MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq1da Structured version   Visualization version   GIF version

Theorem ifeq1da 4523
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
ifeq1da.1 ((𝜑𝜓) → 𝐴 = 𝐵)
Assertion
Ref Expression
ifeq1da (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))

Proof of Theorem ifeq1da
StepHypRef Expression
1 ifeq1da.1 . . 3 ((𝜑𝜓) → 𝐴 = 𝐵)
21ifeq1d 4511 . 2 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
3 iffalse 4500 . . . 4 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶)
4 iffalse 4500 . . . 4 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶)
53, 4eqtr4d 2768 . . 3 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
65adantl 481 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
72, 6pm2.61dan 812 1 (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  ifcif 4491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-un 3922  df-if 4492
This theorem is referenced by:  ifeq12da  4525  cantnflem1d  9648  cantnflem1  9649  dfac12lem1  10104  xrmaxeq  13146  xrmineq  13147  rexmul  13238  max0add  15283  sumeq2ii  15666  fsumser  15703  ramcl  17007  dmdprdsplitlem  19976  coe1pwmul  22172  scmatscmiddistr  22402  mulmarep1gsum1  22467  maducoeval2  22534  madugsum  22537  madurid  22538  ptcld  23507  ibllem  25672  itgvallem3  25694  iblposlem  25700  iblss2  25714  iblmulc2  25739  cnplimc  25795  limcco  25801  dvexp3  25889  dchrinvcl  27171  lgsval2lem  27225  lgsval4lem  27226  lgsneg  27239  lgsmod  27241  lgsdilem2  27251  rpvmasum2  27430  mrsubrn  35507  ftc1anclem6  37699  ftc1anclem8  37701  fsuppind  42585
  Copyright terms: Public domain W3C validator