MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3lem4 Structured version   Visualization version   GIF version

Theorem eupth2lem3lem4 28016
Description: Lemma for eupth2lem3 28021, formerly part of proof of eupth2lem3 28021: If an edge (not a loop) is added to a trail, the degree of the end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 25-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
eupth2lem3.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
eupth2lem3lem3.e (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
eupth2lem3lem4.i (𝜑 → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
Assertion
Ref Expression
eupth2lem3lem4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem eupth2lem3lem4
StepHypRef Expression
1 fvexd 6660 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (𝐹𝑁) ∈ V)
2 trlsegvdeg.u . . . . . . . . . . . 12 (𝜑𝑈𝑉)
32ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → 𝑈𝑉)
4 trlsegvdeg.v . . . . . . . . . . . . . 14 𝑉 = (Vtx‘𝐺)
5 trlsegvdeg.i . . . . . . . . . . . . . 14 𝐼 = (iEdg‘𝐺)
6 trlsegvdeg.f . . . . . . . . . . . . . 14 (𝜑 → Fun 𝐼)
7 trlsegvdeg.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
8 trlsegvdeg.w . . . . . . . . . . . . . 14 (𝜑𝐹(Trails‘𝐺)𝑃)
94, 5, 6, 7, 2, 8trlsegvdeglem1 28005 . . . . . . . . . . . . 13 (𝜑 → ((𝑃𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉))
109simprd 499 . . . . . . . . . . . 12 (𝜑 → (𝑃‘(𝑁 + 1)) ∈ 𝑉)
1110ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (𝑃‘(𝑁 + 1)) ∈ 𝑉)
12 neeq1 3049 . . . . . . . . . . . . . 14 ((𝑃𝑁) = 𝑈 → ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ 𝑈 ≠ (𝑃‘(𝑁 + 1))))
1312biimpcd 252 . . . . . . . . . . . . 13 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → ((𝑃𝑁) = 𝑈𝑈 ≠ (𝑃‘(𝑁 + 1))))
1413adantl 485 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃𝑁) = 𝑈𝑈 ≠ (𝑃‘(𝑁 + 1))))
1514imp 410 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → 𝑈 ≠ (𝑃‘(𝑁 + 1)))
16 eupth2lem3lem4.i . . . . . . . . . . . 12 (𝜑 → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
1716ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
18 trlsegvdeg.iy . . . . . . . . . . . 12 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
1918ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
20 eupth2lem3lem3.e . . . . . . . . . . . . . 14 (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2120adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
22 df-ne 2988 . . . . . . . . . . . . . . . 16 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ ¬ (𝑃𝑁) = (𝑃‘(𝑁 + 1)))
23 ifpfal 1072 . . . . . . . . . . . . . . . 16 (¬ (𝑃𝑁) = (𝑃‘(𝑁 + 1)) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2422, 23sylbi 220 . . . . . . . . . . . . . . 15 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2524adantl 485 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
26 preq1 4629 . . . . . . . . . . . . . . . 16 ((𝑃𝑁) = 𝑈 → {(𝑃𝑁), (𝑃‘(𝑁 + 1))} = {𝑈, (𝑃‘(𝑁 + 1))})
2726sseq1d 3946 . . . . . . . . . . . . . . 15 ((𝑃𝑁) = 𝑈 → ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) ↔ {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2827biimpcd 252 . . . . . . . . . . . . . 14 ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) → ((𝑃𝑁) = 𝑈 → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2925, 28syl6bi 256 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) → ((𝑃𝑁) = 𝑈 → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)))))
3021, 29mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃𝑁) = 𝑈 → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
3130imp 410 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)))
32 trlsegvdeg.vy . . . . . . . . . . . 12 (𝜑 → (Vtx‘𝑌) = 𝑉)
3332ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (Vtx‘𝑌) = 𝑉)
341, 3, 11, 15, 17, 19, 31, 331hegrvtxdg1 27297 . . . . . . . . . 10 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → ((VtxDeg‘𝑌)‘𝑈) = 1)
3534oveq2d 7151 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + 1))
3635breq2d 5042 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
3736notbid 321 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
38 trlsegvdeg.vx . . . . . . . . . . . . . . 15 (𝜑 → (Vtx‘𝑋) = 𝑉)
39 trlsegvdeg.vz . . . . . . . . . . . . . . 15 (𝜑 → (Vtx‘𝑍) = 𝑉)
40 trlsegvdeg.ix . . . . . . . . . . . . . . 15 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
41 trlsegvdeg.iz . . . . . . . . . . . . . . 15 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
424, 5, 6, 7, 2, 8, 38, 32, 39, 40, 18, 41eupth2lem3lem1 28013 . . . . . . . . . . . . . 14 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0)
4342nn0zd 12073 . . . . . . . . . . . . 13 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ)
44 2nn 11698 . . . . . . . . . . . . . 14 2 ∈ ℕ
4544a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℕ)
46 1lt2 11796 . . . . . . . . . . . . . 14 1 < 2
4746a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 < 2)
48 ndvdsp1 15752 . . . . . . . . . . . . 13 ((((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) → ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
4943, 45, 47, 48syl3anc 1368 . . . . . . . . . . . 12 (𝜑 → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) → ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
5049con2d 136 . . . . . . . . . . 11 (𝜑 → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) → ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
51 1z 12000 . . . . . . . . . . . . . 14 1 ∈ ℤ
52 n2dvds1 15709 . . . . . . . . . . . . . 14 ¬ 2 ∥ 1
53 opoe 15704 . . . . . . . . . . . . . 14 (((((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1))
5451, 52, 53mpanr12 704 . . . . . . . . . . . . 13 ((((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1))
