MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3lem4 Structured version   Visualization version   GIF version

Theorem eupth2lem3lem4 28168
Description: Lemma for eupth2lem3 28173, formerly part of proof of eupth2lem3 28173: If an edge (not a loop) is added to a trail, the degree of the end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 25-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
eupth2lem3.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
eupth2lem3lem3.e (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
eupth2lem3lem4.i (𝜑 → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
Assertion
Ref Expression
eupth2lem3lem4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem eupth2lem3lem4
StepHypRef Expression
1 fvexd 6689 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (𝐹𝑁) ∈ V)
2 trlsegvdeg.u . . . . . . . . . . . 12 (𝜑𝑈𝑉)
32ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → 𝑈𝑉)
4 trlsegvdeg.v . . . . . . . . . . . . . 14 𝑉 = (Vtx‘𝐺)
5 trlsegvdeg.i . . . . . . . . . . . . . 14 𝐼 = (iEdg‘𝐺)
6 trlsegvdeg.f . . . . . . . . . . . . . 14 (𝜑 → Fun 𝐼)
7 trlsegvdeg.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
8 trlsegvdeg.w . . . . . . . . . . . . . 14 (𝜑𝐹(Trails‘𝐺)𝑃)
94, 5, 6, 7, 2, 8trlsegvdeglem1 28157 . . . . . . . . . . . . 13 (𝜑 → ((𝑃𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉))
109simprd 499 . . . . . . . . . . . 12 (𝜑 → (𝑃‘(𝑁 + 1)) ∈ 𝑉)
1110ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (𝑃‘(𝑁 + 1)) ∈ 𝑉)
12 neeq1 2996 . . . . . . . . . . . . . 14 ((𝑃𝑁) = 𝑈 → ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ 𝑈 ≠ (𝑃‘(𝑁 + 1))))
1312biimpcd 252 . . . . . . . . . . . . 13 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → ((𝑃𝑁) = 𝑈𝑈 ≠ (𝑃‘(𝑁 + 1))))
1413adantl 485 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃𝑁) = 𝑈𝑈 ≠ (𝑃‘(𝑁 + 1))))
1514imp 410 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → 𝑈 ≠ (𝑃‘(𝑁 + 1)))
16 eupth2lem3lem4.i . . . . . . . . . . . 12 (𝜑 → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
1716ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
18 trlsegvdeg.iy . . . . . . . . . . . 12 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
1918ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
20 eupth2lem3lem3.e . . . . . . . . . . . . . 14 (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2120adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
22 df-ne 2935 . . . . . . . . . . . . . . . 16 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ ¬ (𝑃𝑁) = (𝑃‘(𝑁 + 1)))
23 ifpfal 1076 . . . . . . . . . . . . . . . 16 (¬ (𝑃𝑁) = (𝑃‘(𝑁 + 1)) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2422, 23sylbi 220 . . . . . . . . . . . . . . 15 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2524adantl 485 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
26 preq1 4624 . . . . . . . . . . . . . . . 16 ((𝑃𝑁) = 𝑈 → {(𝑃𝑁), (𝑃‘(𝑁 + 1))} = {𝑈, (𝑃‘(𝑁 + 1))})
2726sseq1d 3908 . . . . . . . . . . . . . . 15 ((𝑃𝑁) = 𝑈 → ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) ↔ {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2827biimpcd 252 . . . . . . . . . . . . . 14 ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) → ((𝑃𝑁) = 𝑈 → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2925, 28syl6bi 256 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) → ((𝑃𝑁) = 𝑈 → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)))))
3021, 29mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃𝑁) = 𝑈 → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
3130imp 410 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)))
32 trlsegvdeg.vy . . . . . . . . . . . 12 (𝜑 → (Vtx‘𝑌) = 𝑉)
3332ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (Vtx‘𝑌) = 𝑉)
341, 3, 11, 15, 17, 19, 31, 331hegrvtxdg1 27449 . . . . . . . . . 10 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → ((VtxDeg‘𝑌)‘𝑈) = 1)
3534oveq2d 7186 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + 1))
3635breq2d 5042 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
3736notbid 321 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
38 trlsegvdeg.vx . . . . . . . . . . . . . . 15 (𝜑 → (Vtx‘𝑋) = 𝑉)
39 trlsegvdeg.vz . . . . . . . . . . . . . . 15 (𝜑 → (Vtx‘𝑍) = 𝑉)
40 trlsegvdeg.ix . . . . . . . . . . . . . . 15 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
41 trlsegvdeg.iz . . . . . . . . . . . . . . 15 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
424, 5, 6, 7, 2, 8, 38, 32, 39, 40, 18, 41eupth2lem3lem1 28165 . . . . . . . . . . . . . 14 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0)
4342nn0zd 12166 . . . . . . . . . . . . 13 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ)
44 2nn 11789 . . . . . . . . . . . . . 14 2 ∈ ℕ
4544a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℕ)
46 1lt2 11887 . . . . . . . . . . . . . 14 1 < 2
4746a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 < 2)
48 ndvdsp1 15856 . . . . . . . . . . . . 13 ((((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) → ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
4943, 45, 47, 48syl3anc 1372 . . . . . . . . . . . 12 (𝜑 → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) → ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
5049con2d 136 . . . . . . . . . . 11 (𝜑 → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) → ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
51 1z 12093 . . . . . . . . . . . . . 14 1 ∈ ℤ
52 n2dvds1 15813 . . . . . . . . . . . . . 14 ¬ 2 ∥ 1
53 opoe 15808 . . . . . . . . . . . . . 14 (((((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1))
5451, 52, 53mpanr12 705 . . . . . . . . . . . . 13 ((((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1))
5554ex 416 . . . . . . . . . . . 12 (((VtxDeg‘𝑋)‘𝑈) ∈ ℤ → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
