MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpvmasum2 Structured version   Visualization version   GIF version

Theorem rpvmasum2 26565
Description: A partial result along the lines of rpvmasum 26579. The sum of the von Mangoldt function over those integers 𝑛𝐴 (mod 𝑁) is asymptotic to (1 − 𝑀)(log𝑥 / ϕ(𝑥)) + 𝑂(1), where 𝑀 is the number of non-principal Dirichlet characters with Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 = 0. Our goal is to show this set is empty. Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
rpvmasum2.u 𝑈 = (Unit‘𝑍)
rpvmasum2.b (𝜑𝐴𝑈)
rpvmasum2.t 𝑇 = (𝐿 “ {𝐴})
rpvmasum2.z1 ((𝜑𝑓𝑊) → 𝐴 = (1r𝑍))
Assertion
Ref Expression
rpvmasum2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1))
Distinct variable groups:   𝑚,𝑛,𝑥,𝑦,𝑓, 1   𝐴,𝑓,𝑚,𝑥,𝑦   𝑓,𝐺   𝑓,𝑁,𝑚,𝑛,𝑥,𝑦   𝜑,𝑓,𝑚,𝑛,𝑥   𝑇,𝑚,𝑛,𝑥,𝑦   𝑈,𝑚,𝑛,𝑥   𝑓,𝑊,𝑥   𝑓,𝑍,𝑚,𝑛,𝑥,𝑦   𝐷,𝑓,𝑚,𝑛,𝑥,𝑦   𝑓,𝐿,𝑚,𝑛,𝑥,𝑦   𝐴,𝑛
Allowed substitution hints:   𝜑(𝑦)   𝑇(𝑓)   𝑈(𝑦,𝑓)   𝐺(𝑥,𝑦,𝑚,𝑛)   𝑊(𝑦,𝑚,𝑛)

Proof of Theorem rpvmasum2
Dummy variables 𝑐 𝑡 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.a . . . . . . 7 (𝜑𝑁 ∈ ℕ)
21adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ ℕ)
3 rpvmasum2.g . . . . . . 7 𝐺 = (DChr‘𝑁)
4 rpvmasum2.d . . . . . . 7 𝐷 = (Base‘𝐺)
53, 4dchrfi 26308 . . . . . 6 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
62, 5syl 17 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝐷 ∈ Fin)
7 fzfid 13621 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (1...(⌊‘𝑥)) ∈ Fin)
8 rpvmasum.z . . . . . . . . . . . . 13 𝑍 = (ℤ/nℤ‘𝑁)
9 eqid 2738 . . . . . . . . . . . . 13 (Base‘𝑍) = (Base‘𝑍)
10 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑓𝐷) → 𝑓𝐷)
113, 8, 4, 9, 10dchrf 26295 . . . . . . . . . . . 12 ((𝜑𝑓𝐷) → 𝑓:(Base‘𝑍)⟶ℂ)
12 rpvmasum2.u . . . . . . . . . . . . . . 15 𝑈 = (Unit‘𝑍)
139, 12unitss 19817 . . . . . . . . . . . . . 14 𝑈 ⊆ (Base‘𝑍)
14 rpvmasum2.b . . . . . . . . . . . . . 14 (𝜑𝐴𝑈)
1513, 14sselid 3915 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ (Base‘𝑍))
1615adantr 480 . . . . . . . . . . . 12 ((𝜑𝑓𝐷) → 𝐴 ∈ (Base‘𝑍))
1711, 16ffvelrnd 6944 . . . . . . . . . . 11 ((𝜑𝑓𝐷) → (𝑓𝐴) ∈ ℂ)
1817cjcld 14835 . . . . . . . . . 10 ((𝜑𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
1918adantlr 711 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
2019adantrl 712 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → (∗‘(𝑓𝐴)) ∈ ℂ)
2111ad4ant14 748 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → 𝑓:(Base‘𝑍)⟶ℂ)
221nnnn0d 12223 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ0)
23 rpvmasum.l . . . . . . . . . . . . . . . 16 𝐿 = (ℤRHom‘𝑍)
248, 9, 23znzrhfo 20667 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
25 fof 6672 . . . . . . . . . . . . . . 15 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
2622, 24, 253syl 18 . . . . . . . . . . . . . 14 (𝜑𝐿:ℤ⟶(Base‘𝑍))
2726adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝐿:ℤ⟶(Base‘𝑍))
28 elfzelz 13185 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ)
29 ffvelrn 6941 . . . . . . . . . . . . 13 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑛 ∈ ℤ) → (𝐿𝑛) ∈ (Base‘𝑍))
3027, 28, 29syl2an 595 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐿𝑛) ∈ (Base‘𝑍))
3130adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (𝐿𝑛) ∈ (Base‘𝑍))
3221, 31ffvelrnd 6944 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (𝑓‘(𝐿𝑛)) ∈ ℂ)
3332anasss 466 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → (𝑓‘(𝐿𝑛)) ∈ ℂ)
34 elfznn 13214 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
3534adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
36 vmacl 26172 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
3735, 36syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
3837, 35nndivred 11957 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
3938recnd 10934 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
4039adantrr 713 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
4133, 40mulcld 10926 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
4220, 41mulcld 10926 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ ℂ)
4342anass1rs 651 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ ℂ)
