Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfv1lem Structured version   Visualization version   GIF version

Theorem satfv1lem 32852
 Description: Lemma for satfv1 32853. (Contributed by AV, 9-Nov-2023.)
Assertion
Ref Expression
satfv1lem ((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) → {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ {𝑏 ∈ (𝑀m ω) ∣ (𝑏𝐼)𝐸(𝑏𝐽)}} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))})
Distinct variable groups:   𝐸,𝑏   𝐼,𝑎,𝑏,𝑧   𝐽,𝑎,𝑏,𝑧   𝑀,𝑏,𝑧   𝑁,𝑎,𝑏,𝑧
Allowed substitution hints:   𝐸(𝑧,𝑎)   𝑀(𝑎)

Proof of Theorem satfv1lem
StepHypRef Expression
1 fveq1 6662 . . . . . . 7 (𝑏 = ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) → (𝑏𝐼) = (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼))
2 fveq1 6662 . . . . . . 7 (𝑏 = ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) → (𝑏𝐽) = (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽))
31, 2breq12d 5049 . . . . . 6 (𝑏 = ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) → ((𝑏𝐼)𝐸(𝑏𝐽) ↔ (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽)))
43elrab 3604 . . . . 5 (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ {𝑏 ∈ (𝑀m ω) ∣ (𝑏𝐼)𝐸(𝑏𝐽)} ↔ (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω) ∧ (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽)))
54a1i 11 . . . 4 ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) → (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ {𝑏 ∈ (𝑀m ω) ∣ (𝑏𝐼)𝐸(𝑏𝐽)} ↔ (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω) ∧ (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽))))
6 elex 3428 . . . . . . . . . . 11 (𝑁 ∈ ω → 𝑁 ∈ V)
763ad2ant1 1130 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) → 𝑁 ∈ V)
87ad2antrr 725 . . . . . . . . 9 ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) → 𝑁 ∈ V)
9 simpr 488 . . . . . . . . 9 ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) → 𝑧𝑀)
108, 9fsnd 6649 . . . . . . . 8 ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) → {⟨𝑁, 𝑧⟩}:{𝑁}⟶𝑀)
11 elmapex 8443 . . . . . . . . . . . 12 (𝑎 ∈ (𝑀m ω) → (𝑀 ∈ V ∧ ω ∈ V))
1211simpld 498 . . . . . . . . . . 11 (𝑎 ∈ (𝑀m ω) → 𝑀 ∈ V)
1312adantr 484 . . . . . . . . . 10 ((𝑎 ∈ (𝑀m ω) ∧ 𝑧𝑀) → 𝑀 ∈ V)
14 snex 5304 . . . . . . . . . . 11 {𝑁} ∈ V
1514a1i 11 . . . . . . . . . 10 ((𝑎 ∈ (𝑀m ω) ∧ 𝑧𝑀) → {𝑁} ∈ V)
1613, 15elmapd 8436 . . . . . . . . 9 ((𝑎 ∈ (𝑀m ω) ∧ 𝑧𝑀) → ({⟨𝑁, 𝑧⟩} ∈ (𝑀m {𝑁}) ↔ {⟨𝑁, 𝑧⟩}:{𝑁}⟶𝑀))
1716adantll 713 . . . . . . . 8 ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) → ({⟨𝑁, 𝑧⟩} ∈ (𝑀m {𝑁}) ↔ {⟨𝑁, 𝑧⟩}:{𝑁}⟶𝑀))
1810, 17mpbird 260 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) → {⟨𝑁, 𝑧⟩} ∈ (𝑀m {𝑁}))
19 elmapi 8444 . . . . . . . . . . 11 (𝑎 ∈ (𝑀m ω) → 𝑎:ω⟶𝑀)
20 difssd 4040 . . . . . . . . . . 11 (𝑎 ∈ (𝑀m ω) → (ω ∖ {𝑁}) ⊆ ω)
2119, 20fssresd 6535 . . . . . . . . . 10 (𝑎 ∈ (𝑀m ω) → (𝑎 ↾ (ω ∖ {𝑁})):(ω ∖ {𝑁})⟶𝑀)
22 omex 9152 . . . . . . . . . . . . 13 ω ∈ V
2322difexi 5202 . . . . . . . . . . . 12 (ω ∖ {𝑁}) ∈ V
2423a1i 11 . . . . . . . . . . 11 (𝑎 ∈ (𝑀m ω) → (ω ∖ {𝑁}) ∈ V)
2512, 24elmapd 8436 . . . . . . . . . 10 (𝑎 ∈ (𝑀m ω) → ((𝑎 ↾ (ω ∖ {𝑁})) ∈ (𝑀m (ω ∖ {𝑁})) ↔ (𝑎 ↾ (ω ∖ {𝑁})):(ω ∖ {𝑁})⟶𝑀))
2621, 25mpbird 260 . . . . . . . . 9 (𝑎 ∈ (𝑀m ω) → (𝑎 ↾ (ω ∖ {𝑁})) ∈ (𝑀m (ω ∖ {𝑁})))
2726adantl 485 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) → (𝑎 ↾ (ω ∖ {𝑁})) ∈ (𝑀m (ω ∖ {𝑁})))
2827adantr 484 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) → (𝑎 ↾ (ω ∖ {𝑁})) ∈ (𝑀m (ω ∖ {𝑁})))
29 res0 5832 . . . . . . . . . 10 ({⟨𝑁, 𝑧⟩} ↾ ∅) = ∅
30 res0 5832 . . . . . . . . . 10 ((𝑎 ↾ (ω ∖ {𝑁})) ↾ ∅) = ∅
3129, 30eqtr4i 2784 . . . . . . . . 9 ({⟨𝑁, 𝑧⟩} ↾ ∅) = ((𝑎 ↾ (ω ∖ {𝑁})) ↾ ∅)
32 disjdif 4371 . . . . . . . . . 10 ({𝑁} ∩ (ω ∖ {𝑁})) = ∅
3332reseq2i 5825 . . . . . . . . 9 ({⟨𝑁, 𝑧⟩} ↾ ({𝑁} ∩ (ω ∖ {𝑁}))) = ({⟨𝑁, 𝑧⟩} ↾ ∅)
3432reseq2i 5825 . . . . . . . . 9 ((𝑎 ↾ (ω ∖ {𝑁})) ↾ ({𝑁} ∩ (ω ∖ {𝑁}))) = ((𝑎 ↾ (ω ∖ {𝑁})) ↾ ∅)
3531, 33, 343eqtr4i 2791 . . . . . . . 8 ({⟨𝑁, 𝑧⟩} ↾ ({𝑁} ∩ (ω ∖ {𝑁}))) = ((𝑎 ↾ (ω ∖ {𝑁})) ↾ ({𝑁} ∩ (ω ∖ {𝑁})))
3635a1i 11 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) → ({⟨𝑁, 𝑧⟩} ↾ ({𝑁} ∩ (ω ∖ {𝑁}))) = ((𝑎 ↾ (ω ∖ {𝑁})) ↾ ({𝑁} ∩ (ω ∖ {𝑁}))))
37 elmapresaun 8475 . . . . . . 7 (({⟨𝑁, 𝑧⟩} ∈ (𝑀m {𝑁}) ∧ (𝑎 ↾ (ω ∖ {𝑁})) ∈ (𝑀m (ω ∖ {𝑁})) ∧ ({⟨𝑁, 𝑧⟩} ↾ ({𝑁} ∩ (ω ∖ {𝑁}))) = ((𝑎 ↾ (ω ∖ {𝑁})) ↾ ({𝑁} ∩ (ω ∖ {𝑁})))) → ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ({𝑁} ∪ (ω ∖ {𝑁}))))
3818, 28, 36, 37syl3anc 1368 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) → ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ({𝑁} ∪ (ω ∖ {𝑁}))))
39 uncom 4060 . . . . . . . . . 10 ({𝑁} ∪ (ω ∖ {𝑁})) = ((ω ∖ {𝑁}) ∪ {𝑁})
40 difsnid 4703 . . . . . . . . . 10 (𝑁 ∈ ω → ((ω ∖ {𝑁}) ∪ {𝑁}) = ω)
4139, 40syl5req 2806 . . . . . . . . 9 (𝑁 ∈ ω → ω = ({𝑁} ∪ (ω ∖ {𝑁})))
42413ad2ant1 1130 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ω = ({𝑁} ∪ (ω ∖ {𝑁})))
4342ad2antrr 725 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) → ω = ({𝑁} ∪ (ω ∖ {𝑁})))
4443oveq2d 7172 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) → (𝑀m ω) = (𝑀m ({𝑁} ∪ (ω ∖ {𝑁}))))
4538, 44eleqtrrd 2855 . . . . 5 ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) → ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))
46 ibar 532 . . . . . . . 8 (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω) ∧ (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽))))
4746adantl 485 . . . . . . 7 (((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω) ∧ (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽))))
4847bicomd 226 . . . . . 6 (((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω) ∧ (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽)) ↔ (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽)))
49 simpll1 1209 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) → 𝑁 ∈ ω)
50 eqid 2758 . . . . . . . . . . . . . . 15 ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) = ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))
5149, 9, 50fvsnun1 6941 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) → (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) = 𝑧)
5251adantr 484 . . . . . . . . . . . . 13 (((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)) → (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) = 𝑧)
5352, 52breq12d 5049 . . . . . . . . . . . 12 (((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) ↔ 𝑧𝐸𝑧))
5453adantl 485 . . . . . . . . . . 11 ((𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) ↔ 𝑧𝐸𝑧))
55 fveq2 6663 . . . . . . . . . . . . . 14 (𝐽 = 𝑁 → (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) = (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁))
5655breq2d 5048 . . . . . . . . . . . . 13 (𝐽 = 𝑁 → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)))
57 ifptru 1071 . . . . . . . . . . . . 13 (𝐽 = 𝑁 → (if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)) ↔ 𝑧𝐸𝑧))
5856, 57bibi12d 349 . . . . . . . . . . . 12 (𝐽 = 𝑁 → (((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽))) ↔ ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) ↔ 𝑧𝐸𝑧)))
5958adantr 484 . . . . . . . . . . 11 ((𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → (((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽))) ↔ ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) ↔ 𝑧𝐸𝑧)))
6054, 59mpbird 260 . . . . . . . . . 10 ((𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽))))
6152adantl 485 . . . . . . . . . . . 12 ((¬ 𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) = 𝑧)
6249adantr 484 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)) → 𝑁 ∈ ω)
6362adantl 485 . . . . . . . . . . . . 13 ((¬ 𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → 𝑁 ∈ ω)
649adantr 484 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)) → 𝑧𝑀)
6564adantl 485 . . . . . . . . . . . . 13 ((¬ 𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → 𝑧𝑀)
66 neqne 2959 . . . . . . . . . . . . . . 15 𝐽 = 𝑁𝐽𝑁)
67 simpll3 1211 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) → 𝐽 ∈ ω)
6867adantr 484 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)) → 𝐽 ∈ ω)
6966, 68anim12ci 616 . . . . . . . . . . . . . 14 ((¬ 𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → (𝐽 ∈ ω ∧ 𝐽𝑁))
