MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq1da Structured version   Visualization version   GIF version

Theorem ifeq1da 4562
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
ifeq1da.1 ((𝜑𝜓) → 𝐴 = 𝐵)
Assertion
Ref Expression
ifeq1da (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))

Proof of Theorem ifeq1da
StepHypRef Expression
1 ifeq1da.1 . . 3 ((𝜑𝜓) → 𝐴 = 𝐵)
21ifeq1d 4550 . 2 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
3 iffalse 4540 . . . 4 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶)
4 iffalse 4540 . . . 4 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶)
53, 4eqtr4d 2778 . . 3 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
65adantl 481 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
72, 6pm2.61dan 813 1 (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  ifcif 4531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-un 3968  df-if 4532
This theorem is referenced by:  ifeq12da  4564  cantnflem1d  9726  cantnflem1  9727  dfac12lem1  10182  xrmaxeq  13218  xrmineq  13219  rexmul  13310  max0add  15346  sumeq2ii  15726  fsumser  15763  ramcl  17063  dmdprdsplitlem  20072  coe1pwmul  22298  scmatscmiddistr  22530  mulmarep1gsum1  22595  maducoeval2  22662  madugsum  22665  madurid  22666  ptcld  23637  ibllem  25814  itgvallem3  25836  iblposlem  25842  iblss2  25856  iblmulc2  25881  cnplimc  25937  limcco  25943  dvexp3  26031  dchrinvcl  27312  lgsval2lem  27366  lgsval4lem  27367  lgsneg  27380  lgsmod  27382  lgsdilem2  27392  rpvmasum2  27571  mrsubrn  35498  ftc1anclem6  37685  ftc1anclem8  37687  fsuppind  42577
  Copyright terms: Public domain W3C validator