| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq2da | Structured version Visualization version GIF version | ||
| Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ifeq2da.1 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq2da | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4494 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐴) = 𝐶) | |
| 2 | iftrue 4494 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐵) = 𝐶) | |
| 3 | 1, 2 | eqtr4d 2767 | . . 3 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| 5 | ifeq2da.1 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐴 = 𝐵) | |
| 6 | 5 | ifeq2d 4509 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| 7 | 4, 6 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ifcif 4488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-un 3919 df-if 4489 |
| This theorem is referenced by: ifeq12da 4522 dfac12lem1 10097 ttukeylem3 10464 xmulcom 13226 xmulneg1 13229 subgmulg 19072 1marepvmarrepid 22462 pcopt2 24923 limcdif 25777 limcmpt 25784 limcres 25787 limccnp 25792 radcnv0 26325 leibpi 26852 efrlim 26879 efrlimOLD 26880 dchrvmasumiflem2 27413 padicabvf 27542 padicabvcxp 27543 itg2addnclem 37665 fourierdlem73 46177 fourierdlem76 46180 fourierdlem89 46193 fourierdlem91 46195 |
| Copyright terms: Public domain | W3C validator |