| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq2da | Structured version Visualization version GIF version | ||
| Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ifeq2da.1 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq2da | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4482 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐴) = 𝐶) | |
| 2 | iftrue 4482 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐵) = 𝐶) | |
| 3 | 1, 2 | eqtr4d 2767 | . . 3 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| 5 | ifeq2da.1 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐴 = 𝐵) | |
| 6 | 5 | ifeq2d 4497 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| 7 | 4, 6 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ifcif 4476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-un 3908 df-if 4477 |
| This theorem is referenced by: ifeq12da 4510 dfac12lem1 10038 ttukeylem3 10405 xmulcom 13168 xmulneg1 13171 subgmulg 19019 1marepvmarrepid 22460 pcopt2 24921 limcdif 25775 limcmpt 25782 limcres 25785 limccnp 25790 radcnv0 26323 leibpi 26850 efrlim 26877 efrlimOLD 26878 dchrvmasumiflem2 27411 padicabvf 27540 padicabvcxp 27541 itg2addnclem 37651 fourierdlem73 46160 fourierdlem76 46163 fourierdlem89 46176 fourierdlem91 46178 |
| Copyright terms: Public domain | W3C validator |