447, 43fsumcl 15373 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ ℂ)
45 relogcl 25636 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
4645adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
4746recnd 10934 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
4847adantr 480 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (log‘𝑥) ∈ ℂ)
49 ax-1cn 10860 . . . . . . 7 1 ∈ ℂ
50 neg1cn 12017 . . . . . . . 8 -1 ∈ ℂ
51 0cn 10898 . . . . . . . 8 0 ∈ ℂ
5250, 51ifcli 4503 . . . . . . 7 if(𝑓𝑊, -1, 0) ∈ ℂ
5349, 52ifcli 4503 . . . . . 6 if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) ∈ ℂ
54 mulcl 10886 . . . . . 6 (((log‘𝑥) ∈ ℂ ∧ if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) ∈ ℂ) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) ∈ ℂ)
5548, 53, 54sylancl 585 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) ∈ ℂ)
566, 44, 55fsumsub 15428 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
5741anass1rs 651 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
587, 57fsumcl 15373 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
5919, 58, 55subdid 11361 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (((∗‘(𝑓𝐴)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))))
607, 19, 57fsummulc2 15424 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
6153a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) ∈ ℂ)
6219, 48, 61mul12d 11114 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = ((log‘𝑥) · ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
63 ovif2 7351 . . . . . . . . . 10 ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , ((∗‘(𝑓𝐴)) · 1), ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)))
64 fveq1 6755 . . . . . . . . . . . . . . . 16 (𝑓 = 1 → (𝑓𝐴) = ( 1𝐴))
65 rpvmasum2.1 . . . . . . . . . . . . . . . . 17 1 = (0g𝐺)
661ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝑁 ∈ ℕ)
6714ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝐴𝑈)
683, 8, 65, 12, 66, 67dchr1 26310 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ( 1𝐴) = 1)
6964, 68sylan9eqr 2801 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑓𝐴) = 1)
7069fveq2d 6760 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → (∗‘(𝑓𝐴)) = (∗‘1))
71 1re 10906 . . . . . . . . . . . . . . 15 1 ∈ ℝ
72 cjre 14778 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → (∗‘1) = 1)
7371, 72ax-mp 5 . . . . . . . . . . . . . 14 (∗‘1) = 1
7470, 73eqtrdi 2795 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → (∗‘(𝑓𝐴)) = 1)
7574oveq1d 7270 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → ((∗‘(𝑓𝐴)) · 1) = (1 · 1))
76 1t1e1 12065 . . . . . . . . . . . 12 (1 · 1) = 1
7775, 76eqtrdi 2795 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → ((∗‘(𝑓𝐴)) · 1) = 1)
78 df-ne 2943 . . . . . . . . . . . 12 (𝑓1 ↔ ¬ 𝑓 = 1 )
79 ovif2 7351 . . . . . . . . . . . . 13 ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, ((∗‘(𝑓𝐴)) · -1), ((∗‘(𝑓𝐴)) · 0))
80 rpvmasum2.z1 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓𝑊) → 𝐴 = (1r𝑍))
8180fveq2d 6760 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓𝑊) → (𝑓𝐴) = (𝑓‘(1r𝑍)))
8281ad5ant15 755 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (𝑓𝐴) = (𝑓‘(1r𝑍)))
833, 8, 4dchrmhm 26294 . . . . . . . . . . . . . . . . . . . . . . 23 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
84 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝑓𝐷)
8583, 84sselid 3915 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝑓 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
86 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 (mulGrp‘𝑍) = (mulGrp‘𝑍)
87 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 (1r𝑍) = (1r𝑍)
8886, 87ringidval 19654 . . . . . . . . . . . . . . . . . . . . . . 23 (1r𝑍) = (0g‘(mulGrp‘𝑍))
89 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
90 cnfld1 20535 . . . . . . . . . . . . . . . . . . . . . . . 24 1 = (1r‘ℂfld)
9189, 90ringidval 19654 . . . . . . . . . . . . . . . . . . . . . . 23 1 = (0g‘(mulGrp‘ℂfld))
9288, 91mhm0 18353 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑓‘(1r𝑍)) = 1)
9385, 92syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (𝑓‘(1r𝑍)) = 1)
