MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq1da Structured version   Visualization version   GIF version

Theorem ifeq1da 4504
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
ifeq1da.1 ((𝜑𝜓) → 𝐴 = 𝐵)
Assertion
Ref Expression
ifeq1da (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))

Proof of Theorem ifeq1da
StepHypRef Expression
1 ifeq1da.1 . . 3 ((𝜑𝜓) → 𝐴 = 𝐵)
21ifeq1d 4492 . 2 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
3 iffalse 4481 . . . 4 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶)
4 iffalse 4481 . . . 4 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶)
53, 4eqtr4d 2769 . . 3 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
65adantl 481 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
72, 6pm2.61dan 812 1 (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  ifcif 4472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-un 3902  df-if 4473
This theorem is referenced by:  ifeq12da  4506  cantnflem1d  9578  cantnflem1  9579  dfac12lem1  10035  xrmaxeq  13078  xrmineq  13079  rexmul  13170  max0add  15217  sumeq2ii  15600  fsumser  15637  ramcl  16941  dmdprdsplitlem  19951  coe1pwmul  22193  scmatscmiddistr  22423  mulmarep1gsum1  22488  maducoeval2  22555  madugsum  22558  madurid  22559  ptcld  23528  ibllem  25692  itgvallem3  25714  iblposlem  25720  iblss2  25734  iblmulc2  25759  cnplimc  25815  limcco  25821  dvexp3  25909  dchrinvcl  27191  lgsval2lem  27245  lgsval4lem  27246  lgsneg  27259  lgsmod  27261  lgsdilem2  27271  rpvmasum2  27450  mrsubrn  35557  ftc1anclem6  37746  ftc1anclem8  37748  fsuppind  42631
  Copyright terms: Public domain W3C validator