Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspnfv01 Structured version   Visualization version   GIF version

Theorem prjspnfv01 40202
Description: Any vector is equivalent to a vector whose zeroth coordinate is 0 or 1 (proof of the value of the zeroth coordinate). (Contributed by SN, 13-Aug-2023.)
Hypotheses
Ref Expression
prjspnfv01.f 𝐹 = (𝑏𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)))
prjspnfv01.b 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
prjspnfv01.w 𝑊 = (𝐾 freeLMod (0...𝑁))
prjspnfv01.t · = ( ·𝑠𝑊)
prjspnfv01.0 0 = (0g𝐾)
prjspnfv01.1 1 = (1r𝐾)
prjspnfv01.i 𝐼 = (invr𝐾)
prjspnfv01.k (𝜑𝐾 ∈ DivRing)
prjspnfv01.n (𝜑𝑁 ∈ ℕ0)
prjspnfv01.x (𝜑𝑋𝐵)
Assertion
Ref Expression
prjspnfv01 (𝜑 → ((𝐹𝑋)‘0) = if((𝑋‘0) = 0 , 0 , 1 ))
Distinct variable groups:   0 ,𝑏   · ,𝑏   𝐵,𝑏   𝐼,𝑏   𝑋,𝑏
Allowed substitution hints:   𝜑(𝑏)   1 (𝑏)   𝐹(𝑏)   𝐾(𝑏)   𝑁(𝑏)   𝑊(𝑏)

Proof of Theorem prjspnfv01
StepHypRef Expression
1 prjspnfv01.f . . . 4 𝐹 = (𝑏𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)))
2 fveq1 6735 . . . . . 6 (𝑏 = 𝑋 → (𝑏‘0) = (𝑋‘0))
32eqeq1d 2740 . . . . 5 (𝑏 = 𝑋 → ((𝑏‘0) = 0 ↔ (𝑋‘0) = 0 ))
4 id 22 . . . . 5 (𝑏 = 𝑋𝑏 = 𝑋)
52fveq2d 6740 . . . . . 6 (𝑏 = 𝑋 → (𝐼‘(𝑏‘0)) = (𝐼‘(𝑋‘0)))
65, 4oveq12d 7250 . . . . 5 (𝑏 = 𝑋 → ((𝐼‘(𝑏‘0)) · 𝑏) = ((𝐼‘(𝑋‘0)) · 𝑋))
73, 4, 6ifbieq12d 4482 . . . 4 (𝑏 = 𝑋 → if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)))
8 prjspnfv01.x . . . 4 (𝜑𝑋𝐵)
9 ovexd 7267 . . . . 5 (𝜑 → ((𝐼‘(𝑋‘0)) · 𝑋) ∈ V)
108, 9ifexd 4502 . . . 4 (𝜑 → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) ∈ V)
111, 7, 8, 10fvmptd3 6860 . . 3 (𝜑 → (𝐹𝑋) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)))
1211fveq1d 6738 . 2 (𝜑 → ((𝐹𝑋)‘0) = (if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))‘0))
13 iffv 6753 . . 3 (if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))‘0) = if((𝑋‘0) = 0 , (𝑋‘0), (((𝐼‘(𝑋‘0)) · 𝑋)‘0))
1413a1i 11 . 2 (𝜑 → (if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))‘0) = if((𝑋‘0) = 0 , (𝑋‘0), (((𝐼‘(𝑋‘0)) · 𝑋)‘0)))
15 simpr 488 . . 3 ((𝜑 ∧ (𝑋‘0) = 0 ) → (𝑋‘0) = 0 )
16 prjspnfv01.w . . . . 5 𝑊 = (𝐾 freeLMod (0...𝑁))
17 eqid 2738 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
18 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
19 ovexd 7267 . . . . 5 ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (0...𝑁) ∈ V)
20 prjspnfv01.k . . . . . 6 (𝜑𝐾 ∈ DivRing)
21 ovexd 7267 . . . . . . . 8 (𝜑 → (0...𝑁) ∈ V)
22 prjspnfv01.b . . . . . . . . . 10 𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})
238, 22eleqtrdi 2849 . . . . . . . . 9 (𝜑𝑋 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}))
2423eldifad 3893 . . . . . . . 8 (𝜑𝑋 ∈ (Base‘𝑊))
2516, 18, 17frlmbasf 20750 . . . . . . . 8 (((0...𝑁) ∈ V ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋:(0...𝑁)⟶(Base‘𝐾))
2621, 24, 25syl2anc 587 . . . . . . 7 (𝜑𝑋:(0...𝑁)⟶(Base‘𝐾))
27 prjspnfv01.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