9493ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (𝑓‘(1r𝑍)) = 1)
9582, 94eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (𝑓𝐴) = 1)
9695fveq2d 6760 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (∗‘(𝑓𝐴)) = (∗‘1))
9796, 73eqtrdi 2795 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (∗‘(𝑓𝐴)) = 1)
9897oveq1d 7270 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → ((∗‘(𝑓𝐴)) · -1) = (1 · -1))
9950mulid2i 10911 . . . . . . . . . . . . . . . 16 (1 · -1) = -1
10098, 99eqtrdi 2795 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → ((∗‘(𝑓𝐴)) · -1) = -1)
101100ifeq1da 4487 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → if(𝑓𝑊, ((∗‘(𝑓𝐴)) · -1), ((∗‘(𝑓𝐴)) · 0)) = if(𝑓𝑊, -1, ((∗‘(𝑓𝐴)) · 0)))
10219adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → (∗‘(𝑓𝐴)) ∈ ℂ)
103102mul01d 11104 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → ((∗‘(𝑓𝐴)) · 0) = 0)
104103ifeq2d 4476 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → if(𝑓𝑊, -1, ((∗‘(𝑓𝐴)) · 0)) = if(𝑓𝑊, -1, 0))
105101, 104eqtrd 2778 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → if(𝑓𝑊, ((∗‘(𝑓𝐴)) · -1), ((∗‘(𝑓𝐴)) · 0)) = if(𝑓𝑊, -1, 0))
10679, 105syl5eq 2791 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
10778, 106sylan2br 594 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ ¬ 𝑓 = 1 ) → ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
10877, 107ifeq12da 4489 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → if(𝑓 = 1 , ((∗‘(𝑓𝐴)) · 1), ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))
10963, 108syl5eq 2791 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))
110109oveq2d 7271 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((log‘𝑥) · ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))
11162, 110eqtrd 2778 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))
11260, 111oveq12d 7273 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (((∗‘(𝑓𝐴)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
11359, 112eqtrd 2778 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
114113sumeq2dv 15343 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = Σ𝑓𝐷𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
115 fzfid 13621 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
116 inss1 4159 . . . . . . . . 9 ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))
117 ssfi 8918 . . . . . . . . 9 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
118115, 116, 117sylancl 585 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
1192phicld 16401 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℕ)
120119nncnd 11919 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℂ)
121116a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥)))
122121sselda 3917 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑛 ∈ (1...(⌊‘𝑥)))
123122, 39syldan 590 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
124118, 120, 123fsummulc2 15424 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)))
125120adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ϕ‘𝑁) ∈ ℂ)
126125, 39mulcld 10926 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
127122, 126syldan 590 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
128127ralrimiva 3107 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∀𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
129115olcd 870 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ⊆ (ℤ‘1) ∨ (1...(⌊‘𝑥)) ∈ Fin))
130 sumss2 15366 . . . . . . . 8 (((((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥)) ∧ ∀𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ) ∧ ((1...(⌊‘𝑥)) ⊆ (ℤ‘1) ∨ (1...(⌊‘𝑥)) ∈ Fin)) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0))
131121, 128, 129, 130syl21anc 834 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0))
132 elin 3899 . . . . . . . . . . . . 13 (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ↔ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑛𝑇))
133132baib 535 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ↔ 𝑛𝑇))
134133adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ↔ 𝑛𝑇))
135 rpvmasum2.t . . . . . . . . . . . . 13 𝑇 = (𝐿 “ {𝐴})
136135eleq2i 2830 . . . . . . . . . . . 12 (𝑛𝑇𝑛 ∈ (𝐿 “ {𝐴}))
13727ffnd 6585 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝐿 Fn ℤ)
138 fniniseg 6919 . . . . . . . . . . . . . 14 (𝐿 Fn ℤ → (𝑛 ∈ (𝐿 “ {𝐴}) ↔ (𝑛 ∈ ℤ ∧ (𝐿𝑛) = 𝐴)))
139138baibd 539 . . . . . . . . . . . . 13 ((𝐿 Fn ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ∈ (𝐿 “ {𝐴}) ↔ (𝐿𝑛) = 𝐴))
140137, 28, 139syl2an 595 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ (𝐿 “ {𝐴}) ↔ (𝐿𝑛) = 𝐴))
141136, 140syl5bb 282 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛𝑇 ↔ (𝐿𝑛) = 𝐴))
142134, 141bitr2d 279 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐿𝑛) = 𝐴𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)))
14339mul02d 11103 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (0 · ((Λ‘𝑛) / 𝑛)) = 0)
144142, 143ifbieq2d 4482 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → if((𝐿𝑛) = 𝐴, ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), (0 · ((Λ‘𝑛) / 𝑛))) = if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0))
145 ovif 7350 . . . . . . . . . 10 (if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0) · ((Λ‘𝑛) / 𝑛)) = if((𝐿𝑛) = 𝐴, ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), (0 · ((Λ‘𝑛) / 𝑛)))
1461ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑁 ∈ ℕ)
147146, 5syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐷 ∈ Fin)
14818ad4ant14 748 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
14932, 148mulcld 10926 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) ∈ ℂ)
150147, 39, 149fsummulc1 15425 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑓𝐷 ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)))
15114ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴𝑈)
1523, 4, 8, 9, 12, 146, 30, 151sum2dchr 26327 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑓𝐷 ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) = if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0))
153152oveq1d 7270 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑓𝐷 ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = (if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0) · ((Λ‘𝑛) / 𝑛)))
15439adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
155 mulass 10890 . . . . . . . . . . . . . 14 (((𝑓‘(𝐿𝑛)) ∈ ℂ ∧ (∗‘(𝑓𝐴)) ∈ ℂ ∧ ((Λ‘𝑛) / 𝑛) ∈ ℂ) → (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = ((𝑓‘(𝐿𝑛)) · ((∗‘(𝑓𝐴)) · ((Λ‘𝑛) / 𝑛))))
156 mul12 11070 . . . . . . . . . . . . . 14 (((𝑓‘(𝐿𝑛)) ∈ ℂ ∧ (∗‘(𝑓𝐴)) ∈ ℂ ∧ ((Λ‘𝑛) / 𝑛) ∈ ℂ) → ((𝑓‘(𝐿𝑛)) · ((∗‘(𝑓𝐴)) · ((Λ‘𝑛) / 𝑛))) = ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
157155, 156eqtrd 2778 . . . . . . . . . . . . 13 (((𝑓‘(𝐿𝑛)) ∈ ℂ ∧ (∗‘(𝑓𝐴)) ∈ ℂ ∧ ((Λ‘𝑛) / 𝑛) ∈ ℂ) → (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
15832, 148, 154, 157syl3anc 1369 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
159158sumeq2dv 15343 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑓𝐷 (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
160150, 153, 1593eqtr3d 2786 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0) · ((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
161145, 160eqtr3id 2793 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → if((𝐿𝑛) = 𝐴, ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), (0 · ((Λ‘𝑛) / 𝑛))) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
162144, 161eqtr3d 2780 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
163162sumeq2dv 15343 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
164124, 131, 1633eqtrd 2782 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
165115, 6, 42fsumcom 15415 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) = Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
166164, 165eqtrd 2778 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
1673dchrabl 26307 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
168 ablgrp 19306 . . . . . . . . . 10 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
1694, 65grpidcl 18522 . . . . . . . . . 10 (𝐺 ∈ Grp → 1𝐷)
1702, 167, 168, 1694syl 19 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 1𝐷)
17147mulid1d 10923 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · 1) = (log‘𝑥))
172171, 47eqeltrd 2839 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · 1) ∈ ℂ)
173 iftrue 4462 . . . . . . . . . . 11 (𝑓 = 1 → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = 1)
174173oveq2d 7271 . . . . . . . . . 10 (𝑓 = 1 → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · 1))
175174sumsn 15386 . . . . . . . . 9 (( 1𝐷 ∧ ((log‘𝑥) · 1) ∈ ℂ) → Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · 1))
176170, 172, 175syl2anc 583 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · 1))
177 eldifsn 4717 . . . . . . . . . . 11 (𝑓 ∈ (𝐷 ∖ { 1 }) ↔ (𝑓𝐷𝑓1 ))
178 ifnefalse 4468 . . . . . . . . . . . . . . 15 (𝑓1 → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
179178ad2antll 725 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
180 negeq 11143 . . . . . . . . . . . . . . 15 (if(𝑓𝑊, 1, 0) = 1 → -if(𝑓𝑊, 1, 0) = -1)
181 negeq 11143 . . . . . . . . . . . . . . . 16 (if(𝑓𝑊, 1, 0) = 0 → -if(𝑓𝑊, 1, 0) = -0)
182 neg0 11197 . . . . . . . . . . . . . . . 16 -0 = 0
183181, 182eqtrdi 2795 . . . . . . . . . . . . . . 15 (if(𝑓𝑊, 1, 0) = 0 → -if(𝑓𝑊, 1, 0) = 0)
184180, 183ifsb 4469 . . . . . . . . . . . . . 14 -if(𝑓𝑊, 1, 0) = if(𝑓𝑊, -1, 0)
185179, 184eqtr4di 2797 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = -if(𝑓𝑊, 1, 0))
186185oveq2d 7271 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · -if(𝑓𝑊, 1, 0)))
18747adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → (log‘𝑥) ∈ ℂ)
18849, 51ifcli 4503 . . . . . . . . . . . . 13 if(𝑓𝑊, 1, 0) ∈ ℂ
189 mulneg2 11342 . . . . . . . . . . . . 13 (((log‘𝑥) ∈ ℂ ∧ if(𝑓𝑊, 1, 0) ∈ ℂ) → ((log‘𝑥) · -if(𝑓𝑊, 1, 0)) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
190187, 188, 189sylancl 585 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → ((log‘𝑥) · -if(𝑓𝑊, 1, 0)) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
191186, 190eqtrd 2778 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
192177, 191sylan2b 593 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
193192sumeq2dv 15343 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = Σ𝑓 ∈ (𝐷 ∖ { 1 })-((log‘𝑥) · if(𝑓𝑊, 1, 0)))
194 diffi 8979 . . . . . . . . . . 11 (𝐷 ∈ Fin → (𝐷 ∖ { 1 }) ∈ Fin)
1956, 194syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝐷 ∖ { 1 }) ∈ Fin)
19647adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → (log‘𝑥) ∈ ℂ)
197 mulcl 10886 . . . . . . . . . . 11 (((log‘𝑥) ∈ ℂ ∧ if(𝑓𝑊, 1, 0) ∈ ℂ) → ((log‘𝑥) · if(𝑓𝑊, 1, 0)) ∈ ℂ)
198196, 188, 197sylancl 585 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → ((log‘𝑥) · if(𝑓𝑊, 1, 0)) ∈ ℂ)
199195, 198fsumneg 15427 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })-((log‘𝑥) · if(𝑓𝑊, 1, 0)) = -Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)))
200188a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → if(𝑓𝑊, 1, 0) ∈ ℂ)
201195, 47, 200fsummulc2 15424 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0)) = Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)))
202 rpvmasum2.w . . . . . . . . . . . . . . . . 17 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
203202ssrab3 4011 . . . . . . . . . . . . . . . 16 𝑊 ⊆ (𝐷 ∖ { 1 })
204 difss 4062 . . . . . . . . . . . . . . . 16 (𝐷 ∖ { 1 }) ⊆ 𝐷
205203, 204sstri 3926 . . . . . . . . . . . . . . 15 𝑊𝐷
206 ssfi 8918 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑊𝐷) → 𝑊 ∈ Fin)
2076, 205, 206sylancl 585 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑊 ∈ Fin)
208 fsumconst 15430 . . . . . . . . . . . . . 14 ((𝑊 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑓𝑊 1 = ((♯‘𝑊) · 1))
209207, 49, 208sylancl 585 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝑊 1 = ((♯‘𝑊) · 1))
210203a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑊 ⊆ (𝐷 ∖ { 1 }))
21149a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℂ)
212211ralrimivw 3108 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ∀𝑓𝑊 1 ∈ ℂ)
213195olcd 870 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((𝐷 ∖ { 1 }) ⊆ (ℤ‘1) ∨ (𝐷 ∖ { 1 }) ∈ Fin))
214 sumss2 15366 . . . . . . . . . . . . . 14 (((𝑊 ⊆ (𝐷 ∖ { 1 }) ∧ ∀𝑓𝑊 1 ∈ ℂ) ∧ ((𝐷 ∖ { 1 }) ⊆ (ℤ‘1) ∨ (𝐷 ∖ { 1 }) ∈ Fin)) → Σ𝑓𝑊 1 = Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0))
215210, 212, 213, 214syl21anc 834 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝑊 1 = Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0))
216 hashcl 13999 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Fin → (♯‘𝑊) ∈ ℕ0)
217207, 216syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (♯‘𝑊) ∈ ℕ0)
218217nn0cnd 12225 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (♯‘𝑊) ∈ ℂ)
219218mulid1d 10923 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → ((♯‘𝑊) · 1) = (♯‘𝑊))
220209, 215, 2193eqtr3d 2786 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0) = (♯‘𝑊))
221220oveq2d 7271 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0)) = ((log‘𝑥) · (♯‘𝑊)))
222201, 221eqtr3d 2780 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)) = ((log‘𝑥) · (♯‘𝑊)))
223222negeqd 11145 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → -Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)) = -((log‘𝑥) · (♯‘𝑊)))
224193, 199, 2233eqtrd 2782 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = -((log‘𝑥) · (♯‘𝑊)))
225176, 224oveq12d 7273 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) + Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (((log‘𝑥) · 1) + -((log‘𝑥) · (♯‘𝑊))))
22647, 218mulcld 10926 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (♯‘𝑊)) ∈ ℂ)
227172, 226negsubd 11268 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (((log‘𝑥) · 1) + -((log‘𝑥) · (♯‘𝑊))) = (((log‘𝑥) · 1) − ((log‘𝑥) · (♯‘𝑊))))
228225, 227eqtrd 2778 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) + Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (((log‘𝑥) · 1) − ((log‘𝑥) · (♯‘𝑊))))
229 disjdif 4402 . . . . . . . 8 ({ 1 } ∩ (𝐷 ∖ { 1 })) = ∅
230229a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ({ 1 } ∩ (𝐷 ∖ { 1 })) = ∅)
231 undif2 4407 . . . . . . . 8 ({ 1 } ∪ (𝐷 ∖ { 1 })) = ({ 1 } ∪ 𝐷)
232170snssd 4739 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → { 1 } ⊆ 𝐷)
233 ssequn1 4110 . . . . . . . . 9 ({ 1 } ⊆ 𝐷 ↔ ({ 1 } ∪ 𝐷) = 𝐷)
234232, 233sylib 217 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ({ 1 } ∪ 𝐷) = 𝐷)
235231, 234eqtr2id 2792 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝐷 = ({ 1 } ∪ (𝐷 ∖ { 1 })))
236230, 235, 6, 55fsumsplit 15381 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = (Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) + Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
23747, 211, 218subdid 11361 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘𝑊))) = (((log‘𝑥) · 1) − ((log‘𝑥) · (♯‘𝑊))))
238228, 236, 2373eqtr4rd 2789 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘𝑊))) = Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))
239166, 238oveq12d 7273 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) = (Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
24056, 114, 2393eqtr4d 2788 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
241240mpteq2dva 5170 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))) = (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
242 rpssre 12666 . . . 4 + ⊆ ℝ
243242a1i 11 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
2441, 5syl 17 . . 3 (𝜑𝐷 ∈ Fin)
24517adantlr 711 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (𝑓𝐴) ∈ ℂ)
246245cjcld 14835 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
24758, 55subcld 11262 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) ∈ ℂ)
248246, 247mulcld 10926 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ ℂ)
249248anasss 466 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑓𝐷)) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ ℂ)
25018adantr 480 . . . 4 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (∗‘(𝑓𝐴)) ∈ ℂ)
251247an32s 648 . . . 4 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) ∈ ℂ)
252 o1const 15257 . . . . 5 ((ℝ+ ⊆ ℝ ∧ (∗‘(𝑓𝐴)) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (∗‘(𝑓𝐴))) ∈ 𝑂(1))
253242, 18, 252sylancr 586 . . . 4 ((𝜑𝑓𝐷) → (𝑥 ∈ ℝ+ ↦ (∗‘(𝑓𝐴))) ∈ 𝑂(1))
254 fveq1 6755 . . . . . . . . . . . 12 (𝑓 = 1 → (𝑓‘(𝐿𝑛)) = ( 1 ‘(𝐿𝑛)))
255254oveq1d 7270 . . . . . . . . . . 11 (𝑓 = 1 → ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = (( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
256255sumeq2sdv 15344 . . . . . . . . . 10 (𝑓 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
257256, 174oveq12d 7273 . . . . . . . . 9 (𝑓 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · 1)))
258257adantl 481 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · 1)))
25945recnd 10934 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
260259mulid1d 10923 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((log‘𝑥) · 1) = (log‘𝑥))
261260oveq2d 7271 . . . . . . . 8 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · 1)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
262258, 261sylan9eq 2799 . . . . . . 7 ((((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
263262mpteq2dva 5170 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))))
2648, 23, 1, 3, 4, 65rpvmasumlem 26540 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
265264ad2antrr 722 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
266263, 265eqeltrd 2839 . . . . 5 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ 𝑂(1))
267178oveq2d 7271 . . . . . . . . . 10 (𝑓1 → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · if(𝑓𝑊, -1, 0)))
268267oveq2d 7271 . . . . . . . . 9 (𝑓1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓𝑊, -1, 0))))
26947adantlr 711 . . . . . . . . . . . . . . 15 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
270 mulcom 10888 . . . . . . . . . . . . . . 15 (((log‘𝑥) ∈ ℂ ∧ -1 ∈ ℂ) → ((log‘𝑥) · -1) = (-1 · (log‘𝑥)))
271269, 50, 270sylancl 585 . . . . . . . . . . . . . 14 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · -1) = (-1 · (log‘𝑥)))
272269mulm1d 11357 . . . . . . . . . . . . . 14 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (-1 · (log‘𝑥)) = -(log‘𝑥))
273271, 272eqtrd 2778 . . . . . . . . . . . . 13 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · -1) = -(log‘𝑥))
274269mul01d 11104 . . . . . . . . . . . . 13 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · 0) = 0)
275273, 274ifeq12d 4477 . . . . . . . . . . . 12 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → if(𝑓𝑊, ((log‘𝑥) · -1), ((log‘𝑥) · 0)) = if(𝑓𝑊, -(log‘𝑥), 0))
276 ovif2 7351 . . . . . . . . . . . 12 ((log‘𝑥) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, ((log‘𝑥) · -1), ((log‘𝑥) · 0))
277 negeq 11143 . . . . . . . . . . . . 13 (if(𝑓𝑊, (log‘𝑥), 0) = (log‘𝑥) → -if(𝑓𝑊, (log‘𝑥), 0) = -(log‘𝑥))
278 negeq 11143 . . . . . . . . . . . . . 14 (if(𝑓𝑊, (log‘𝑥), 0) = 0 → -if(𝑓𝑊, (log‘𝑥), 0) = -0)
279278, 182eqtrdi 2795 . . . . . . . . . . . . 13 (if(𝑓𝑊, (log‘𝑥), 0) = 0 → -if(𝑓𝑊, (log‘𝑥), 0) = 0)
280277, 279ifsb 4469 . . . . . . . . . . . 12 -if(𝑓𝑊, (log‘𝑥), 0) = if(𝑓𝑊, -(log‘𝑥), 0)
281275, 276, 2803eqtr4g 2804 . . . . . . . . . . 11 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · if(𝑓𝑊, -1, 0)) = -if(𝑓𝑊, (log‘𝑥), 0))
282281oveq2d 7271 . . . . . . . . . 10 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓𝑊, -1, 0))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − -if(𝑓𝑊, (log‘𝑥), 0)))
28358an32s 648 . . . . . . . . . . 11 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
284 ifcl 4501 . . . . . . . . . . . 12 (((log‘𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑓𝑊, (log‘𝑥), 0) ∈ ℂ)
285269, 51, 284sylancl 585 . . . . . . . . . . 11 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → if(𝑓𝑊, (log‘𝑥), 0) ∈ ℂ)
286283, 285subnegd 11269 . . . . . . . . . 10 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − -if(𝑓𝑊, (log‘𝑥), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
287282, 286eqtrd 2778 . . . . . . . . 9 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓𝑊, -1, 0))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
288268, 287sylan9eqr 2801 . . . . . . . 8 ((((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) ∧ 𝑓1 ) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
289288an32s 648 . . . . . . 7 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
290289mpteq2dva 5170 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))))
2911ad2antrr 722 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → 𝑁 ∈ ℕ)
292 simplr 765 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → 𝑓𝐷)
293 simpr 484 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → 𝑓1 )
294 eqid 2738 . . . . . . . 8 (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)) = (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))
2958, 23, 291, 3, 4, 65, 292, 293, 294dchrmusumlema 26546 . . . . . . 7 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))
2961adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑓𝐷) → 𝑁 ∈ ℕ)
297296ad2antrr 722 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑁 ∈ ℕ)
298292adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑓𝐷)
299 simplr 765 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑓1 )
300 simprl 767 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑐 ∈ (0[,)+∞))
301 simprrl 777 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡)
302 simprrr 778 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦))
3038, 23, 297, 3, 4, 65, 298, 299, 294, 300, 301, 302, 202dchrvmaeq0 26557 . . . . . . . . . . 11 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑓𝑊𝑡 = 0))
304 ifbi 4478 . . . . . . . . . . . . 13 ((𝑓𝑊𝑡 = 0) → if(𝑓𝑊, (log‘𝑥), 0) = if(𝑡 = 0, (log‘𝑥), 0))
305304oveq2d 7271 . . . . . . . . . . . 12 ((𝑓𝑊𝑡 = 0) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0)))
306305mpteq2dv 5172 . . . . . . . . . . 11 ((𝑓𝑊𝑡 = 0) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0))))
307303, 306syl 17 . . . . . . . . . 10 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0))))
3088, 23, 297, 3, 4, 65, 298, 299, 294, 300, 301, 302dchrvmasumif 26556 . . . . . . . . . 10 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0))) ∈ 𝑂(1))
309307, 308eqeltrd 2839 . . . . . . . . 9 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1))
310309rexlimdvaa 3213 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1)))
311310exlimdv 1937 . . . . . . 7 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1)))
312295, 311mpd 15 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1))
313290, 312eqeltrd 2839 . . . . 5 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ 𝑂(1))
314266, 313pm2.61dane 3031 . . . 4 ((𝜑𝑓𝐷) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ 𝑂(1))
315250, 251, 253, 314o1mul2 15262 . . 3 ((𝜑𝑓𝐷) → (𝑥 ∈ ℝ+ ↦ ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))) ∈ 𝑂(1))
316243, 244, 249, 315fsumo1 15452 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))) ∈ 𝑂(1))
317241, 316eqeltrrd 2840 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  ifcif 4456  {csn 4558   class class class wbr 5070  cmpt 5153  ccnv 5579  cima 5583   Fn wfn 6413  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  cuz 12511  +crp 12659  [,)cico 13010  ...cfz 13168  cfl 13438  seqcseq 13649  chash 13972  ccj 14735  abscabs 14873  cli 15121  𝑂(1)co1 15123  Σcsu 15325  ϕcphi 16393  Basecbs 16840  0gc0g 17067   MndHom cmhm 18343  Grpcgrp 18492  Abelcabl 19302  mulGrpcmgp 19635  1rcur 19652  Unitcui 19796  fldccnfld 20510  ℤRHomczrh 20613  ℤ/nczn 20616  logclog 25615  Λcvma 26146  DChrcdchr 26285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-rpss 7554  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-o1 15127  df-lo1 15128  df-sum 15326  df-ef 15705  df-e 15706  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-dvds 15892  df-gcd 16130  df-prm 16305  df-phi 16395  df-pc 16466  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-qus 17137  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-nsg 18668  df-eqg 18669  df-ghm 18747  df-gim 18790  df-ga 18811  df-cntz 18838  df-oppg 18865  df-od 19051  df-gex 19052  df-pgp 19053  df-lsm 19156  df-pj1 19157  df-cmn 19303  df-abl 19304  df-cyg 19393  df-dprd 19513  df-dpj 19514  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-2idl 20416  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-zn 20620  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-0p 24739  df-limc 24935  df-dv 24936  df-ply 25254  df-idp 25255  df-coe 25256  df-dgr 25257  df-quot 25356  df-ulm 25441  df-log 25617  df-cxp 25618  df-atan 25922  df-em 26047  df-cht 26151  df-vma 26152  df-chp 26153  df-ppi 26154  df-mu 26155  df-dchr 26286
This theorem is referenced by:  dchrisum0re  26566  rpvmasum  26579
  Copyright terms: Public domain W3C validator