MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3lem4 Structured version   Visualization version   GIF version

Theorem eupth2lem3lem4 28496
Description: Lemma for eupth2lem3 28501, formerly part of proof of eupth2lem3 28501: If an edge (not a loop) is added to a trail, the degree of the end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 25-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
eupth2lem3.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
eupth2lem3lem3.e (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
eupth2lem3lem4.i (𝜑 → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
Assertion
Ref Expression
eupth2lem3lem4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem eupth2lem3lem4
StepHypRef Expression
1 fvexd 6771 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (𝐹𝑁) ∈ V)
2 trlsegvdeg.u . . . . . . . . . . . 12 (𝜑𝑈𝑉)
32ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → 𝑈𝑉)
4 trlsegvdeg.v . . . . . . . . . . . . . 14 𝑉 = (Vtx‘𝐺)
5 trlsegvdeg.i . . . . . . . . . . . . . 14 𝐼 = (iEdg‘𝐺)
6 trlsegvdeg.f . . . . . . . . . . . . . 14 (𝜑 → Fun 𝐼)
7 trlsegvdeg.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
8 trlsegvdeg.w . . . . . . . . . . . . . 14 (𝜑𝐹(Trails‘𝐺)𝑃)
94, 5, 6, 7, 2, 8trlsegvdeglem1 28485 . . . . . . . . . . . . 13 (𝜑 → ((𝑃𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉))
109simprd 495 . . . . . . . . . . . 12 (𝜑 → (𝑃‘(𝑁 + 1)) ∈ 𝑉)
1110ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (𝑃‘(𝑁 + 1)) ∈ 𝑉)
12 neeq1 3005 . . . . . . . . . . . . . 14 ((𝑃𝑁) = 𝑈 → ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ 𝑈 ≠ (𝑃‘(𝑁 + 1))))
1312biimpcd 248 . . . . . . . . . . . . 13 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → ((𝑃𝑁) = 𝑈𝑈 ≠ (𝑃‘(𝑁 + 1))))
1413adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃𝑁) = 𝑈𝑈 ≠ (𝑃‘(𝑁 + 1))))
1514imp 406 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → 𝑈 ≠ (𝑃‘(𝑁 + 1)))
16 eupth2lem3lem4.i . . . . . . . . . . . 12 (𝜑 → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
1716ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
18 trlsegvdeg.iy . . . . . . . . . . . 12 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
1918ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
20 eupth2lem3lem3.e . . . . . . . . . . . . . 14 (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2120adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
22 df-ne 2943 . . . . . . . . . . . . . . . 16 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ ¬ (𝑃𝑁) = (𝑃‘(𝑁 + 1)))
23 ifpfal 1073 . . . . . . . . . . . . . . . 16 (¬ (𝑃𝑁) = (𝑃‘(𝑁 + 1)) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2422, 23sylbi 216 . . . . . . . . . . . . . . 15 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2524adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
26 preq1 4666 . . . . . . . . . . . . . . . 16 ((𝑃𝑁) = 𝑈 → {(𝑃𝑁), (𝑃‘(𝑁 + 1))} = {𝑈, (𝑃‘(𝑁 + 1))})
2726sseq1d 3948 . . . . . . . . . . . . . . 15 ((𝑃𝑁) = 𝑈 → ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) ↔ {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2827biimpcd 248 . . . . . . . . . . . . . 14 ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) → ((𝑃𝑁) = 𝑈 → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2925, 28syl6bi 252 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) → ((𝑃𝑁) = 𝑈 → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)))))
3021, 29mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃𝑁) = 𝑈 → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
3130imp 406 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)))
32 trlsegvdeg.vy . . . . . . . . . . . 12 (𝜑 → (Vtx‘𝑌) = 𝑉)
3332ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (Vtx‘𝑌) = 𝑉)
341, 3, 11, 15, 17, 19, 31, 331hegrvtxdg1 27777 . . . . . . . . . 10 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → ((VtxDeg‘𝑌)‘𝑈) = 1)
3534oveq2d 7271 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + 1))
3635breq2d 5082 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
3736notbid 317 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
38 trlsegvdeg.vx . . . . . . . . . . . . . . 15 (𝜑 → (Vtx‘𝑋) = 𝑉)
39 trlsegvdeg.vz . . . . . . . . . . . . . . 15 (𝜑 → (Vtx‘𝑍) = 𝑉)
40 trlsegvdeg.ix . . . . . . . . . . . . . . 15 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
41 trlsegvdeg.iz . . . . . . . . . . . . . . 15 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
424, 5, 6, 7, 2, 8, 38, 32, 39, 40, 18, 41eupth2lem3lem1 28493 . . . . . . . . . . . . . 14 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0)
4342nn0zd 12353 . . . . . . . . . . . . 13 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ)
44 2nn 11976 . . . . . . . . . . . . . 14 2 ∈ ℕ
4544a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℕ)
46 1lt2 12074 . . . . . . . . . . . . . 14 1 < 2
4746a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 < 2)
48 ndvdsp1 16048 . . . . . . . . . . . . 13 ((((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) → ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
4943, 45, 47, 48syl3anc 1369 . . . . . . . . . . . 12 (𝜑 → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) → ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
5049con2d 134 . . . . . . . . . . 11 (𝜑 → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) → ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
51 1z 12280 . . . . . . . . . . . . . 14 1 ∈ ℤ
52 n2dvds1 16005 . . . . . . . . . . . . . 14 ¬ 2 ∥ 1
53 opoe 16000 . . . . . . . . . . . . . 14 (((((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1))
5451, 52, 53mpanr12 701 . . . . . . . . . . . . 13 ((((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1))