28 0elfz 13234 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
2927, 28syl 17 . . . . . . 7 (𝜑 → 0 ∈ (0...𝑁))
3026, 29ffvelrnd 6924 . . . . . 6 (𝜑 → (𝑋‘0) ∈ (Base‘𝐾))
31 neqne 2949 . . . . . 6 (¬ (𝑋‘0) = 0 → (𝑋‘0) ≠ 0 )
32 prjspnfv01.0 . . . . . . 7 0 = (0g𝐾)
33 prjspnfv01.i . . . . . . 7 𝐼 = (invr𝐾)
3418, 32, 33drnginvrcl 19812 . . . . . 6 ((𝐾 ∈ DivRing ∧ (𝑋‘0) ∈ (Base‘𝐾) ∧ (𝑋‘0) ≠ 0 ) → (𝐼‘(𝑋‘0)) ∈ (Base‘𝐾))
3520, 30, 31, 34syl2an3an 1424 . . . . 5 ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (𝐼‘(𝑋‘0)) ∈ (Base‘𝐾))
3624adantr 484 . . . . 5 ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 𝑋 ∈ (Base‘𝑊))
3729adantr 484 . . . . 5 ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 0 ∈ (0...𝑁))
38 prjspnfv01.t . . . . 5 · = ( ·𝑠𝑊)
39 eqid 2738 . . . . 5 (.r𝐾) = (.r𝐾)
4016, 17, 18, 19, 35, 36, 37, 38, 39frlmvscaval 20758 . . . 4 ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (((𝐼‘(𝑋‘0)) · 𝑋)‘0) = ((𝐼‘(𝑋‘0))(.r𝐾)(𝑋‘0)))
41 prjspnfv01.1 . . . . . 6 1 = (1r𝐾)
4218, 32, 39, 41, 33drnginvrl 19814 . . . . 5 ((𝐾 ∈ DivRing ∧ (𝑋‘0) ∈ (Base‘𝐾) ∧ (𝑋‘0) ≠ 0 ) → ((𝐼‘(𝑋‘0))(.r𝐾)(𝑋‘0)) = 1 )
4320, 30, 31, 42syl2an3an 1424 . . . 4 ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → ((𝐼‘(𝑋‘0))(.r𝐾)(𝑋‘0)) = 1 )
4440, 43eqtrd 2778 . . 3 ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (((𝐼‘(𝑋‘0)) · 𝑋)‘0) = 1 )
4515, 44ifeq12da 4487 . 2 (𝜑 → if((𝑋‘0) = 0 , (𝑋‘0), (((𝐼‘(𝑋‘0)) · 𝑋)‘0)) = if((𝑋‘0) = 0 , 0 , 1 ))
4612, 14, 453eqtrd 2782 1 (𝜑 → ((𝐹𝑋)‘0) = if((𝑋‘0) = 0 , 0 , 1 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2111  wne 2941  Vcvv 3421  cdif 3878  ifcif 4454  {csn 4556  cmpt 5150  wf 6394  cfv 6398  (class class class)co 7232  0cc0 10754  0cn0 12115  ...cfz 13120  Basecbs 16788  .rcmulr 16831   ·𝑠 cvsca 16834  0gc0g 16972  1rcur 19544  invrcinvr 19717  DivRingcdr 19795   freeLMod cfrlm 20736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-of 7488  df-om 7664  df-1st 7780  df-2nd 7781  df-supp 7925  df-tpos 7989  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-1o 8223  df-er 8412  df-map 8531  df-ixp 8600  df-en 8648  df-dom 8649  df-sdom 8650  df-fin 8651  df-fsupp 9011  df-sup 9083  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-nn 11856  df-2 11918  df-3 11919  df-4 11920  df-5 11921  df-6 11922  df-7 11923  df-8 11924  df-9 11925  df-n0 12116  df-z 12202  df-dec 12319  df-uz 12464  df-fz 13121  df-struct 16728  df-sets 16745  df-slot 16763  df-ndx 16773  df-base 16789  df-ress 16813  df-plusg 16843  df-mulr 16844  df-sca 16846  df-vsca 16847  df-ip 16848  df-tset 16849  df-ple 16850  df-ds 16852  df-hom 16854  df-cco 16855  df-0g 16974  df-prds 16980  df-pws 16982  df-mgm 18142  df-sgrp 18191  df-mnd 18202  df-grp 18396  df-minusg 18397  df-mgp 19533  df-ur 19545  df-ring 19592  df-oppr 19669  df-dvdsr 19687  df-unit 19688  df-invr 19718  df-drng 19797  df-sra 20237  df-rgmod 20238  df-dsmm 20722  df-frlm 20737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator