MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq1da Structured version   Visualization version   GIF version

Theorem ifeq1da 4579
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
ifeq1da.1 ((𝜑𝜓) → 𝐴 = 𝐵)
Assertion
Ref Expression
ifeq1da (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))

Proof of Theorem ifeq1da
StepHypRef Expression
1 ifeq1da.1 . . 3 ((𝜑𝜓) → 𝐴 = 𝐵)
21ifeq1d 4567 . 2 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
3 iffalse 4557 . . . 4 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶)
4 iffalse 4557 . . . 4 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶)
53, 4eqtr4d 2783 . . 3 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
65adantl 481 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
72, 6pm2.61dan 812 1 (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  ifcif 4548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-un 3981  df-if 4549
This theorem is referenced by:  ifeq12da  4581  cantnflem1d  9757  cantnflem1  9758  dfac12lem1  10213  xrmaxeq  13241  xrmineq  13242  rexmul  13333  max0add  15359  sumeq2ii  15741  fsumser  15778  ramcl  17076  dmdprdsplitlem  20081  coe1pwmul  22303  scmatscmiddistr  22535  mulmarep1gsum1  22600  maducoeval2  22667  madugsum  22670  madurid  22671  ptcld  23642  ibllem  25819  itgvallem3  25841  iblposlem  25847  iblss2  25861  iblmulc2  25886  cnplimc  25942  limcco  25948  dvexp3  26036  dchrinvcl  27315  lgsval2lem  27369  lgsval4lem  27370  lgsneg  27383  lgsmod  27385  lgsdilem2  27395  rpvmasum2  27574  mrsubrn  35481  ftc1anclem6  37658  ftc1anclem8  37660  fsuppind  42545
  Copyright terms: Public domain W3C validator