| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq2da | Structured version Visualization version GIF version | ||
| Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ifeq2da.1 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq2da | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4511 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐴) = 𝐶) | |
| 2 | iftrue 4511 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐵) = 𝐶) | |
| 3 | 1, 2 | eqtr4d 2774 | . . 3 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| 5 | ifeq2da.1 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐴 = 𝐵) | |
| 6 | 5 | ifeq2d 4526 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| 7 | 4, 6 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ifcif 4505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-un 3936 df-if 4506 |
| This theorem is referenced by: ifeq12da 4539 dfac12lem1 10163 ttukeylem3 10530 xmulcom 13287 xmulneg1 13290 subgmulg 19128 1marepvmarrepid 22518 pcopt2 24979 limcdif 25834 limcmpt 25841 limcres 25844 limccnp 25849 radcnv0 26382 leibpi 26909 efrlim 26936 efrlimOLD 26937 dchrvmasumiflem2 27470 padicabvf 27599 padicabvcxp 27600 itg2addnclem 37700 fourierdlem73 46175 fourierdlem76 46178 fourierdlem89 46191 fourierdlem91 46193 |
| Copyright terms: Public domain | W3C validator |