| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspnfv01 | Structured version Visualization version GIF version | ||
| Description: Any vector is equivalent to a vector whose zeroth coordinate is 0 or 1 (proof of the value of the zeroth coordinate). (Contributed by SN, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| prjspnfv01.f | ⊢ 𝐹 = (𝑏 ∈ 𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏))) |
| prjspnfv01.b | ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) |
| prjspnfv01.w | ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) |
| prjspnfv01.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| prjspnfv01.0 | ⊢ 0 = (0g‘𝐾) |
| prjspnfv01.1 | ⊢ 1 = (1r‘𝐾) |
| prjspnfv01.i | ⊢ 𝐼 = (invr‘𝐾) |
| prjspnfv01.k | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
| prjspnfv01.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| prjspnfv01.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| prjspnfv01 | ⊢ (𝜑 → ((𝐹‘𝑋)‘0) = if((𝑋‘0) = 0 , 0 , 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prjspnfv01.f | . . . 4 ⊢ 𝐹 = (𝑏 ∈ 𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏))) | |
| 2 | fveq1 6885 | . . . . . 6 ⊢ (𝑏 = 𝑋 → (𝑏‘0) = (𝑋‘0)) | |
| 3 | 2 | eqeq1d 2736 | . . . . 5 ⊢ (𝑏 = 𝑋 → ((𝑏‘0) = 0 ↔ (𝑋‘0) = 0 )) |
| 4 | id 22 | . . . . 5 ⊢ (𝑏 = 𝑋 → 𝑏 = 𝑋) | |
| 5 | 2 | fveq2d 6890 | . . . . . 6 ⊢ (𝑏 = 𝑋 → (𝐼‘(𝑏‘0)) = (𝐼‘(𝑋‘0))) |
| 6 | 5, 4 | oveq12d 7431 | . . . . 5 ⊢ (𝑏 = 𝑋 → ((𝐼‘(𝑏‘0)) · 𝑏) = ((𝐼‘(𝑋‘0)) · 𝑋)) |
| 7 | 3, 4, 6 | ifbieq12d 4534 | . . . 4 ⊢ (𝑏 = 𝑋 → if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))) |
| 8 | prjspnfv01.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | ovexd 7448 | . . . . 5 ⊢ (𝜑 → ((𝐼‘(𝑋‘0)) · 𝑋) ∈ V) | |
| 10 | 8, 9 | ifexd 4554 | . . . 4 ⊢ (𝜑 → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) ∈ V) |
| 11 | 1, 7, 8, 10 | fvmptd3 7019 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))) |
| 12 | 11 | fveq1d 6888 | . 2 ⊢ (𝜑 → ((𝐹‘𝑋)‘0) = (if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))‘0)) |
| 13 | iffv 6903 | . . 3 ⊢ (if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))‘0) = if((𝑋‘0) = 0 , (𝑋‘0), (((𝐼‘(𝑋‘0)) · 𝑋)‘0)) | |
| 14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → (if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))‘0) = if((𝑋‘0) = 0 , (𝑋‘0), (((𝐼‘(𝑋‘0)) · 𝑋)‘0))) |
| 15 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋‘0) = 0 ) → (𝑋‘0) = 0 ) | |
| 16 | prjspnfv01.w | . . . . 5 ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) | |
| 17 | eqid 2734 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 18 | eqid 2734 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 19 | ovexd 7448 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (0...𝑁) ∈ V) | |
| 20 | prjspnfv01.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
| 21 | ovexd 7448 | . . . . . . . 8 ⊢ (𝜑 → (0...𝑁) ∈ V) | |
| 22 | prjspnfv01.b | . . . . . . . . . 10 ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) | |
| 23 | 8, 22 | eleqtrdi 2843 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})) |
| 24 | 23 | eldifad 3943 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
| 25 | 16, 18, 17 | frlmbasf 21734 | . . . . . . . 8 ⊢ (((0...𝑁) ∈ V ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋:(0...𝑁)⟶(Base‘𝐾)) |
| 26 | 21, 24, 25 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝑋:(0...𝑁)⟶(Base‘𝐾)) |
| 27 | prjspnfv01.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 28 | 0elfz 13646 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
| 29 | 27, 28 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ (0...𝑁)) |
| 30 | 26, 29 | ffvelcdmd 7085 | . . . . . 6 ⊢ (𝜑 → (𝑋‘0) ∈ (Base‘𝐾)) |
| 31 | neqne 2939 | . . . . . 6 ⊢ (¬ (𝑋‘0) = 0 → (𝑋‘0) ≠ 0 ) | |
| 32 | prjspnfv01.0 | . . . . . . 7 ⊢ 0 = (0g‘𝐾) | |
| 33 | prjspnfv01.i | . . . . . . 7 ⊢ 𝐼 = (invr‘𝐾) | |
| 34 | 18, 32, 33 | drnginvrcl 20721 | . . . . . 6 ⊢ ((𝐾 ∈ DivRing ∧ (𝑋‘0) ∈ (Base‘𝐾) ∧ (𝑋‘0) ≠ 0 ) → (𝐼‘(𝑋‘0)) ∈ (Base‘𝐾)) |
| 35 | 20, 30, 31, 34 | syl2an3an 1423 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (𝐼‘(𝑋‘0)) ∈ (Base‘𝐾)) |
| 36 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 𝑋 ∈ (Base‘𝑊)) |
| 37 | 29 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 0 ∈ (0...𝑁)) |
| 38 | prjspnfv01.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 39 | eqid 2734 | . . . . 5 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
| 40 | 16, 17, 18, 19, 35, 36, 37, 38, 39 | frlmvscaval 21742 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (((𝐼‘(𝑋‘0)) · 𝑋)‘0) = ((𝐼‘(𝑋‘0))(.r‘𝐾)(𝑋‘0))) |
| 41 | prjspnfv01.1 | . . . . . 6 ⊢ 1 = (1r‘𝐾) | |
| 42 | 18, 32, 39, 41, 33 | drnginvrl 20724 | . . . . 5 ⊢ ((𝐾 ∈ DivRing ∧ (𝑋‘0) ∈ (Base‘𝐾) ∧ (𝑋‘0) ≠ 0 ) → ((𝐼‘(𝑋‘0))(.r‘𝐾)(𝑋‘0)) = 1 ) |
| 43 | 20, 30, 31, 42 | syl2an3an 1423 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → ((𝐼‘(𝑋‘0))(.r‘𝐾)(𝑋‘0)) = 1 ) |
| 44 | 40, 43 | eqtrd 2769 | . . 3 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (((𝐼‘(𝑋‘0)) · 𝑋)‘0) = 1 ) |
| 45 | 15, 44 | ifeq12da 4539 | . 2 ⊢ (𝜑 → if((𝑋‘0) = 0 , (𝑋‘0), (((𝐼‘(𝑋‘0)) · 𝑋)‘0)) = if((𝑋‘0) = 0 , 0 , 1 )) |
| 46 | 12, 14, 45 | 3eqtrd 2773 | 1 ⊢ (𝜑 → ((𝐹‘𝑋)‘0) = if((𝑋‘0) = 0 , 0 , 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 Vcvv 3463 ∖ cdif 3928 ifcif 4505 {csn 4606 ↦ cmpt 5205 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 0cc0 11137 ℕ0cn0 12509 ...cfz 13529 Basecbs 17229 .rcmulr 17274 ·𝑠 cvsca 17277 0gc0g 17455 1rcur 20146 invrcinvr 20355 DivRingcdr 20697 freeLMod cfrlm 21720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-sup 9464 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-hom 17297 df-cco 17298 df-0g 17457 df-prds 17463 df-pws 17465 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-grp 18923 df-minusg 18924 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 df-drng 20699 df-sra 21140 df-rgmod 21141 df-dsmm 21706 df-frlm 21721 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |