Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifeq1da | Structured version Visualization version GIF version |
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
ifeq1da.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq1da | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) | |
2 | 1 | ifeq1d 4478 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
3 | iffalse 4468 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶) | |
4 | iffalse 4468 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶) | |
5 | 3, 4 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
6 | 5 | adantl 482 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
7 | 2, 6 | pm2.61dan 810 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ifcif 4459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-un 3892 df-if 4460 |
This theorem is referenced by: ifeq12da 4492 cantnflem1d 9446 cantnflem1 9447 dfac12lem1 9899 xrmaxeq 12913 xrmineq 12914 rexmul 13005 max0add 15022 sumeq2ii 15405 fsumser 15442 ramcl 16730 dmdprdsplitlem 19640 coe1pwmul 21450 scmatscmiddistr 21657 mulmarep1gsum1 21722 maducoeval2 21789 madugsum 21792 madurid 21793 ptcld 22764 ibllem 24929 itgvallem3 24950 iblposlem 24956 iblss2 24970 iblmulc2 24995 cnplimc 25051 limcco 25057 dvexp3 25142 dchrinvcl 26401 lgsval2lem 26455 lgsval4lem 26456 lgsneg 26469 lgsmod 26471 lgsdilem2 26481 rpvmasum2 26660 mrsubrn 33475 ftc1anclem6 35855 ftc1anclem8 35857 fsuppind 40279 |
Copyright terms: Public domain | W3C validator |