Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifeq2da | Structured version Visualization version GIF version |
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
ifeq2da.1 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq2da | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4470 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐴) = 𝐶) | |
2 | iftrue 4470 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐵) = 𝐶) | |
3 | 1, 2 | eqtr4d 2782 | . . 3 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
4 | 3 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
5 | ifeq2da.1 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐴 = 𝐵) | |
6 | 5 | ifeq2d 4484 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
7 | 4, 6 | pm2.61dan 809 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ifcif 4464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-un 3896 df-if 4465 |
This theorem is referenced by: ifeq12da 4497 dfac12lem1 9883 ttukeylem3 10251 xmulcom 12982 xmulneg1 12985 subgmulg 18750 1marepvmarrepid 21705 pcopt2 24167 limcdif 25021 limcmpt 25028 limcres 25031 limccnp 25036 radcnv0 25556 leibpi 26073 efrlim 26100 dchrvmasumiflem2 26631 padicabvf 26760 padicabvcxp 26761 itg2addnclem 35807 fourierdlem73 43674 fourierdlem76 43677 fourierdlem89 43690 fourierdlem91 43692 |
Copyright terms: Public domain | W3C validator |