70 eldifsn 4680 . . . . . . . . . . . . . 14 (𝐽 ∈ (ω ∖ {𝑁}) ↔ (𝐽 ∈ ω ∧ 𝐽𝑁))
7169, 70sylibr 237 . . . . . . . . . . . . 13 ((¬ 𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → 𝐽 ∈ (ω ∖ {𝑁}))
7263, 65, 50, 71fvsnun2 6942 . . . . . . . . . . . 12 ((¬ 𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) = (𝑎𝐽))
7361, 72breq12d 5049 . . . . . . . . . . 11 ((¬ 𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ 𝑧𝐸(𝑎𝐽)))
74 ifpfal 1072 . . . . . . . . . . . . 13 𝐽 = 𝑁 → (if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)) ↔ 𝑧𝐸(𝑎𝐽)))
7574bicomd 226 . . . . . . . . . . . 12 𝐽 = 𝑁 → (𝑧𝐸(𝑎𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽))))
7675adantr 484 . . . . . . . . . . 11 ((¬ 𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → (𝑧𝐸(𝑎𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽))))
7773, 76bitrd 282 . . . . . . . . . 10 ((¬ 𝐽 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽))))
7860, 77pm2.61ian 811 . . . . . . . . 9 (((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽))))
7978adantl 485 . . . . . . . 8 ((𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽))))
80 fveq2 6663 . . . . . . . . . . 11 (𝐼 = 𝑁 → (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼) = (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁))
8180breq1d 5046 . . . . . . . . . 10 (𝐼 = 𝑁 → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽)))
82 ifptru 1071 . . . . . . . . . 10 (𝐼 = 𝑁 → (if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽))) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽))))
8381, 82bibi12d 349 . . . . . . . . 9 (𝐼 = 𝑁 → (((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))) ↔ ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)))))
8483adantr 484 . . . . . . . 8 ((𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → (((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))) ↔ ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)))))
8579, 84mpbird 260 . . . . . . 7 ((𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))))
8662adantl 485 . . . . . . . . . . . . 13 ((¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → 𝑁 ∈ ω)
8764adantl 485 . . . . . . . . . . . . 13 ((¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → 𝑧𝑀)
88 neqne 2959 . . . . . . . . . . . . . . 15 𝐼 = 𝑁𝐼𝑁)
89 simpll2 1210 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) → 𝐼 ∈ ω)
9089adantr 484 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)) → 𝐼 ∈ ω)
9188, 90anim12ci 616 . . . . . . . . . . . . . 14 ((¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → (𝐼 ∈ ω ∧ 𝐼𝑁))
92 eldifsn 4680 . . . . . . . . . . . . . 14 (𝐼 ∈ (ω ∖ {𝑁}) ↔ (𝐼 ∈ ω ∧ 𝐼𝑁))
9391, 92sylibr 237 . . . . . . . . . . . . 13 ((¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → 𝐼 ∈ (ω ∖ {𝑁}))
9486, 87, 50, 93fvsnun2 6942 . . . . . . . . . . . 12 ((¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼) = (𝑎𝐼))
9552adantl 485 . . . . . . . . . . . 12 ((¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) = 𝑧)
9694, 95breq12d 5049 . . . . . . . . . . 11 ((¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) ↔ (𝑎𝐼)𝐸𝑧))
9796adantl 485 . . . . . . . . . 10 ((𝐽 = 𝑁 ∧ (¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)))) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) ↔ (𝑎𝐼)𝐸𝑧))
9855breq2d 5048 . . . . . . . . . . . 12 (𝐽 = 𝑁 → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁)))
99 ifptru 1071 . . . . . . . . . . . 12 (𝐽 = 𝑁 → (if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)) ↔ (𝑎𝐼)𝐸𝑧))
10098, 99bibi12d 349 . . . . . . . . . . 11 (𝐽 = 𝑁 → (((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽))) ↔ ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) ↔ (𝑎𝐼)𝐸𝑧)))
101100adantr 484 . . . . . . . . . 10 ((𝐽 = 𝑁 ∧ (¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)))) → (((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽))) ↔ ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝑁) ↔ (𝑎𝐼)𝐸𝑧)))
10297, 101mpbird 260 . . . . . . . . 9 ((𝐽 = 𝑁 ∧ (¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)))) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽))))
