MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq2da Structured version   Visualization version   GIF version

Theorem ifeq2da 4509
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
ifeq2da.1 ((𝜑 ∧ ¬ 𝜓) → 𝐴 = 𝐵)
Assertion
Ref Expression
ifeq2da (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵))

Proof of Theorem ifeq2da
StepHypRef Expression
1 iftrue 4482 . . . 4 (𝜓 → if(𝜓, 𝐶, 𝐴) = 𝐶)
2 iftrue 4482 . . . 4 (𝜓 → if(𝜓, 𝐶, 𝐵) = 𝐶)
31, 2eqtr4d 2767 . . 3 (𝜓 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵))
43adantl 481 . 2 ((𝜑𝜓) → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵))
5 ifeq2da.1 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝐴 = 𝐵)
65ifeq2d 4497 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵))
74, 6pm2.61dan 812 1 (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  ifcif 4476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-un 3908  df-if 4477
This theorem is referenced by:  ifeq12da  4510  dfac12lem1  10038  ttukeylem3  10405  xmulcom  13168  xmulneg1  13171  subgmulg  19019  1marepvmarrepid  22460  pcopt2  24921  limcdif  25775  limcmpt  25782  limcres  25785  limccnp  25790  radcnv0  26323  leibpi  26850  efrlim  26877  efrlimOLD  26878  dchrvmasumiflem2  27411  padicabvf  27540  padicabvcxp  27541  itg2addnclem  37651  fourierdlem73  46160  fourierdlem76  46163  fourierdlem89  46176  fourierdlem91  46178
  Copyright terms: Public domain W3C validator