![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq1da | Structured version Visualization version GIF version |
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
ifeq1da.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq1da | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) | |
2 | 1 | ifeq1d 4543 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
3 | iffalse 4533 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶) | |
4 | iffalse 4533 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶) | |
5 | 3, 4 | eqtr4d 2770 | . . 3 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
6 | 5 | adantl 481 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
7 | 2, 6 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ifcif 4524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-un 3949 df-if 4525 |
This theorem is referenced by: ifeq12da 4557 cantnflem1d 9703 cantnflem1 9704 dfac12lem1 10158 xrmaxeq 13182 xrmineq 13183 rexmul 13274 max0add 15281 sumeq2ii 15663 fsumser 15700 ramcl 16989 dmdprdsplitlem 19985 coe1pwmul 22185 scmatscmiddistr 22397 mulmarep1gsum1 22462 maducoeval2 22529 madugsum 22532 madurid 22533 ptcld 23504 ibllem 25681 itgvallem3 25702 iblposlem 25708 iblss2 25722 iblmulc2 25747 cnplimc 25803 limcco 25809 dvexp3 25897 dchrinvcl 27173 lgsval2lem 27227 lgsval4lem 27228 lgsneg 27241 lgsmod 27243 lgsdilem2 27253 rpvmasum2 27432 mrsubrn 35059 ftc1anclem6 37106 ftc1anclem8 37108 fsuppind 41745 |
Copyright terms: Public domain | W3C validator |