10394adantl 485 . . . . . . . . . . 11 ((¬ 𝐽 = 𝑁 ∧ (¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)))) → (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼) = (𝑎𝐼))
10472adantrl 715 . . . . . . . . . . 11 ((¬ 𝐽 = 𝑁 ∧ (¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)))) → (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) = (𝑎𝐽))
105103, 104breq12d 5049 . . . . . . . . . 10 ((¬ 𝐽 = 𝑁 ∧ (¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)))) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ (𝑎𝐼)𝐸(𝑎𝐽)))
106 ifpfal 1072 . . . . . . . . . . . 12 𝐽 = 𝑁 → (if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)) ↔ (𝑎𝐼)𝐸(𝑎𝐽)))
107106bicomd 226 . . . . . . . . . . 11 𝐽 = 𝑁 → ((𝑎𝐼)𝐸(𝑎𝐽) ↔ if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽))))
108107adantr 484 . . . . . . . . . 10 ((¬ 𝐽 = 𝑁 ∧ (¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)))) → ((𝑎𝐼)𝐸(𝑎𝐽) ↔ if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽))))
109105, 108bitrd 282 . . . . . . . . 9 ((¬ 𝐽 = 𝑁 ∧ (¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)))) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽))))
110102, 109pm2.61ian 811 . . . . . . . 8 ((¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽))))
111 ifpfal 1072 . . . . . . . . . 10 𝐼 = 𝑁 → (if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽))) ↔ if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽))))
112111bicomd 226 . . . . . . . . 9 𝐼 = 𝑁 → (if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)) ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))))
113112adantr 484 . . . . . . . 8 ((¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → (if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)) ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))))
114110, 113bitrd 282 . . . . . . 7 ((¬ 𝐼 = 𝑁 ∧ ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω))) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))))
11585, 114pm2.61ian 811 . . . . . 6 (((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽) ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))))
11648, 115bitrd 282 . . . . 5 (((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) ∧ ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω)) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω) ∧ (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽)) ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))))
11745, 116mpdan 686 . . . 4 ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) → ((({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ (𝑀m ω) ∧ (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐼)𝐸(({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁})))‘𝐽)) ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))))
1185, 117bitrd 282 . . 3 ((((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) ∧ 𝑧𝑀) → (({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ {𝑏 ∈ (𝑀m ω) ∣ (𝑏𝐼)𝐸(𝑏𝐽)} ↔ if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))))
119118ralbidva 3125 . 2 (((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ 𝑎 ∈ (𝑀m ω)) → (∀𝑧𝑀 ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ {𝑏 ∈ (𝑀m ω) ∣ (𝑏𝐼)𝐸(𝑏𝐽)} ↔ ∀𝑧𝑀 if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))))
120119rabbidva 3390 1 ((𝑁 ∈ ω ∧ 𝐼 ∈ ω ∧ 𝐽 ∈ ω) → {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑁, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑁}))) ∈ {𝑏 ∈ (𝑀m ω) ∣ (𝑏𝐼)𝐸(𝑏𝐽)}} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑁, if-(𝐽 = 𝑁, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑁, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399  if-wif 1058   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070  {crab 3074  Vcvv 3409   ∖ cdif 3857   ∪ cun 3858   ∩ cin 3859  ∅c0 4227  {csn 4525  ⟨cop 4531   class class class wbr 5036   ↾ cres 5530  ⟶wf 6336  ‘cfv 6340  (class class class)co 7156  ωcom 7585   ↑m cmap 8422 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-inf2 9150 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-map 8424 This theorem is referenced by:  satfv1  32853
 Copyright terms: Public domain W3C validator