5643, 55syl 17 . . . . . . . . . . 11 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
5750, 56impbid 215 . . . . . . . . . 10 (𝜑 → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
58 fveq2 6674 . . . . . . . . . . . . . 14 (𝑥 = 𝑈 → ((VtxDeg‘𝑋)‘𝑥) = ((VtxDeg‘𝑋)‘𝑈))
5958breq2d 5042 . . . . . . . . . . . . 13 (𝑥 = 𝑈 → (2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
6059notbid 321 . . . . . . . . . . . 12 (𝑥 = 𝑈 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
6160elrab3 3589 . . . . . . . . . . 11 (𝑈𝑉 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
622, 61syl 17 . . . . . . . . . 10 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
63 eupth2lem3.o . . . . . . . . . . 11 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
6463eleq2d 2818 . . . . . . . . . 10 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
6557, 62, 643bitr2d 310 . . . . . . . . 9 (𝜑 → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
6665notbid 321 . . . . . . . 8 (𝜑 → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
6766ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
68 fvex 6687 . . . . . . . . 9 (𝑃𝑁) ∈ V
6968eupth2lem2 28156 . . . . . . . 8 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑃𝑁) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7069adantll 714 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7137, 67, 703bitrd 308 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7271expcom 417 . . . . 5 ((𝑃𝑁) = 𝑈 → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
7372eqcoms 2746 . . . 4 (𝑈 = (𝑃𝑁) → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
74 fvexd 6689 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝐹𝑁) ∈ V)
759simpld 498 . . . . . . . . . . . 12 (𝜑 → (𝑃𝑁) ∈ 𝑉)
7675ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝑃𝑁) ∈ 𝑉)
772ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → 𝑈𝑉)
78 neeq2 2997 . . . . . . . . . . . . . 14 ((𝑃‘(𝑁 + 1)) = 𝑈 → ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ (𝑃𝑁) ≠ 𝑈))
7978biimpcd 252 . . . . . . . . . . . . 13 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → ((𝑃‘(𝑁 + 1)) = 𝑈 → (𝑃𝑁) ≠ 𝑈))
8079adantl 485 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃‘(𝑁 + 1)) = 𝑈 → (𝑃𝑁) ≠ 𝑈))
8180imp 410 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝑃𝑁) ≠ 𝑈)
8216ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
8318ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
84 preq2 4625 . . . . . . . . . . . . . . . 16 ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), (𝑃‘(𝑁 + 1))} = {(𝑃𝑁), 𝑈})
8584sseq1d 3908 . . . . . . . . . . . . . . 15 ((𝑃‘(𝑁 + 1)) = 𝑈 → ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) ↔ {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁))))
8685biimpcd 252 . . . . . . . . . . . . . 14 ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) → ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁))))
8725, 86syl6bi 256 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) → ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁)))))
8821, 87mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁))))
8988imp 410 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁)))
9032ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (Vtx‘𝑌) = 𝑉)
9174, 76, 77, 81, 82, 83, 89, 901hegrvtxdg1r 27450 . . . . . . . . . 10 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → ((VtxDeg‘𝑌)‘𝑈) = 1)
9291oveq2d 7186 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + 1))
9392breq2d 5042 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
9493notbid 321 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
9566ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
96 necom 2987 . . . . . . . . . 10 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ (𝑃‘(𝑁 + 1)) ≠ (𝑃𝑁))
97 fvex 6687 . . . . . . . . . . 11 (𝑃‘(𝑁 + 1)) ∈ V
9897eupth2lem2 28156 . . . . . . . . . 10 (((𝑃‘(𝑁 + 1)) ≠ (𝑃𝑁) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
9996, 98sylanb 584 . . . . . . . . 9 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
10099con1bid 359 . . . . . . . 8 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
101100adantll 714 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
10294, 95, 1013bitrd 308 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
103102expcom 417 . . . . 5 ((𝑃‘(𝑁 + 1)) = 𝑈 → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
104103eqcoms 2746 . . . 4 (𝑈 = (𝑃‘(𝑁 + 1)) → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
10573, 104jaoi 856 . . 3 ((𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1))) → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
106105com12 32 . 2 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
1071063impia 1118 1 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846  if-wif 1062  w3a 1088   = wceq 1542  wcel 2114  wne 2934  {crab 3057  Vcvv 3398  wss 3843  c0 4211  ifcif 4414  𝒫 cpw 4488  {csn 4516  {cpr 4518  cop 4522   class class class wbr 5030  cres 5527  cima 5528  Fun wfun 6333  cfv 6339  (class class class)co 7170  0cc0 10615  1c1 10616   + caddc 10618   < clt 10753  cn 11716  2c2 11771  cz 12062  ...cfz 12981  ..^cfzo 13124  chash 13782  cdvds 15699  Vtxcvtx 26941  iEdgciedg 26942  VtxDegcvtxdg 27407  Trailsctrls 27632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-oadd 8135  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-inf 8980  df-dju 9403  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-xnn0 12049  df-z 12063  df-uz 12325  df-rp 12473  df-xadd 12591  df-fz 12982  df-fzo 13125  df-seq 13461  df-exp 13522  df-hash 13783  df-word 13956  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-dvds 15700  df-vtxdg 27408  df-wlks 27541  df-trls 27634
This theorem is referenced by:  eupth2lem3lem7  28171
  Copyright terms: Public domain W3C validator