MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq1da Structured version   Visualization version   GIF version

Theorem ifeq1da 4520
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
ifeq1da.1 ((𝜑𝜓) → 𝐴 = 𝐵)
Assertion
Ref Expression
ifeq1da (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))

Proof of Theorem ifeq1da
StepHypRef Expression
1 ifeq1da.1 . . 3 ((𝜑𝜓) → 𝐴 = 𝐵)
21ifeq1d 4508 . 2 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
3 iffalse 4497 . . . 4 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶)
4 iffalse 4497 . . . 4 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶)
53, 4eqtr4d 2767 . . 3 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
65adantl 481 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
72, 6pm2.61dan 812 1 (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  ifcif 4488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-un 3919  df-if 4489
This theorem is referenced by:  ifeq12da  4522  cantnflem1d  9641  cantnflem1  9642  dfac12lem1  10097  xrmaxeq  13139  xrmineq  13140  rexmul  13231  max0add  15276  sumeq2ii  15659  fsumser  15696  ramcl  17000  dmdprdsplitlem  19969  coe1pwmul  22165  scmatscmiddistr  22395  mulmarep1gsum1  22460  maducoeval2  22527  madugsum  22530  madurid  22531  ptcld  23500  ibllem  25665  itgvallem3  25687  iblposlem  25693  iblss2  25707  iblmulc2  25732  cnplimc  25788  limcco  25794  dvexp3  25882  dchrinvcl  27164  lgsval2lem  27218  lgsval4lem  27219  lgsneg  27232  lgsmod  27234  lgsdilem2  27244  rpvmasum2  27423  mrsubrn  35500  ftc1anclem6  37692  ftc1anclem8  37694  fsuppind  42578
  Copyright terms: Public domain W3C validator