5554ex 416 . . . . . . . . . . . 12 (((VtxDeg‘𝑋)‘𝑈) ∈ ℤ → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
5643, 55syl 17 . . . . . . . . . . 11 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
5750, 56impbid 215 . . . . . . . . . 10 (𝜑 → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
58 fveq2 6645 . . . . . . . . . . . . . 14 (𝑥 = 𝑈 → ((VtxDeg‘𝑋)‘𝑥) = ((VtxDeg‘𝑋)‘𝑈))
5958breq2d 5042 . . . . . . . . . . . . 13 (𝑥 = 𝑈 → (2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
6059notbid 321 . . . . . . . . . . . 12 (𝑥 = 𝑈 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
6160elrab3 3629 . . . . . . . . . . 11 (𝑈𝑉 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
622, 61syl 17 . . . . . . . . . 10 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
63 eupth2lem3.o . . . . . . . . . . 11 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
6463eleq2d 2875 . . . . . . . . . 10 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
6557, 62, 643bitr2d 310 . . . . . . . . 9 (𝜑 → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
6665notbid 321 . . . . . . . 8 (𝜑 → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
6766ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
68 fvex 6658 . . . . . . . . 9 (𝑃𝑁) ∈ V
6968eupth2lem2 28004 . . . . . . . 8 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑃𝑁) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7069adantll 713 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7137, 67, 703bitrd 308 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7271expcom 417 . . . . 5 ((𝑃𝑁) = 𝑈 → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
7372eqcoms 2806 . . . 4 (𝑈 = (𝑃𝑁) → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
74 fvexd 6660 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝐹𝑁) ∈ V)
759simpld 498 . . . . . . . . . . . 12 (𝜑 → (𝑃𝑁) ∈ 𝑉)
7675ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝑃𝑁) ∈ 𝑉)
772ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → 𝑈𝑉)
78 neeq2 3050 . . . . . . . . . . . . . 14 ((𝑃‘(𝑁 + 1)) = 𝑈 → ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ (𝑃𝑁) ≠ 𝑈))
7978biimpcd 252 . . . . . . . . . . . . 13 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → ((𝑃‘(𝑁 + 1)) = 𝑈 → (𝑃𝑁) ≠ 𝑈))
8079adantl 485 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃‘(𝑁 + 1)) = 𝑈 → (𝑃𝑁) ≠ 𝑈))
8180imp 410 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝑃𝑁) ≠ 𝑈)
8216ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
8318ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
84 preq2 4630 . . . . . . . . . . . . . . . 16 ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), (𝑃‘(𝑁 + 1))} = {(𝑃𝑁), 𝑈})
8584sseq1d 3946 . . . . . . . . . . . . . . 15 ((𝑃‘(𝑁 + 1)) = 𝑈 → ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) ↔ {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁))))
8685biimpcd 252 . . . . . . . . . . . . . 14 ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) → ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁))))
8725, 86syl6bi 256 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) → ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁)))))
8821, 87mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁))))
8988imp 410 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁)))
9032ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (Vtx‘𝑌) = 𝑉)
9174, 76, 77, 81, 82, 83, 89, 901hegrvtxdg1r 27298 . . . . . . . . . 10 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → ((VtxDeg‘𝑌)‘𝑈) = 1)
9291oveq2d 7151 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + 1))
9392breq2d 5042 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
9493notbid 321 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
9566ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
96 necom 3040 . . . . . . . . . 10 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ (𝑃‘(𝑁 + 1)) ≠ (𝑃𝑁))
97 fvex 6658 . . . . . . . . . . 11 (𝑃‘(𝑁 + 1)) ∈ V
9897eupth2lem2 28004 . . . . . . . . . 10 (((𝑃‘(𝑁 + 1)) ≠ (𝑃𝑁) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
9996, 98sylanb 584 . . . . . . . . 9 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
10099con1bid 359 . . . . . . . 8 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
101100adantll 713 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
10294, 95, 1013bitrd 308 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
103102expcom 417 . . . . 5 ((𝑃‘(𝑁 + 1)) = 𝑈 → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
104103eqcoms 2806 . . . 4 (𝑈 = (𝑃‘(𝑁 + 1)) → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
10573, 104jaoi 854 . . 3 ((𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1))) → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
106105com12 32 . 2 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
1071063impia 1114 1 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  if-wif 1058  w3a 1084   = wceq 1538  wcel 2111  wne 2987  {crab 3110  Vcvv 3441  wss 3881  c0 4243  ifcif 4425  𝒫 cpw 4497  {csn 4525  {cpr 4527  cop 4531   class class class wbr 5030  cres 5521  cima 5522  Fun wfun 6318  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  cn 11625  2c2 11680  cz 11969  ...cfz 12885  ..^cfzo 13028  chash 13686  cdvds 15599  Vtxcvtx 26789  iEdgciedg 26790  VtxDegcvtxdg 27255  Trailsctrls 27480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-xadd 12496  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-word 13858  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-vtxdg 27256  df-wlks 27389  df-trls 27482
This theorem is referenced by:  eupth2lem3lem7  28019
  Copyright terms: Public domain W3C validator