Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspnfv01 Structured version   Visualization version   GIF version

Theorem prjspnfv01 42597
Description: Any vector is equivalent to a vector whose zeroth coordinate is 0 or 1 (proof of the value of the zeroth coordinate). (Contributed by SN, 13-Aug-2023.)
Hypotheses
Ref Expression
prjspnfv01.f 𝐹 = (𝑏𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)))
prjspnfv01.b 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
prjspnfv01.w 𝑊 = (𝐾 freeLMod (0...𝑁))
prjspnfv01.t · = ( ·𝑠𝑊)
prjspnfv01.0 0 = (0g𝐾)
prjspnfv01.1 1 = (1r𝐾)
prjspnfv01.i 𝐼 = (invr𝐾)
prjspnfv01.k (𝜑𝐾 ∈ DivRing)
prjspnfv01.n (𝜑𝑁 ∈ ℕ0)
prjspnfv01.x (𝜑𝑋𝐵)
Assertion
Ref Expression
prjspnfv01 (𝜑 → ((𝐹𝑋)‘0) = if((𝑋‘0) = 0 , 0 , 1 ))
Distinct variable groups:   0 ,𝑏   · ,𝑏   𝐵,𝑏   𝐼,𝑏   𝑋,𝑏
Allowed substitution hints:   𝜑(𝑏)   1 (𝑏)   𝐹(𝑏)   𝐾(𝑏)   𝑁(𝑏)   𝑊(𝑏)

Proof of Theorem prjspnfv01
StepHypRef Expression
1 prjspnfv01.f . . . 4 𝐹 = (𝑏𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)))
2 fveq1 6885 . . . . . 6 (𝑏 = 𝑋 → (𝑏‘0) = (𝑋‘0))
32eqeq1d 2736 . . . . 5 (𝑏 = 𝑋 → ((𝑏‘0) = 0 ↔ (𝑋‘0) = 0 ))
4 id 22 . . . . 5 (𝑏 = 𝑋𝑏 = 𝑋)
52fveq2d 6890 . . . . . 6 (𝑏 = 𝑋 → (𝐼‘(𝑏‘0)) = (𝐼‘(𝑋‘0)))
65, 4oveq12d 7431 . . . . 5 (𝑏 = 𝑋 → ((𝐼‘(𝑏‘0)) · 𝑏) = ((𝐼‘(𝑋‘0)) · 𝑋))
73, 4, 6ifbieq12d 4534 . . . 4 (𝑏 = 𝑋 → if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)))
8 prjspnfv01.x . . . 4 (𝜑𝑋𝐵)
9 ovexd 7448 . . . . 5 (𝜑 → ((𝐼‘(𝑋‘0)) · 𝑋) ∈ V)
108, 9ifexd 4554 . . . 4 (𝜑 → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) ∈ V)
111, 7, 8, 10fvmptd3 7019 . . 3 (𝜑 → (𝐹𝑋) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)))
1211fveq1d 6888 . 2 (𝜑 → ((𝐹𝑋)‘0) = (if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))‘0))
13 iffv 6903 . . 3 (if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))‘0) = if((𝑋‘0) = 0 , (𝑋‘0), (((𝐼‘(𝑋‘0)) · 𝑋)‘0))
1413a1i 11 . 2 (𝜑 → (if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))‘0) = if((𝑋‘0) = 0 , (𝑋‘0), (((𝐼‘(𝑋‘0)) · 𝑋)‘0)))
15 simpr 484 . . 3 ((𝜑 ∧ (𝑋‘0) = 0 ) → (𝑋‘0) = 0 )
16 prjspnfv01.w . . . . 5 𝑊 = (𝐾 freeLMod (0...𝑁))
17 eqid 2734 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
18 eqid 2734 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
19 ovexd 7448 . . . . 5 ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (0...𝑁) ∈ V)
20 prjspnfv01.k . . . . . 6 (𝜑𝐾 ∈ DivRing)
21 ovexd 7448 . . . . . . . 8 (𝜑 → (0...𝑁) ∈ V)
22 prjspnfv01.b . . . . . . . . . 10 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
238, 22eleqtrdi 2843 . . . . . . . . 9 (𝜑𝑋 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}))
2423eldifad 3943 . . . . . . . 8 (𝜑𝑋 ∈ (Base‘𝑊))
2516, 18, 17frlmbasf 21734 . . . . . . . 8 (((0...𝑁) ∈ V ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋:(0...𝑁)⟶(Base‘𝐾))
2621, 24, 25syl2anc 584 . . . . . . 7 (𝜑𝑋:(0...𝑁)⟶(Base‘𝐾))
27 prjspnfv01.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
28 0elfz 13646 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
2927, 28syl 17 . . . . . . 7 (𝜑 → 0 ∈ (0...𝑁))
3026, 29ffvelcdmd 7085 . . . . . 6 (𝜑 → (𝑋‘0) ∈ (Base‘𝐾))
31 neqne 2939 . . . . . 6 (¬ (𝑋‘0) = 0 → (𝑋‘0) ≠ 0 )
32 prjspnfv01.0 . . . . . . 7 0 = (0g𝐾)
33 prjspnfv01.i . . . . . . 7 𝐼 = (invr𝐾)
3418, 32, 33drnginvrcl 20721 . . . . . 6 ((𝐾 ∈ DivRing ∧ (𝑋‘0) ∈ (Base‘𝐾) ∧ (𝑋‘0) ≠ 0 ) → (𝐼‘(𝑋‘0)) ∈ (Base‘𝐾))
3520, 30, 31, 34syl2an3an 1423 . . . . 5 ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (𝐼‘(𝑋‘0)) ∈ (Base‘𝐾))
3624adantr 480 . . . . 5 ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 𝑋 ∈ (Base‘𝑊))
3729adantr 480 . . . . 5 ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 0 ∈ (0...𝑁))
38 prjspnfv01.t . . . . 5 · = ( ·𝑠𝑊)
39 eqid 2734 . . . . 5 (.r𝐾) = (.r𝐾)
4016, 17, 18, 19, 35, 36, 37, 38, 39frlmvscaval 21742 . . . 4 ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (((𝐼‘(𝑋‘0)) · 𝑋)‘0) = ((𝐼‘(𝑋‘0))(.r𝐾)(𝑋‘0)))
41 prjspnfv01.1 . . . . . 6 1 = (1r𝐾)
4218, 32, 39, 41, 33drnginvrl 20724 . . . . 5 ((𝐾 ∈ DivRing ∧ (𝑋‘0) ∈ (Base‘𝐾) ∧ (𝑋‘0) ≠ 0 ) → ((𝐼‘(𝑋‘0))(.r𝐾)(𝑋‘0)) = 1 )
4320, 30, 31, 42syl2an3an 1423 . . . 4 ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → ((𝐼‘(𝑋‘0))(.r𝐾)(𝑋‘0)) = 1 )
4440, 43eqtrd 2769 . . 3 ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (((𝐼‘(𝑋‘0)) · 𝑋)‘0) = 1 )
4515, 44ifeq12da 4539 . 2 (𝜑 → if((𝑋‘0) = 0 , (𝑋‘0), (((𝐼‘(𝑋‘0)) · 𝑋)‘0)) = if((𝑋‘0) = 0 , 0 , 1 ))
4612, 14, 453eqtrd 2773 1 (𝜑 → ((𝐹𝑋)‘0) = if((𝑋‘0) = 0 , 0 , 1 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  Vcvv 3463  cdif 3928  ifcif 4505  {csn 4606  cmpt 5205  wf 6537  cfv 6541  (class class class)co 7413  0cc0 11137  0cn0 12509  ...cfz 13529  Basecbs 17229  .rcmulr 17274   ·𝑠 cvsca 17277  0gc0g 17455  1rcur 20146  invrcinvr 20355  DivRingcdr 20697   freeLMod cfrlm 21720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-hom 17297  df-cco 17298  df-0g 17457  df-prds 17463  df-pws 17465  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-grp 18923  df-minusg 18924  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-drng 20699  df-sra 21140  df-rgmod 21141  df-dsmm 21706  df-frlm 21721
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator