df-starv 17209  df-sca 17210  df-vsca 17211  df-ip 17212  df-tset 17213  df-ple 17214  df-ds 17216  df-unif 17217  df-hom 17218  df-cco 17219  df-rest 17365  df-topn 17366  df-0g 17384  df-gsum 17385  df-topgen 17386  df-pt 17387  df-prds 17390  df-xrs 17445  df-qtop 17450  df-imas 17451  df-qus 17452  df-xps 17453  df-mre 17527  df-mrc 17528  df-acs 17530  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-mhm 18668  df-submnd 18669  df-grp 18819  df-minusg 18820  df-sbg 18821  df-mulg 18946  df-subg 18998  df-nsg 18999  df-eqg 19000  df-ghm 19085  df-gim 19128  df-ga 19149  df-cntz 19176  df-oppg 19205  df-od 19391  df-gex 19392  df-pgp 19393  df-lsm 19499  df-pj1 19500  df-cmn 19645  df-abl 19646  df-cyg 19741  df-dprd 19860  df-dpj 19861  df-mgp 19983  df-ur 20000  df-ring 20052  df-cring 20053  df-oppr 20143  df-dvdsr 20164  df-unit 20165  df-invr 20195  df-dvr 20208  df-rnghom 20244  df-drng 20310  df-subrg 20354  df-lmod 20466  df-lss 20536  df-lsp 20576  df-sra 20778  df-rgmod 20779  df-lidl 20780  df-rsp 20781  df-2idl 20850  df-psmet 20929  df-xmet 20930  df-met 20931  df-bl 20932  df-mopn 20933  df-fbas 20934  df-fg 20935  df-cnfld 20938  df-zring 21011  df-zrh 21045  df-zn 21048  df-top 22388  df-topon 22405  df-topsp 22427  df-bases 22441  df-cld 22515  df-ntr 22516  df-cls 22517  df-nei 22594  df-lp 22632  df-perf 22633  df-cn 22723  df-cnp 22724  df-haus 22811  df-cmp 22883  df-tx 23058  df-hmeo 23251  df-fil 23342  df-fm 23434  df-flim 23435  df-flf 23436  df-xms 23818  df-ms 23819  df-tms 23820  df-cncf 24386  df-0p 25179  df-limc 25375  df-dv 25376  df-ply 25694  df-idp 25695  df-coe 25696  df-dgr 25697  df-quot 25796  df-ulm 25881  df-log 26057  df-cxp 26058  df-atan 26362  df-em 26487  df-cht 26591  df-vma 26592  df-chp 26593  df-ppi 26594  df-mu 26595  df-dchr 26726
This theorem is referenced by:  dchrisum0re  27006  rpvmasum  27019
  Copyright terms: Public domain W3C validator