| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq1da | Structured version Visualization version GIF version | ||
| Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ifeq1da.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq1da | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) | |
| 2 | 1 | ifeq1d 4504 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 3 | iffalse 4493 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶) | |
| 4 | iffalse 4493 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶) | |
| 5 | 3, 4 | eqtr4d 2767 | . . 3 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| 7 | 2, 6 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ifcif 4484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-un 3916 df-if 4485 |
| This theorem is referenced by: ifeq12da 4518 cantnflem1d 9617 cantnflem1 9618 dfac12lem1 10073 xrmaxeq 13115 xrmineq 13116 rexmul 13207 max0add 15252 sumeq2ii 15635 fsumser 15672 ramcl 16976 dmdprdsplitlem 19953 coe1pwmul 22198 scmatscmiddistr 22428 mulmarep1gsum1 22493 maducoeval2 22560 madugsum 22563 madurid 22564 ptcld 23533 ibllem 25698 itgvallem3 25720 iblposlem 25726 iblss2 25740 iblmulc2 25765 cnplimc 25821 limcco 25827 dvexp3 25915 dchrinvcl 27197 lgsval2lem 27251 lgsval4lem 27252 lgsneg 27265 lgsmod 27267 lgsdilem2 27277 rpvmasum2 27456 mrsubrn 35493 ftc1anclem6 37685 ftc1anclem8 37687 fsuppind 42571 |
| Copyright terms: Public domain | W3C validator |