Proof of Theorem axprlem3
Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . 3
⊢
Ⅎ𝑧if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) |
2 | 1 | axrep4 5210 |
. 2
⊢
(∀𝑠∃𝑧∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧) → ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))) |
3 | | ax6evr 2019 |
. . . 4
⊢
∃𝑧 𝑥 = 𝑧 |
4 | | ifptru 1072 |
. . . . . . . . 9
⊢
(∃𝑛 𝑛 ∈ 𝑠 → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) ↔ 𝑤 = 𝑥)) |
5 | 4 | biimpd 228 |
. . . . . . . 8
⊢
(∃𝑛 𝑛 ∈ 𝑠 → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑥)) |
6 | | equtrr 2026 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑤 = 𝑥 → 𝑤 = 𝑧)) |
7 | 5, 6 | sylan9r 508 |
. . . . . . 7
⊢ ((𝑥 = 𝑧 ∧ ∃𝑛 𝑛 ∈ 𝑠) → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧)) |
8 | 7 | alrimiv 1931 |
. . . . . 6
⊢ ((𝑥 = 𝑧 ∧ ∃𝑛 𝑛 ∈ 𝑠) → ∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧)) |
9 | 8 | expcom 413 |
. . . . 5
⊢
(∃𝑛 𝑛 ∈ 𝑠 → (𝑥 = 𝑧 → ∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧))) |
10 | 9 | eximdv 1921 |
. . . 4
⊢
(∃𝑛 𝑛 ∈ 𝑠 → (∃𝑧 𝑥 = 𝑧 → ∃𝑧∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧))) |
11 | 3, 10 | mpi 20 |
. . 3
⊢
(∃𝑛 𝑛 ∈ 𝑠 → ∃𝑧∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧)) |
12 | | ax6evr 2019 |
. . . 4
⊢
∃𝑧 𝑦 = 𝑧 |
13 | | ifpfal 1073 |
. . . . . . . . . 10
⊢ (¬
∃𝑛 𝑛 ∈ 𝑠 → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) ↔ 𝑤 = 𝑦)) |
14 | 13 | biimpd 228 |
. . . . . . . . 9
⊢ (¬
∃𝑛 𝑛 ∈ 𝑠 → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑦)) |
15 | 14 | adantl 481 |
. . . . . . . 8
⊢ ((𝑦 = 𝑧 ∧ ¬ ∃𝑛 𝑛 ∈ 𝑠) → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑦)) |
16 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑦 = 𝑧 ∧ ¬ ∃𝑛 𝑛 ∈ 𝑠) → 𝑦 = 𝑧) |
17 | | equtr 2025 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (𝑦 = 𝑧 → 𝑤 = 𝑧)) |
18 | 15, 16, 17 | syl6ci 71 |
. . . . . . 7
⊢ ((𝑦 = 𝑧 ∧ ¬ ∃𝑛 𝑛 ∈ 𝑠) → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧)) |
19 | 18 | alrimiv 1931 |
. . . . . 6
⊢ ((𝑦 = 𝑧 ∧ ¬ ∃𝑛 𝑛 ∈ 𝑠) → ∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧)) |
20 | 19 | expcom 413 |
. . . . 5
⊢ (¬
∃𝑛 𝑛 ∈ 𝑠 → (𝑦 = 𝑧 → ∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧))) |
21 | 20 | eximdv 1921 |
. . . 4
⊢ (¬
∃𝑛 𝑛 ∈ 𝑠 → (∃𝑧 𝑦 = 𝑧 → ∃𝑧∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧))) |
22 | 12, 21 | mpi 20 |
. . 3
⊢ (¬
∃𝑛 𝑛 ∈ 𝑠 → ∃𝑧∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧)) |
23 | 11, 22 | pm2.61i 182 |
. 2
⊢
∃𝑧∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧) |
24 | 2, 23 | mpg 1801 |
1
⊢
∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) |