5554ex 412 . . . . . . . . . . . 12 (((VtxDeg‘𝑋)‘𝑈) ∈ ℤ → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
5643, 55syl 17 . . . . . . . . . . 11 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
5750, 56impbid 211 . . . . . . . . . 10 (𝜑 → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
58 fveq2 6756 . . . . . . . . . . . . . 14 (𝑥 = 𝑈 → ((VtxDeg‘𝑋)‘𝑥) = ((VtxDeg‘𝑋)‘𝑈))
5958breq2d 5082 . . . . . . . . . . . . 13 (𝑥 = 𝑈 → (2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
6059notbid 317 . . . . . . . . . . . 12 (𝑥 = 𝑈 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
6160elrab3 3618 . . . . . . . . . . 11 (𝑈𝑉 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
622, 61syl 17 . . . . . . . . . 10 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
63 eupth2lem3.o . . . . . . . . . . 11 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
6463eleq2d 2824 . . . . . . . . . 10 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
6557, 62, 643bitr2d 306 . . . . . . . . 9 (𝜑 → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
6665notbid 317 . . . . . . . 8 (𝜑 → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
6766ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
68 fvex 6769 . . . . . . . . 9 (𝑃𝑁) ∈ V
6968eupth2lem2 28484 . . . . . . . 8 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑃𝑁) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7069adantll 710 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7137, 67, 703bitrd 304 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7271expcom 413 . . . . 5 ((𝑃𝑁) = 𝑈 → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
7372eqcoms 2746 . . . 4 (𝑈 = (𝑃𝑁) → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
74 fvexd 6771 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝐹𝑁) ∈ V)
759simpld 494 . . . . . . . . . . . 12 (𝜑 → (𝑃𝑁) ∈ 𝑉)
7675ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝑃𝑁) ∈ 𝑉)
772ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → 𝑈𝑉)
78 neeq2 3006 . . . . . . . . . . . . . 14 ((𝑃‘(𝑁 + 1)) = 𝑈 → ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ (𝑃𝑁) ≠ 𝑈))
7978biimpcd 248 . . . . . . . . . . . . 13 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → ((𝑃‘(𝑁 + 1)) = 𝑈 → (𝑃𝑁) ≠ 𝑈))
8079adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃‘(𝑁 + 1)) = 𝑈 → (𝑃𝑁) ≠ 𝑈))
8180imp 406 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝑃𝑁) ≠ 𝑈)
8216ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
8318ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
84 preq2 4667 . . . . . . . . . . . . . . . 16 ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), (𝑃‘(𝑁 + 1))} = {(𝑃𝑁), 𝑈})
8584sseq1d 3948 . . . . . . . . . . . . . . 15 ((𝑃‘(𝑁 + 1)) = 𝑈 → ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) ↔ {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁))))
8685biimpcd 248 . . . . . . . . . . . . . 14 ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) → ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁))))
8725, 86syl6bi 252 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) → ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁)))))
8821, 87mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁))))
8988imp 406 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁)))
9032ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (Vtx‘𝑌) = 𝑉)
9174, 76, 77, 81, 82, 83, 89, 901hegrvtxdg1r 27778 . . . . . . . . . 10 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → ((VtxDeg‘𝑌)‘𝑈) = 1)
9291oveq2d 7271 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + 1))
9392breq2d 5082 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
9493notbid 317 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
9566ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
96 necom 2996 . . . . . . . . . 10 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ (𝑃‘(𝑁 + 1)) ≠ (𝑃𝑁))
97 fvex 6769 . . . . . . . . . . 11 (𝑃‘(𝑁 + 1)) ∈ V
9897eupth2lem2 28484 . . . . . . . . . 10 (((𝑃‘(𝑁 + 1)) ≠ (𝑃𝑁) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
9996, 98sylanb 580 . . . . . . . . 9 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
10099con1bid 355 . . . . . . . 8 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
101100adantll 710 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
10294, 95, 1013bitrd 304 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
103102expcom 413 . . . . 5 ((𝑃‘(𝑁 + 1)) = 𝑈 → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
104103eqcoms 2746 . . . 4 (𝑈 = (𝑃‘(𝑁 + 1)) → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
10573, 104jaoi 853 . . 3 ((𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1))) → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
106105com12 32 . 2 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
1071063impia 1115 1 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  if-wif 1059  w3a 1085   = wceq 1539  wcel 2108  wne 2942  {crab 3067  Vcvv 3422  wss 3883  c0 4253  ifcif 4456  𝒫 cpw 4530  {csn 4558  {cpr 4560  cop 4564   class class class wbr 5070  cres 5582  cima 5583  Fun wfun 6412  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cn 11903  2c2 11958  cz 12249  ...cfz 13168  ..^cfzo 13311  chash 13972  cdvds 15891  Vtxcvtx 27269  iEdgciedg 27270  VtxDegcvtxdg 27735  Trailsctrls 27960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-xadd 12778  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-word 14146  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-vtxdg 27736  df-wlks 27869  df-trls 27962
This theorem is referenced by:  eupth2lem3lem7  28499
  Copyright terms: Public domain W3C validator