| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspnfv01 | Structured version Visualization version GIF version | ||
| Description: Any vector is equivalent to a vector whose zeroth coordinate is 0 or 1 (proof of the value of the zeroth coordinate). (Contributed by SN, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| prjspnfv01.f | ⊢ 𝐹 = (𝑏 ∈ 𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏))) |
| prjspnfv01.b | ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) |
| prjspnfv01.w | ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) |
| prjspnfv01.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| prjspnfv01.0 | ⊢ 0 = (0g‘𝐾) |
| prjspnfv01.1 | ⊢ 1 = (1r‘𝐾) |
| prjspnfv01.i | ⊢ 𝐼 = (invr‘𝐾) |
| prjspnfv01.k | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
| prjspnfv01.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| prjspnfv01.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| prjspnfv01 | ⊢ (𝜑 → ((𝐹‘𝑋)‘0) = if((𝑋‘0) = 0 , 0 , 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prjspnfv01.f | . . . 4 ⊢ 𝐹 = (𝑏 ∈ 𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏))) | |
| 2 | fveq1 6821 | . . . . . 6 ⊢ (𝑏 = 𝑋 → (𝑏‘0) = (𝑋‘0)) | |
| 3 | 2 | eqeq1d 2731 | . . . . 5 ⊢ (𝑏 = 𝑋 → ((𝑏‘0) = 0 ↔ (𝑋‘0) = 0 )) |
| 4 | id 22 | . . . . 5 ⊢ (𝑏 = 𝑋 → 𝑏 = 𝑋) | |
| 5 | 2 | fveq2d 6826 | . . . . . 6 ⊢ (𝑏 = 𝑋 → (𝐼‘(𝑏‘0)) = (𝐼‘(𝑋‘0))) |
| 6 | 5, 4 | oveq12d 7367 | . . . . 5 ⊢ (𝑏 = 𝑋 → ((𝐼‘(𝑏‘0)) · 𝑏) = ((𝐼‘(𝑋‘0)) · 𝑋)) |
| 7 | 3, 4, 6 | ifbieq12d 4505 | . . . 4 ⊢ (𝑏 = 𝑋 → if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))) |
| 8 | prjspnfv01.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | ovexd 7384 | . . . . 5 ⊢ (𝜑 → ((𝐼‘(𝑋‘0)) · 𝑋) ∈ V) | |
| 10 | 8, 9 | ifexd 4525 | . . . 4 ⊢ (𝜑 → if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋)) ∈ V) |
| 11 | 1, 7, 8, 10 | fvmptd3 6953 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) = if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))) |
| 12 | 11 | fveq1d 6824 | . 2 ⊢ (𝜑 → ((𝐹‘𝑋)‘0) = (if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))‘0)) |
| 13 | iffv 6839 | . . 3 ⊢ (if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))‘0) = if((𝑋‘0) = 0 , (𝑋‘0), (((𝐼‘(𝑋‘0)) · 𝑋)‘0)) | |
| 14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → (if((𝑋‘0) = 0 , 𝑋, ((𝐼‘(𝑋‘0)) · 𝑋))‘0) = if((𝑋‘0) = 0 , (𝑋‘0), (((𝐼‘(𝑋‘0)) · 𝑋)‘0))) |
| 15 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋‘0) = 0 ) → (𝑋‘0) = 0 ) | |
| 16 | prjspnfv01.w | . . . . 5 ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) | |
| 17 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 18 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 19 | ovexd 7384 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (0...𝑁) ∈ V) | |
| 20 | prjspnfv01.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
