Proof of Theorem satfv1lem
Step | Hyp | Ref
| Expression |
1 | | fveq1 6755 |
. . . . . . 7
⊢ (𝑏 = ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) → (𝑏‘𝐼) = (({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)) |
2 | | fveq1 6755 |
. . . . . . 7
⊢ (𝑏 = ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) → (𝑏‘𝐽) = (({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽)) |
3 | 1, 2 | breq12d 5083 |
. . . . . 6
⊢ (𝑏 = ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) → ((𝑏‘𝐼)𝐸(𝑏‘𝐽) ↔ (({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽))) |
4 | 3 | elrab 3617 |
. . . . 5
⊢
(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ {𝑏 ∈ (𝑀 ↑m ω) ∣ (𝑏‘𝐼)𝐸(𝑏‘𝐽)} ↔ (({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω) ∧
(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽))) |
5 | 4 | a1i 11 |
. . . 4
⊢ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) → (({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ {𝑏 ∈ (𝑀 ↑m ω) ∣ (𝑏‘𝐼)𝐸(𝑏‘𝐽)} ↔ (({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω) ∧
(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽)))) |
6 | | elex 3440 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ω → 𝑁 ∈ V) |
7 | 6 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) → 𝑁 ∈ V) |
8 | 7 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) → 𝑁 ∈ V) |
9 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) → 𝑧 ∈ 𝑀) |
10 | 8, 9 | fsnd 6742 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) → {〈𝑁, 𝑧〉}:{𝑁}⟶𝑀) |
11 | | elmapex 8594 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ (𝑀 ↑m ω) → (𝑀 ∈ V ∧ ω ∈
V)) |
12 | 11 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (𝑀 ↑m ω) → 𝑀 ∈ V) |
13 | 12 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ (𝑀 ↑m ω) ∧ 𝑧 ∈ 𝑀) → 𝑀 ∈ V) |
14 | | snex 5349 |
. . . . . . . . . . 11
⊢ {𝑁} ∈ V |
15 | 14 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ (𝑀 ↑m ω) ∧ 𝑧 ∈ 𝑀) → {𝑁} ∈ V) |
16 | 13, 15 | elmapd 8587 |
. . . . . . . . 9
⊢ ((𝑎 ∈ (𝑀 ↑m ω) ∧ 𝑧 ∈ 𝑀) → ({〈𝑁, 𝑧〉} ∈ (𝑀 ↑m {𝑁}) ↔ {〈𝑁, 𝑧〉}:{𝑁}⟶𝑀)) |
17 | 16 | adantll 710 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) → ({〈𝑁, 𝑧〉} ∈ (𝑀 ↑m {𝑁}) ↔ {〈𝑁, 𝑧〉}:{𝑁}⟶𝑀)) |
18 | 10, 17 | mpbird 256 |
. . . . . . 7
⊢ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) → {〈𝑁, 𝑧〉} ∈ (𝑀 ↑m {𝑁})) |
19 | | elmapi 8595 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (𝑀 ↑m ω) → 𝑎:ω⟶𝑀) |
20 | | difssd 4063 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (𝑀 ↑m ω) → (ω
∖ {𝑁}) ⊆
ω) |
21 | 19, 20 | fssresd 6625 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (𝑀 ↑m ω) → (𝑎 ↾ (ω ∖ {𝑁})):(ω ∖ {𝑁})⟶𝑀) |
22 | | omex 9331 |
. . . . . . . . . . . . 13
⊢ ω
∈ V |
23 | 22 | difexi 5247 |
. . . . . . . . . . . 12
⊢ (ω
∖ {𝑁}) ∈
V |
24 | 23 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (𝑀 ↑m ω) → (ω
∖ {𝑁}) ∈
V) |
25 | 12, 24 | elmapd 8587 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (𝑀 ↑m ω) → ((𝑎 ↾ (ω ∖ {𝑁})) ∈ (𝑀 ↑m (ω ∖ {𝑁})) ↔ (𝑎 ↾ (ω ∖ {𝑁})):(ω ∖ {𝑁})⟶𝑀)) |
26 | 21, 25 | mpbird 256 |
. . . . . . . . 9
⊢ (𝑎 ∈ (𝑀 ↑m ω) → (𝑎 ↾ (ω ∖ {𝑁})) ∈ (𝑀 ↑m (ω ∖ {𝑁}))) |
27 | 26 | adantl 481 |
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) → (𝑎 ↾ (ω ∖ {𝑁})) ∈ (𝑀 ↑m (ω ∖ {𝑁}))) |
28 | 27 | adantr 480 |
. . . . . . 7
⊢ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) → (𝑎 ↾ (ω ∖ {𝑁})) ∈ (𝑀 ↑m (ω ∖ {𝑁}))) |
29 | | res0 5884 |
. . . . . . . . . 10
⊢
({〈𝑁, 𝑧〉} ↾ ∅) =
∅ |
30 | | res0 5884 |
. . . . . . . . . 10
⊢ ((𝑎 ↾ (ω ∖ {𝑁})) ↾ ∅) =
∅ |
31 | 29, 30 | eqtr4i 2769 |
. . . . . . . . 9
⊢
({〈𝑁, 𝑧〉} ↾ ∅) =
((𝑎 ↾ (ω
∖ {𝑁})) ↾
∅) |
32 | | disjdif 4402 |
. . . . . . . . . 10
⊢ ({𝑁} ∩ (ω ∖ {𝑁})) = ∅ |
33 | 32 | reseq2i 5877 |
. . . . . . . . 9
⊢
({〈𝑁, 𝑧〉} ↾ ({𝑁} ∩ (ω ∖ {𝑁}))) = ({〈𝑁, 𝑧〉} ↾ ∅) |
34 | 32 | reseq2i 5877 |
. . . . . . . . 9
⊢ ((𝑎 ↾ (ω ∖ {𝑁})) ↾ ({𝑁} ∩ (ω ∖ {𝑁}))) = ((𝑎 ↾ (ω ∖ {𝑁})) ↾ ∅) |
35 | 31, 33, 34 | 3eqtr4i 2776 |
. . . . . . . 8
⊢
({〈𝑁, 𝑧〉} ↾ ({𝑁} ∩ (ω ∖ {𝑁}))) = ((𝑎 ↾ (ω ∖ {𝑁})) ↾ ({𝑁} ∩ (ω ∖ {𝑁}))) |
36 | 35 | a1i 11 |
. . . . . . 7
⊢ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) → ({〈𝑁, 𝑧〉} ↾ ({𝑁} ∩ (ω ∖ {𝑁}))) = ((𝑎 ↾ (ω ∖ {𝑁})) ↾ ({𝑁} ∩ (ω ∖ {𝑁})))) |
37 | | elmapresaun 8626 |
. . . . . . 7
⊢
(({〈𝑁, 𝑧〉} ∈ (𝑀 ↑m {𝑁}) ∧ (𝑎 ↾ (ω ∖ {𝑁})) ∈ (𝑀 ↑m (ω ∖ {𝑁})) ∧ ({〈𝑁, 𝑧〉} ↾ ({𝑁} ∩ (ω ∖ {𝑁}))) = ((𝑎 ↾ (ω ∖ {𝑁})) ↾ ({𝑁} ∩ (ω ∖ {𝑁})))) → ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ({𝑁} ∪ (ω ∖ {𝑁})))) |
38 | 18, 28, 36, 37 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) → ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ({𝑁} ∪ (ω ∖ {𝑁})))) |
39 | | uncom 4083 |
. . . . . . . . . 10
⊢ ({𝑁} ∪ (ω ∖ {𝑁})) = ((ω ∖ {𝑁}) ∪ {𝑁}) |
40 | | difsnid 4740 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ω → ((ω
∖ {𝑁}) ∪ {𝑁}) = ω) |
41 | 39, 40 | eqtr2id 2792 |
. . . . . . . . 9
⊢ (𝑁 ∈ ω → ω =
({𝑁} ∪ (ω ∖
{𝑁}))) |
42 | 41 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ω
= ({𝑁} ∪ (ω
∖ {𝑁}))) |
43 | 42 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) → ω = ({𝑁} ∪ (ω ∖ {𝑁}))) |
44 | 43 | oveq2d 7271 |
. . . . . 6
⊢ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) → (𝑀 ↑m ω) = (𝑀 ↑m ({𝑁} ∪ (ω ∖ {𝑁})))) |
45 | 38, 44 | eleqtrrd 2842 |
. . . . 5
⊢ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) → ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m
ω)) |
46 | | ibar 528 |
. . . . . . . 8
⊢
(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ (({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω) ∧
(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽)))) |
47 | 46 | adantl 481 |
. . . . . . 7
⊢
(((((𝑁 ∈
ω ∧ 𝐼 ∈
ω ∧ 𝐽 ∈
ω) ∧ 𝑎 ∈
(𝑀 ↑m
ω)) ∧ 𝑧 ∈
𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ (({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω) ∧
(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽)))) |
48 | 47 | bicomd 222 |
. . . . . 6
⊢
(((((𝑁 ∈
ω ∧ 𝐼 ∈
ω ∧ 𝐽 ∈
ω) ∧ 𝑎 ∈
(𝑀 ↑m
ω)) ∧ 𝑧 ∈
𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω) ∧
(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽)) ↔ (({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽))) |
49 | | simpll1 1210 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) → 𝑁 ∈ ω) |
50 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) = ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) |
51 | 49, 9, 50 | fvsnun1 7036 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) → (({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) = 𝑧) |
52 | 51 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ω ∧ 𝐼 ∈
ω ∧ 𝐽 ∈
ω) ∧ 𝑎 ∈
(𝑀 ↑m
ω)) ∧ 𝑧 ∈
𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)) →
(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) = 𝑧) |
53 | 52, 52 | breq12d 5083 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ω ∧ 𝐼 ∈
ω ∧ 𝐽 ∈
ω) ∧ 𝑎 ∈
(𝑀 ↑m
ω)) ∧ 𝑧 ∈
𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) ↔ 𝑧𝐸𝑧)) |
54 | 53 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) ↔ 𝑧𝐸𝑧)) |
55 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝐽 = 𝑁 → (({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) = (({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)) |
56 | 55 | breq2d 5082 |
. . . . . . . . . . . . 13
⊢ (𝐽 = 𝑁 → ((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ (({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁))) |
57 | | ifptru 1072 |
. . . . . . . . . . . . 13
⊢ (𝐽 = 𝑁 → (if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)) ↔ 𝑧𝐸𝑧)) |
58 | 56, 57 | bibi12d 345 |
. . . . . . . . . . . 12
⊢ (𝐽 = 𝑁 → (((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽))) ↔ ((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) ↔ 𝑧𝐸𝑧))) |
59 | 58 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) →
(((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽))) ↔ ((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) ↔ 𝑧𝐸𝑧))) |
60 | 54, 59 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)))) |
61 | 52 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((¬
𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) →
(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) = 𝑧) |
62 | 49 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ω ∧ 𝐼 ∈
ω ∧ 𝐽 ∈
ω) ∧ 𝑎 ∈
(𝑀 ↑m
ω)) ∧ 𝑧 ∈
𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)) → 𝑁 ∈
ω) |
63 | 62 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((¬
𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) → 𝑁 ∈
ω) |
64 | 9 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ω ∧ 𝐼 ∈
ω ∧ 𝐽 ∈
ω) ∧ 𝑎 ∈
(𝑀 ↑m
ω)) ∧ 𝑧 ∈
𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)) → 𝑧 ∈ 𝑀) |
65 | 64 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((¬
𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) → 𝑧 ∈ 𝑀) |
66 | | neqne 2950 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝐽 = 𝑁 → 𝐽 ≠ 𝑁) |
67 | | simpll3 1212 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) → 𝐽 ∈ ω) |
68 | 67 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈
ω ∧ 𝐼 ∈
ω ∧ 𝐽 ∈
ω) ∧ 𝑎 ∈
(𝑀 ↑m
ω)) ∧ 𝑧 ∈
𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)) → 𝐽 ∈
ω) |
69 | 66, 68 | anim12ci 613 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) → (𝐽 ∈ ω ∧ 𝐽 ≠ 𝑁)) |
70 | | eldifsn 4717 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ (ω ∖ {𝑁}) ↔ (𝐽 ∈ ω ∧ 𝐽 ≠ 𝑁)) |
71 | 69, 70 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ ((¬
𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) → 𝐽 ∈ (ω ∖ {𝑁})) |
72 | 63, 65, 50, 71 | fvsnun2 7037 |
. . . . . . . . . . . 12
⊢ ((¬
𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) →
(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) = (𝑎‘𝐽)) |
73 | 61, 72 | breq12d 5083 |
. . . . . . . . . . 11
⊢ ((¬
𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ 𝑧𝐸(𝑎‘𝐽))) |
74 | | ifpfal 1073 |
. . . . . . . . . . . . 13
⊢ (¬
𝐽 = 𝑁 → (if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)) ↔ 𝑧𝐸(𝑎‘𝐽))) |
75 | 74 | bicomd 222 |
. . . . . . . . . . . 12
⊢ (¬
𝐽 = 𝑁 → (𝑧𝐸(𝑎‘𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)))) |
76 | 75 | adantr 480 |
. . . . . . . . . . 11
⊢ ((¬
𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) → (𝑧𝐸(𝑎‘𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)))) |
77 | 73, 76 | bitrd 278 |
. . . . . . . . . 10
⊢ ((¬
𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)))) |
78 | 60, 77 | pm2.61ian 808 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ω ∧ 𝐼 ∈
ω ∧ 𝐽 ∈
ω) ∧ 𝑎 ∈
(𝑀 ↑m
ω)) ∧ 𝑧 ∈
𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)))) |
79 | 78 | adantl 481 |
. . . . . . . 8
⊢ ((𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)))) |
80 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝐼 = 𝑁 → (({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼) = (({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)) |
81 | 80 | breq1d 5080 |
. . . . . . . . . 10
⊢ (𝐼 = 𝑁 → ((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ (({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽))) |
82 | | ifptru 1072 |
. . . . . . . . . 10
⊢ (𝐼 = 𝑁 → (if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽))) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)))) |
83 | 81, 82 | bibi12d 345 |
. . . . . . . . 9
⊢ (𝐼 = 𝑁 → (((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))) ↔ ((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽))))) |
84 | 83 | adantr 480 |
. . . . . . . 8
⊢ ((𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) →
(((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))) ↔ ((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽))))) |
85 | 79, 84 | mpbird 256 |
. . . . . . 7
⊢ ((𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽))))) |
86 | 62 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((¬
𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) → 𝑁 ∈
ω) |
87 | 64 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((¬
𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) → 𝑧 ∈ 𝑀) |
88 | | neqne 2950 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝐼 = 𝑁 → 𝐼 ≠ 𝑁) |
89 | | simpll2 1211 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) → 𝐼 ∈ ω) |
90 | 89 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈
ω ∧ 𝐼 ∈
ω ∧ 𝐽 ∈
ω) ∧ 𝑎 ∈
(𝑀 ↑m
ω)) ∧ 𝑧 ∈
𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)) → 𝐼 ∈
ω) |
91 | 88, 90 | anim12ci 613 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) → (𝐼 ∈ ω ∧ 𝐼 ≠ 𝑁)) |
92 | | eldifsn 4717 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∈ (ω ∖ {𝑁}) ↔ (𝐼 ∈ ω ∧ 𝐼 ≠ 𝑁)) |
93 | 91, 92 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ ((¬
𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) → 𝐼 ∈ (ω ∖ {𝑁})) |
94 | 86, 87, 50, 93 | fvsnun2 7037 |
. . . . . . . . . . . 12
⊢ ((¬
𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) →
(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼) = (𝑎‘𝐼)) |
95 | 52 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((¬
𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) →
(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) = 𝑧) |
96 | 94, 95 | breq12d 5083 |
. . . . . . . . . . 11
⊢ ((¬
𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) ↔ (𝑎‘𝐼)𝐸𝑧)) |
97 | 96 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐽 = 𝑁 ∧ (¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)))) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) ↔ (𝑎‘𝐼)𝐸𝑧)) |
98 | 55 | breq2d 5082 |
. . . . . . . . . . . 12
⊢ (𝐽 = 𝑁 → ((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ (({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁))) |
99 | | ifptru 1072 |
. . . . . . . . . . . 12
⊢ (𝐽 = 𝑁 → (if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)) ↔ (𝑎‘𝐼)𝐸𝑧)) |
100 | 98, 99 | bibi12d 345 |
. . . . . . . . . . 11
⊢ (𝐽 = 𝑁 → (((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽))) ↔ ((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) ↔ (𝑎‘𝐼)𝐸𝑧))) |
101 | 100 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐽 = 𝑁 ∧ (¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)))) →
(((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽))) ↔ ((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) ↔ (𝑎‘𝐼)𝐸𝑧))) |
102 | 97, 101 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝐽 = 𝑁 ∧ (¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)))) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))) |
103 | 94 | adantl 481 |
. . . . . . . . . . 11
⊢ ((¬
𝐽 = 𝑁 ∧ (¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)))) →
(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼) = (𝑎‘𝐼)) |
104 | 72 | adantrl 712 |
. . . . . . . . . . 11
⊢ ((¬
𝐽 = 𝑁 ∧ (¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)))) →
(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) = (𝑎‘𝐽)) |
105 | 103, 104 | breq12d 5083 |
. . . . . . . . . 10
⊢ ((¬
𝐽 = 𝑁 ∧ (¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)))) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ (𝑎‘𝐼)𝐸(𝑎‘𝐽))) |
106 | | ifpfal 1073 |
. . . . . . . . . . . 12
⊢ (¬
𝐽 = 𝑁 → (if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)) ↔ (𝑎‘𝐼)𝐸(𝑎‘𝐽))) |
107 | 106 | bicomd 222 |
. . . . . . . . . . 11
⊢ (¬
𝐽 = 𝑁 → ((𝑎‘𝐼)𝐸(𝑎‘𝐽) ↔ if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))) |
108 | 107 | adantr 480 |
. . . . . . . . . 10
⊢ ((¬
𝐽 = 𝑁 ∧ (¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)))) →
((𝑎‘𝐼)𝐸(𝑎‘𝐽) ↔ if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))) |
109 | 105, 108 | bitrd 278 |
. . . . . . . . 9
⊢ ((¬
𝐽 = 𝑁 ∧ (¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)))) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))) |
110 | 102, 109 | pm2.61ian 808 |
. . . . . . . 8
⊢ ((¬
𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))) |
111 | | ifpfal 1073 |
. . . . . . . . . 10
⊢ (¬
𝐼 = 𝑁 → (if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽))) ↔ if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))) |
112 | 111 | bicomd 222 |
. . . . . . . . 9
⊢ (¬
𝐼 = 𝑁 → (if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)) ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽))))) |
113 | 112 | adantr 480 |
. . . . . . . 8
⊢ ((¬
𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) →
(if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)) ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽))))) |
114 | 110, 113 | bitrd 278 |
. . . . . . 7
⊢ ((¬
𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω))) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽))))) |
115 | 85, 114 | pm2.61ian 808 |
. . . . . 6
⊢
(((((𝑁 ∈
ω ∧ 𝐼 ∈
ω ∧ 𝐽 ∈
ω) ∧ 𝑎 ∈
(𝑀 ↑m
ω)) ∧ 𝑧 ∈
𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽))))) |
116 | 48, 115 | bitrd 278 |
. . . . 5
⊢
(((((𝑁 ∈
ω ∧ 𝐼 ∈
ω ∧ 𝐽 ∈
ω) ∧ 𝑎 ∈
(𝑀 ↑m
ω)) ∧ 𝑧 ∈
𝑀) ∧ ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω)) →
((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω) ∧
(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽)) ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽))))) |
117 | 45, 116 | mpdan 683 |
. . . 4
⊢ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) → ((({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀 ↑m ω) ∧
(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽)) ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽))))) |
118 | 5, 117 | bitrd 278 |
. . 3
⊢ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) ∧ 𝑧 ∈ 𝑀) → (({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ {𝑏 ∈ (𝑀 ↑m ω) ∣ (𝑏‘𝐼)𝐸(𝑏‘𝐽)} ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽))))) |
119 | 118 | ralbidva 3119 |
. 2
⊢ (((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀 ↑m ω)) →
(∀𝑧 ∈ 𝑀 ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ {𝑏 ∈ (𝑀 ↑m ω) ∣ (𝑏‘𝐼)𝐸(𝑏‘𝐽)} ↔ ∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽))))) |
120 | 119 | rabbidva 3402 |
1
⊢ ((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) → {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑁, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ {𝑏 ∈ (𝑀 ↑m ω) ∣ (𝑏‘𝐼)𝐸(𝑏‘𝐽)}} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑁, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))}) |