| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq1da | Structured version Visualization version GIF version | ||
| Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ifeq1da.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq1da | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) | |
| 2 | 1 | ifeq1d 4496 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 3 | iffalse 4485 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶) | |
| 4 | iffalse 4485 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶) | |
| 5 | 3, 4 | eqtr4d 2767 | . . 3 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 7 | 2, 6 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ifcif 4476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-un 3908 df-if 4477 |
| This theorem is referenced by: ifeq12da 4510 cantnflem1d 9584 cantnflem1 9585 dfac12lem1 10038 xrmaxeq 13081 xrmineq 13082 rexmul 13173 max0add 15217 sumeq2ii 15600 fsumser 15637 ramcl 16941 dmdprdsplitlem 19918 coe1pwmul 22163 scmatscmiddistr 22393 mulmarep1gsum1 22458 maducoeval2 22525 madugsum 22528 madurid 22529 ptcld 23498 ibllem 25663 itgvallem3 25685 iblposlem 25691 iblss2 25705 iblmulc2 25730 cnplimc 25786 limcco 25792 dvexp3 25880 dchrinvcl 27162 lgsval2lem 27216 lgsval4lem 27217 lgsneg 27230 lgsmod 27232 lgsdilem2 27242 rpvmasum2 27421 mrsubrn 35486 ftc1anclem6 37678 ftc1anclem8 37680 fsuppind 42563 |
| Copyright terms: Public domain | W3C validator |