| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq1da | Structured version Visualization version GIF version | ||
| Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ifeq1da.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq1da | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) | |
| 2 | 1 | ifeq1d 4508 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 3 | iffalse 4497 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶) | |
| 4 | iffalse 4497 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶) | |
| 5 | 3, 4 | eqtr4d 2767 | . . 3 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 7 | 2, 6 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ifcif 4488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-un 3919 df-if 4489 |
| This theorem is referenced by: ifeq12da 4522 cantnflem1d 9641 cantnflem1 9642 dfac12lem1 10097 xrmaxeq 13139 xrmineq 13140 rexmul 13231 max0add 15276 sumeq2ii 15659 fsumser 15696 ramcl 17000 dmdprdsplitlem 19969 coe1pwmul 22165 scmatscmiddistr 22395 mulmarep1gsum1 22460 maducoeval2 22527 madugsum 22530 madurid 22531 ptcld 23500 ibllem 25665 itgvallem3 25687 iblposlem 25693 iblss2 25707 iblmulc2 25732 cnplimc 25788 limcco 25794 dvexp3 25882 dchrinvcl 27164 lgsval2lem 27218 lgsval4lem 27219 lgsneg 27232 lgsmod 27234 lgsdilem2 27244 rpvmasum2 27423 mrsubrn 35500 ftc1anclem6 37692 ftc1anclem8 37694 fsuppind 42578 |
| Copyright terms: Public domain | W3C validator |