MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq2da Structured version   Visualization version   GIF version

Theorem ifeq2da 4496
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
ifeq2da.1 ((𝜑 ∧ ¬ 𝜓) → 𝐴 = 𝐵)
Assertion
Ref Expression
ifeq2da (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵))

Proof of Theorem ifeq2da
StepHypRef Expression
1 iftrue 4470 . . . 4 (𝜓 → if(𝜓, 𝐶, 𝐴) = 𝐶)
2 iftrue 4470 . . . 4 (𝜓 → if(𝜓, 𝐶, 𝐵) = 𝐶)
31, 2eqtr4d 2782 . . 3 (𝜓 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵))
43adantl 481 . 2 ((𝜑𝜓) → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵))
5 ifeq2da.1 . . 3 ((𝜑 ∧ ¬ 𝜓) → 𝐴 = 𝐵)
65ifeq2d 4484 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵))
74, 6pm2.61dan 809 1 (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  ifcif 4464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-un 3896  df-if 4465
This theorem is referenced by:  ifeq12da  4497  dfac12lem1  9883  ttukeylem3  10251  xmulcom  12982  xmulneg1  12985  subgmulg  18750  1marepvmarrepid  21705  pcopt2  24167  limcdif  25021  limcmpt  25028  limcres  25031  limccnp  25036  radcnv0  25556  leibpi  26073  efrlim  26100  dchrvmasumiflem2  26631  padicabvf  26760  padicabvcxp  26761  itg2addnclem  35807  fourierdlem73  43674  fourierdlem76  43677  fourierdlem89  43690  fourierdlem91  43692
  Copyright terms: Public domain W3C validator