| 21 | ovexd 7384 | . . . . . . . 8 ⊢ (𝜑 → (0...𝑁) ∈ V) | |
| 22 | prjspnfv01.b | . . . . . . . . . 10 ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) | |
| 23 | 8, 22 | eleqtrdi 2838 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})) |
| 24 | 23 | eldifad 3915 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
| 25 | 16, 18, 17 | frlmbasf 21667 | . . . . . . . 8 ⊢ (((0...𝑁) ∈ V ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋:(0...𝑁)⟶(Base‘𝐾)) |
| 26 | 21, 24, 25 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝑋:(0...𝑁)⟶(Base‘𝐾)) |
| 27 | prjspnfv01.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 28 | 0elfz 13527 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
| 29 | 27, 28 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ (0...𝑁)) |
| 30 | 26, 29 | ffvelcdmd 7019 | . . . . . 6 ⊢ (𝜑 → (𝑋‘0) ∈ (Base‘𝐾)) |
| 31 | neqne 2933 | . . . . . 6 ⊢ (¬ (𝑋‘0) = 0 → (𝑋‘0) ≠ 0 ) | |
| 32 | prjspnfv01.0 | . . . . . . 7 ⊢ 0 = (0g‘𝐾) | |
| 33 | prjspnfv01.i | . . . . . . 7 ⊢ 𝐼 = (invr‘𝐾) | |
| 34 | 18, 32, 33 | drnginvrcl 20638 | . . . . . 6 ⊢ ((𝐾 ∈ DivRing ∧ (𝑋‘0) ∈ (Base‘𝐾) ∧ (𝑋‘0) ≠ 0 ) → (𝐼‘(𝑋‘0)) ∈ (Base‘𝐾)) |
| 35 | 20, 30, 31, 34 | syl2an3an 1424 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (𝐼‘(𝑋‘0)) ∈ (Base‘𝐾)) |
| 36 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 𝑋 ∈ (Base‘𝑊)) |
| 37 | 29 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → 0 ∈ (0...𝑁)) |
| 38 | prjspnfv01.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 39 | eqid 2729 | . . . . 5 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
| 40 | 16, 17, 18, 19, 35, 36, 37, 38, 39 | frlmvscaval 21675 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (((𝐼‘(𝑋‘0)) · 𝑋)‘0) = ((𝐼‘(𝑋‘0))(.r‘𝐾)(𝑋‘0))) |
| 41 | prjspnfv01.1 | . . . . . 6 ⊢ 1 = (1r‘𝐾) | |
| 42 | 18, 32, 39, 41, 33 | drnginvrl 20641 | . . . . 5 ⊢ ((𝐾 ∈ DivRing ∧ (𝑋‘0) ∈ (Base‘𝐾) ∧ (𝑋‘0) ≠ 0 ) → ((𝐼‘(𝑋‘0))(.r‘𝐾)(𝑋‘0)) = 1 ) |
| 43 | 20, 30, 31, 42 | syl2an3an 1424 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → ((𝐼‘(𝑋‘0))(.r‘𝐾)(𝑋‘0)) = 1 ) |
| 44 | 40, 43 | eqtrd 2764 | . . 3 ⊢ ((𝜑 ∧ ¬ (𝑋‘0) = 0 ) → (((𝐼‘(𝑋‘0)) · 𝑋)‘0) = 1 ) |
| 45 | 15, 44 | ifeq12da 4510 | . 2 ⊢ (𝜑 → if((𝑋‘0) = 0 , (𝑋‘0), (((𝐼‘(𝑋‘0)) · 𝑋)‘0)) = if((𝑋‘0) = 0 , 0 , 1 )) |
| 46 | 12, 14, 45 | 3eqtrd 2768 | 1 ⊢ (𝜑 → ((𝐹‘𝑋)‘0) = if((𝑋‘0) = 0 , 0 , 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 ∖ cdif 3900 ifcif 4476 {csn 4577 ↦ cmpt 5173 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 0cc0 11009 ℕ0cn0 12384 ...cfz 13410 Basecbs 17120 .rcmulr 17162 ·𝑠 cvsca 17165 0gc0g 17343 1rcur 20066 invrcinvr 20272 DivRingcdr 20614 freeLMod cfrlm 21653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-drng 20616 df-sra 21077 df-rgmod 21078 df-dsmm 21639 df-frlm 21654 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |