| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq1da | Structured version Visualization version GIF version | ||
| Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ifeq1da.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq1da | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) | |
| 2 | 1 | ifeq1d 4492 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 3 | iffalse 4481 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶) | |
| 4 | iffalse 4481 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶) | |
| 5 | 3, 4 | eqtr4d 2769 | . . 3 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 7 | 2, 6 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ifcif 4472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-un 3902 df-if 4473 |
| This theorem is referenced by: ifeq12da 4506 cantnflem1d 9578 cantnflem1 9579 dfac12lem1 10035 xrmaxeq 13078 xrmineq 13079 rexmul 13170 max0add 15217 sumeq2ii 15600 fsumser 15637 ramcl 16941 dmdprdsplitlem 19951 coe1pwmul 22193 scmatscmiddistr 22423 mulmarep1gsum1 22488 maducoeval2 22555 madugsum 22558 madurid 22559 ptcld 23528 ibllem 25692 itgvallem3 25714 iblposlem 25720 iblss2 25734 iblmulc2 25759 cnplimc 25815 limcco 25821 dvexp3 25909 dchrinvcl 27191 lgsval2lem 27245 lgsval4lem 27246 lgsneg 27259 lgsmod 27261 lgsdilem2 27271 rpvmasum2 27450 mrsubrn 35557 ftc1anclem6 37746 ftc1anclem8 37748 fsuppind 42631 |
| Copyright terms: Public domain | W3C validator |